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FGANet: INIRS-Guided Attention Network for
Hybrid EEG-fNIRS Brain-Computer Interfaces

Youngchul Kwak™, Woo-Jin Song

Abstract—Non-invasive  brain-computer interfaces
(BCls) have been widely used for neural decoding, linking
neural signals to control devices. Hybrid BCl systems using
electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) have received significant attention for
overcoming the limitations of EEG- and fNIRS-standalone
BCI systems. However, most hybrid EEG-fNIRS BCI studies
have focused on late fusion because of discrepancies in
their temporal resolutions and recording locations. Despite
the enhanced performance of hybrid BCls, late fusion
methods have difficulty in extracting correlated features
in both EEG and fNIRS signals. Therefore, in this study,
we proposed a deep learning-based early fusion structure,
which combines two signals before the fully-connected
layer, called the fNIRS-guided attention network (FGANet).
First, 1D EEG and fNIRS signals were converted into 3D
EEG and fNIRS tensors to spatially align EEG and fNIRS
signals at the same time point. The proposed fNIRS-guided
attention layer extracted a joint representation of EEG
and fNIRS tensors based on neurovascular coupling,
in which the spatially important regions were identified
from fNIRS signals, and detailed neural patterns were
extracted from EEG signals. Finally, the final prediction
was obtained by weighting the sum of the prediction
scores of the EEG and fNIRS-guided attention features
to alleviate performance degradation owing to delayed
fNIRS response. In the experimental results, the FGANet
significantly outperformed the EEG-standalone network.
Furthermore, the FGANet has 4.0% and 2.7% higher
accuracy than the state-of-the-art algorithms in mental
arithmetic and motor imagery tasks, respectively.

Index Terms— Brain-computer interface (BCIl), deep
learning, electroencephalography (EEG), functional
near-infrared spectroscopy (fNIRS), hybrid BCI, and
fNIRS-guided attention networks.

|. INTRODUCTION

HE brain-computer interfaces (BCIs) provide a direct
interface between neural activities containing the user’s

Manuscript received October 25, 2021; revised January 13, 2022;
accepted February 4, 2022. Date of publication February 7, 2022; date
of current version February 16, 2022. This work was supported in part by
the National Research Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (MSIT) under Grant 2020M3C1B8081320 and Grant
2020R1C1C1011857. (Corresponding author: Seong-Eun Kim.)

Youngchul Kwak and Woo-Jin Song are with the Department of
Electronics Engineering, Pohang University of Science and Technol-
ogy (POSTECH), Pohang, Gyeongbuk 37673, South Korea (e-mail:
kyc2058 @ postech.ac.kr; wjsong @ postech.ac.kr).

Seong-Eun Kim is with the Department of Applied Artificial Intelligence,
Seoul National University of Science and Technology (SeoulTech),
Nowon-gu, Seoul 01811, South Korea (e-mail: sekim @seoultech.ac.kr).

Digital Object Identifier 10.1109/TNSRE.2022.3149899

, Life Member, IEEE, and Seong-Eun Kim™, Member, IEEE

intention and control signals for external devices [1]-[3].
The BCI system may allow individuals to operate assis-
tive devices, such as robot arms [4], wheelchairs [5], and
spelling [6]. Furthermore, BCI systems can be used to
detect neurological diseases, such as seizures and Alzheimer’s
disease [7]-[9].

BCI approaches can be divided into invasive and non-
invasive BCIs. As invasive BCIs usually record neural signals
from electrodes implanted into the brain, non-invasive BCIs
are preferred for humans because of their safety and conve-
nience. In non-invasive BCI systems, various neural activities
have been utilized, such as electroencephalography (EEG) [5],
[6], [9], [10], magnetoencephalography (MEG) [11], [12],
functional near-infrared spectroscopy (fNIRS) [13]-[16], and
functional magnetic resonance imaging (fMRI) [17], [18].
Despite MEG and fMRI having excellent spatial resolution
to study the underlying neuronal activities and cerebral blood
flow changes, they are inappropriate for real-world BCI sys-
tems because of their large size and high cost. However,
EEG and fNIRS are more suitable for real-world applications
because of their portability and low cost. Therefore, EEG- or
fNIRS-based BCI systems have been extensively investigated.

EEG and fNIRS measure different physiological dynamics
of brain activity. EEG can capture the macroscopic temporal
dynamics of neuronal electrical activity through multi-channel
electrodes on the scalp. In particular, it has the superior
advantage of high temporal resolution with a fast response to
stimuli, thus it is popular in medical and engineering applica-
tions. However, EEG is vulnerable to movement artifacts and
electrical noise. Hence, EEG-standalone BCI systems often
misclassify resting-state EEG signals as commands while the
subject is not performing any tasks [19]. Compared with EEG,
fNIRS is a scalp-based optical spectroscopic measurement
that uses a light injection source and detection to measure
hemodynamic fluctuations caused by brain activity. Increased
neural activity results in increased oxygen consumption to
fulfill the demand of the neuronal tissues, which causes a
decrease in oxygenated hemoglobin (HbO) and an increase in
deoxygenated hemoglobin (HbR). fNIRS is robust to motion
artifacts and electrical noise, but has significantly poor tem-
poral resolution and delayed hemodynamic response, making
it challenging to construct real-time BCI applications. The
maximum classification accuracy of the fNIRS-standalone
BCI system was delayed up to 7 s compared to that of the
EEG-standalone BCI system for the same task [10]. Therefore,
hybrid EEG-fNIRS BCI systems have been introduced to
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overcome the limitations of EEG- or fNIRS-standalone BCI
systems.

Hybrid EEG-fNIRS BCI systems can significantly improve
EEG or fNIRS-standalone BCI systems by combining the
advantages of each signal. However, multimodal fusion is chal-
lenging because two signals are significantly different in their
temporal resolution and recording locations, which can make
the joint representation of two signals difficult. Therefore, most
of the traditional studies focused on feature- or decision-level
fusion techniques, which can simply improve performance
by combining hand-crafted EEG and fNIRS features or deci-
sion scores [20]—[24]. These methods extract each EEG and
fNIRS feature individually, and then the concatenated features
are used for classification by linear discrimination analy-
sis (LDA) or support vector machine (SVM). For example,
Shin et al. [20] extracted prediction scores from the EEG and
fNIRS signals, respectively, and used an LDA-based meta-
classifier to obtain the final prediction score. Jiang et al. [25]
proposed an independent decision path fusion (IDPF) method
that extracts an independent decision score from each EEG
and fNIRS features, including the power spectrum of EEG
signals and mean value of the HbO and HbR, and then fused
EEG and fNIRS features according to the score to classify
brain signals. They developed reliable-based decision-level
fusion, which assigns different weights to the decision scores
based on their respective accuracy. They developed reliable-
based decision-level fusion, which give different weights to
decision score based on their respective accuracy. In contrast to
the feature-level fusion method, some traditional studies have
utilized fNIRS signals as a supplementary tool in EEG-based
BCI systems. For example, fNIRS signals are used as pre-
dictors of EEG activity to improve the stability of the BCI
system [10], [26]. In another study, fNIRS signals were used
to find region-specific information related to the task and to
apply spatial attention to those regions [27].

In recent years, deep learning techniques have evolved,
and they have shown good performance in various research
areas such as speech recognition, image classification, and
video recognition [28]-[31]. In brain decoding, the deep
learning-based approaches have also attracted significant
attention in several unimodal (EEG or fNIRS) and hybrid
EEG-fNIRS BCI systems [13], [14], [32]-[36] because of
the ability to extract high-level representations and clas-
sify them directly from a dataset. In deep learning-based
hybrid EEG-fNIRS BCI systems, most deep learning structures
are designed based on the late fusion method where two
signals are merged after fully-connected layer. The main
difference between traditional fusion approaches and deep
learning approaches is the manner in which unimodal or fusion
features are extracted. The deep learning-based approaches
extract high-level representation from a convolutional and
fully-connected layer. For example, Chiarelli ef al. [32] con-
catenated EEG and fNIRS features, and then fed them into
an artificial neural network to extract high-level feature rep-
resentations. Sun et al. [33] extracted the deep features of
each EEG and fNIRS signal, and then fused them using
the pth order polynomial fusion (pth-PF) algorithm with
tensor decomposition to deal with an unacceptably large

number of parameters. However, late fusion techniques cannot
fully capture the underlying homogeneity in a mixed feature
space [37]. In particular, Neverova et al. [38] highlighted the
huge benefits of early fusion in similar modalities, such as
red-green-blue (RGB) & depth images [39], radar & infrared
sensors [40], and optical flow images & video [41]. EEG
and fNIRS are also closely correlated with spatial man-
ners because of neurovascular coupling, thus the reason for
neural activities to cause a subsequent change in cerebral
blood flow [42]-[44]. Nevertheless, early fusion methods have
not been extensively studied in deep-learning-based hybrid
EEG-fNIRS BCI systems.

In the EEG-fNIRS fusion structure, it is crucial to extract
a joint representation for the underlying physiological spa-
tial correlation between two signals to maximize the per-
formance of hybrid EEG-fNIRS BCI systems. Therefore,
we propose a deep learning-based fusion method, known as the
fNIRS-guided attention network (FGANet). To enable the use
of spatial information over the scalp, one-dimensional (1D)
EEG and fNIRS signals are projected into a two-dimensional
space, and the temporal information is assigned for each corre-
sponding point. Thereafter, the joint representation is extracted
from the fNIRS-guided attention (FGA) layer designed based
on neurovascular coupling. This layer extracts detailed infor-
mation of neural activities from EEG signals, while the fNIRS
signals are only guided to the spatially important region if
two signals can be simultaneously obtained over the whole
scalp in a hybrid EEG-fNIRS BCI system. This is because the
EEG signal can capture temporal dynamic neural activities
in a short time window, while fNIRS signals can obtain the
area where neurons are activated by stimuli with low electrical
noise and movement artifacts in the hybrid EEG-fNIRS BCI
system. However, due to the delayed fNIRS response, the
performance of the FGA layer may deteriorate at the beginning
of the trial. As a result, we proposed a prediction method to
mitigate the inconsistency in spatial neurovascular coupling
caused by the delayed response, wherein the prediction scores
of EEG and fusion branches are considered together for the
final classification. If the reliability of the prediction score of
the fusion branch is low because of the mismatch between the
EEG and fNIRS responses, it is better to assign more weight
to the prediction score of the EEG branch. Subsequently,
the prediction weight is determined adaptively depending
on the importance of the EEG and fusion features in the
learning process for a higher classification accuracy. The final
prediction is achieved by the weighted sum of the prediction
scores of the EEG and the fusion branches.

The experimental results showed that fNIRS guided a
spatially important region for brain decoding. In addition,
the prediction weight on the fusion feature increases as time
passes on the stimuli, and vice versa for the EEG feature. Fur-
thermore, our proposed fusion model significantly enhanced
the performance of the EEG- and fNIRS-standalone BCI
systems. In summary, the main contributions of FGANet are as
follows.

1) We proposed the spatially aligned method for EEG and

fNIRS signals by converting 1D EEG and fNIRS signals
into 3D EEG and fNIRS tensors.
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Fig. 1. The placement of EEG electrodes, fNIRS sources and fNIRS
detectors.

2) An early fusion method, named the fNIRS-guided atten-
tion layer, was proposed, where fNIRS guides the
important region for brain decoding and applies spatial
attention to EEG features.

3) A prediction method was developed to alleviate the
deterioration of decoding performance caused by the
inherent delay of fNIRS signals.

The remainder of this paper is organized as follows.
Section I describes the dataset used to evaluate the pro-
posed algorithm. In Section III, we propose the EEG- and
fNIRS-standalone deep neural network structure and a frame-
work of FGANet. The experimental results and analysis
are discussed in section IV. Finally, Section V presents the
conclusions.

Il. DATASET

A public dataset [20], which simultaneously records EEG
and fNIRS, was utilized in this study. The data were acquired
from twenty-eight right-handed subjects and one left-handed
subject (14 males and 15 females) with an average age of
28.5 &£ 3.7 years (mean =+ standard deviation). EEG signals
were recorded at 1000 Hz from 30-channels (Fig. 1), and
fNIRS signals were recorded at 12.5 Hz from thirty-six
channels consisting of 14 sources and 16 detectors (Fig. 1).
Thereafter, the EEG and fNIRS signals were downsampled
to 200 Hz and 10 Hz, respectively, by the data provider.

Subjects were required to perform 30 trials for each task:
baseline (BS) as a rest state condition, mental arithmetic (MA),
left-hand motor imagery (MI), and right-hand MI. The subject
rested without any thoughts during the BS condition. In the
MA task, the subject was required to repeatedly subtract the
one-digit number from the three-digit number (e.g., 384 — 8)
during the task period. For the MI task, subjects conducted
kinesthetic MI to imagine the opening and closing of their
hands. The trial started with 2 s of a visual introduction
of the task, followed by 10 s of a task period and resting
period, which was provided randomly from 15 to 17 s (Fig. 2).
A detailed data description is provided in [20].

The EEG signals were re-referenced with a common aver-
age reference, filtered at 0.5—50Hz and then downsampled

MI task MA task

MI task: motor imagery task
MA task: mental arithmetic task
-

1 Instruction | Task 1 Rest
| | ]
-2 0 10

384—8 o

]
] rd

25-27 (s)

Fig. 2. The paradigm of the experimental process.

to 120 Hz. Thereafter, electrooculography (EOG) artifacts
were removed by independent component analysis (ICA).
We divided the data into two datasets according to the task
as done in [20], [33]: MA dataset (baseline vs. MA) and MI
dataset (left-hand MI vs. right-hand MI). Instead of using a
10 s task period to train the network, we cropped 3 s both EEG
and fNIRS signals with a time step of 1 s to evaluate real-time
BCI performance, as done in [20], [33]. Therefore, the size of
the EEG and fNIRS signals were 30 x 360 (channel x time)
and 36 x 30 (channel x time), respectively, with a total of
1,740 (29 subject x 30 trials x 2 task) trials for each dataset.

I1l. METHOD
A. 3D Tensor Generation

1) 3D EEG Tensor: The spatiotemporal dynamics of the
brain represent a complex cognitive process. For example,
theta oscillations (4-8 Hz) in the frontal cortex are related
to cognitive workload [45]. In addition, alpha oscillations
(8-12 Hz) of the parietal cortex represent visual attention [46],
and beta oscillations (15-25 Hz) of sensorimotor regions are
correlated with the mental simulation of actions [47]. There-
fore, to include spatiotemporal information in the input data
for training the network, we converted 1D EEG signals to 3D
EEG tensors. To obtain 3D EEG images, we projected the 3D
electrode locations on the scalp into a 2D image with size 16 x
16 using azimuthal equidistant projection as in [34] (Fig. 3(a)).
The data of the mapped point were filled with temporal
information of the corresponding electrode. Thereafter, the
empty values between the electrodes were interpolated using
cubic spline interpolation. Accordingly, the generated 3D EEG
images X®¢ ¢ R!6%16x360 contained spatial information in
the first two dimensions and temporal information in the last
dimension.

2) 3D fNIRS Tensor: fNIRS consists of a source emitting
near-infrared light and a detector receiving light that diffuses
out of the brain tissue. To obtain hemodynamic changes by
neural activity, detected raw fNIRS signals should be con-
verted into changes in HbO and HbR. Because HbO and HbR
have different absorption coefficients for different wavelengths
of near-infrared light, the change in HbO and HbR can be
obtained by the ratio of incident light intensity to the detected
light intensity for the two different wavelengths of light.
We employed the Beer-Lambert equation [48] to obtain the
concentration change of HbO and HbR in the task period
relative to those of the baseline time window. The baseline
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Fig. 3. The visualization of the (a) 3D EEG tensor and the (b) 3D fNIRS
tensor.
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Fig. 4. The architecture of the temporal attentive pooling layer.

TABLE |
THE STRUCTURE OF THE ESNET

Layer Kernal Output
Filter size Stride = Channel Dimension
Input 16x16x360x1
Convl 2x2x9 2x2x4 16 8x8x90x16
Conv2 2x2x3 2x2x2 32 4x4x45x32
Conv3 2x2x3 2x2x2 64 2x2x25x64
Temporal AP 2x2x1x64
FC 256x64 1x64
Dropout 1x64
Softmax 64x2 2

interval is defined as the time windows from —5 to —2 s at
the start of the trial.

EEG and fNIRS signals are closely correlated with spatial
manners because of neurovascular coupling [42]-[44]. There-
fore, to utilize the spatial correlation between two signals,
we converted the 1D fNIRS signal into a 3D fNIRS tensor
using a similar 3D EEG tensor generation process. Contrary to
EEG signals, fNIRS signals are measured by light source and
detector. Therefore, the path between the source and detector
was filled with the same HbO or HbR value, as shown in
Fig. 3(b). Thereafter, the empty values between source and
detector were interpolated using spline interpolation, as con-
ducted in EEG signals. Consequently, the 3D fNIRS image
xfnirs ¢ RI6x16x30 \aq spatially aligned with the 3D EEG
image X°°8.

B. 3D CNN Structure for Unimodal Signal

In this subsection, we describe the structure of the EEG-
standalone network (ESNet) and fNIRS-standalone network
(FSNet), which are summarized in Tables I and II.

TABLE Il
THE ARCHITECTURE OF THE FSNET

Layer Kernal Output
Filter size Stride Channel Dimension
Input 16x16x60x1
Convl 2x2x9 2x2x2 16 8x8x30x16
Conv2 2x2x3 2x2x2 32 4x4x15x32
Conv3 2x2x3 2x2x2 64 2x2x8x64
Temporal AP 2x2x1x64
FC 256x64 1x64
Dropout 1x64
Softmax 64x2 2

Because 3D convolution can extract both spatial and
temporal information, 3D CNN5 achieve superior performance
in various areas where input data contain 3D data, such
as video recognition and EEG decoding [34], [35], [49],
[50]. Therefore, we constructed ESNet and FSNet consist-
ing of three 3D convolutional layers with a rectified linear
unit (ReLU) activation function to extract spatiotemporal infor-
mation from 3D EEG and fNIRS tensors, respectively. The
deep features were downsampled by the stride of the convo-
lutional layer. To align the spatial dimension between EEG
and fNIRS features, we set identical filter sizes and strides for
the spatial dimension of the two networks, but different filter
sizes and strides were designed for the temporal dimension
because the temporal resolutions are different between the
two signals. A small kernel size (2 x 2 x 3) and stride
(2 x 2 x 2) are used to increase the non-linearity with fewer
parameters following the paper [29]. However, because the
temporal dimension is much larger than the spatial dimension,
we use a larger kernel size (2 x 2 x 9) and stride (2 x 2 x 4)
in the first convolutional layer for the temporal dimension,
and these values are determined through the optimization
process described in result section. To efficiently compress
the temporal information of the 3D feature extracted by three
consecutive convolutional layers, we developed a temporal
attentive pooling layer. Finally, the compressed feature was
classified by one fully connected (FC) layer with the ReLU
function and softmax layer. Dropout [51] was applied to the
output of the FC layer to prevent overfitting.

The 3D deep feature includes F € RAXWXTXC where H
and W are the height and width of the spatial dimension,
respectively, T is the total number of time steps, and C is the
number of channels containing temporal information for both
EEG and fNIRS signals. In particular, brain activity consider-
ably changes with time while performing a task, and thus brain
signals may have task-related segments at a specific time index
over the task period. For instance, the difference in spectral
power owing to cognitive load was presented at 1-2 s after the
stimuli, and it varies according to the subject [52]. Therefore,
it is important to provide a large weight to task-related time
segments. Consequently, we proposed the temporal attentive
pooling (TAP) layer, TAP : RHXWXTxC _, RHXWxIxC
defined as

TAP(F)iw1.c = D Wi Fiwi.co (1)
t/
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Fig. 5. The architecture of the FGANet.

where Fj . represents the (i, w,t,c) component of the
deep feature F, and ¥ € R7*! is a temporal weight vector
that is adaptively determined by the input signals. To obtain the
temporal weight vector, the 3D deep feature F was spatially
reduced by spatial attentive pooling (SAP), and then fed into
the FC layer with a softmax function as follows:

¥ = owon (FC™! (SAP(F)), )

where

SAP(F)1 1= D O Firut tco 3)
hw'

osoft(+) represents the softmax function, FCT*1(.) is the FC
layer with an output size of 7 x I, and @ € R”*W g
a learnable parameter for spatial attentive pooling. Spatial
attentive pooling compresses deep features with a spatial
domain by weighting task-related brain regions. The process
of TAP is illustrated in Fig. 4.

C. fNIRS-Guided Attention Network (FGANet)

Here, we propose an fNIRS-guided attention net-
work (FGANet) to achieve a high-performance hybrid EEG-
fNIRS BCI system. The FGANet consists of three feature
extractor branches: the EEG branch, fNIRS branch, and fusion
branch, as shown in Fig. 5. We utilized the same three con-
volutional layers of ESNet and FSNet as feature extractors
of the EEG and fNIRS branches, respectively. The fusion
branch has an fNIRS-guided attention (FGA) layer after each
of the three convolutional layers that are equivalent to those
of the ESNet. The FGA layer is designed to extract the joint
representation of the 3D EEG and fNIRS tensors based on
neurovascular coupling, thus the fNIRS and EEG signals are
strongly correlated with the spatial dimension because active

FGA: fNIRS-guided attention
TAP: temporal attention pooling

brain activity in a specific brain region promotes both cortical
currents and blood flow [42]-[44].

EEG can capture the temporal dynamics of neural activities
in a short time, but various artifacts are apt to contaminate
it. However, fNIRS has a low temporal resolution compared
to EEG, but is robust to electrical noise and motion artifacts.
To acquire the good points of both brain signals, we proposed
an FGA layer, where fNIRS is used to extract spatially impor-
tant regions for brain decoding, and spatial attention is applied
to EEG features. The proposed FGA is different from the
conventional self-attention mechanism, which emphasizes the
essential region for classification by multiplying the original
feature and attention map obtained from the original feature
itself. In our work, we proposed an FGA layer based on
the characteristics of brain signals, where fNIRS extracts
spatially important regions for brain decoding and applies
spatial attention to the fusion feature.

A fusion
The output of the FGA layer F is defined as

A

Ffusmn

fusion
h,w,t,c F

h,w,t,c?

“)

where 0 < y < 1 is a residual parameter for the EEG features,
and ® € RT*WxIxl jg an FGA map that represents the
spatial weight matrix extracted from fNIRS signals, obtained
as follows:

+(1 - y)Ffusion

h,w,t,c

—y Feee

- h,w,t,c

+ Op,w,1,1

® = oy, (TAP(f3x3x3@l(anirS))) ’ (5)
where f3*3%3@1 represents the convolutional layer with a
filter size of 3 x 3 x 3 and one output filter, which extracts the
attention feature from the 3D fNIRS feature over the channel
dimension. Thereafter, the temporal attentive pooling provides
a large weight to temporally important time segments. The
FGA map was not fixed and adaptively driven by every fNIRS
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Fig. 6. The architecture of the fNIRS-guided attention layer.

input. The FGA map leads to reliable attention to spatially
important regions, but unexpected low-weighted spatial atten-
tion may completely lose valuable information in the region.
To mitigate the information loss of EEG features, we added
EEG features of EEG branch to the FGA layer. The residual
parameter y is determined by the trainable parameter yipin
with sigmoid function oy;g, that is, y = 05ig(Ptrain)- The overall
structure of the FGA layer is shown in Fig. 6.

The fusion branch extracts joint representations from 3D
EEG and fNIRS features. However, fNIRS signals have an
inherent delay compared to EEG signals; thus, they can
deteriorate the decoding performance at the beginning of trials.
Therefore, to alleviate the performance degradation of the
fusion branch, we utilized the prediction scores of both the
EEG branch and the fusion branch. The final prediction was
conducted by the weighted sum of the prediction scores of the
EEG branch and fusion branch as follows:

ypred — ieegyeeg _i_grfusionyfusion’ (6)

where y°°g, yfusion ¢ R? are the prediction scores of the EEG
and fusion branches. & = [£°°2, £fusion] js the prediction weight
between two branches, which are obtained by

g = GSoft (FC2X1 ([Feeg’ Ffusion]))’ (7)

where F € R%**! is the output of the last FC layer, and [-] is
a concatenation function for the first dimension. The network
parameters, such as kernel size, stride, and channel, of the
fusion branch are equivalent to ESNet, described in Table I.

D. Loss Function for Training FGANet

Finally, we proposed a loss function for our proposed
FGANet, which is divided into three parts: classification loss
function L ass, INIRS branch regularization Lis, and FGA
map regularization Lg,, as follows:

L = Lelass + Ltnirs + /1Lfga» (8)

where 4 > 0 is a regularization parameter.

1) Classification Loss: The objective of this study was to
decode brain activity from EEG and fNIRS signals. Therefore,
we applied the cross-entropy function to the final prediction
of FGANet as follows:

N
1
Lotass = =~ > ¥i + log(y™* (X)) ©)

i=1

where y; is the label of the i-th input X; = {X?eg, Xf"irs},
yPred(X;) is the prediction score of FGANet for the input X,
‘> denotes the dot product, and N is the number of input data.

2) fNIRS Branch Regularization: The fNIRS branch has the
same structure as FSNet. Because the FGA layer essentially
extracts the FGA map from fNIRS features of the fNIRS
branch to identify spatially important regions, the performance
significantly depends on how well fNIRS features represent
exclusive patterns between classes. However, the classification
loss function L.j,ss 1S not sufficient to train the feature extrac-
tors of the fNIRS branch because the fNIRS feature is not
directly used in the final classification. Hence, to accelerate the
training process of the fNIRS branch, we add a cross-entropy
loss function to minimize the classification accuracy of fNIRS
data as follows:

N
1 A )
Linies = =2 > ¥i - log(y™ (X}"™). (10)

i=1

where yirs(x lf“i“) is the prediction score of the fNIRS branch
for the input X lf“i“.

3) FGA Map Regularization: The purpose of the FGA map &
is to highlight the spatially critical regions of the EEG feature
based on the fNIRS feature to improve the classification
performance. Despite EEG and fNIRS signals being highly
correlated with spatial manners, a metric is required to mea-
sure the spatial correlation between EEG features and fNIRS
features. Therefore, the Pearson correlation coefficient (PCC)
is exploited to train the FGA map to maximize the correlation
between two signals, defined as:

> Ui =U0) (Vij = V)
\/Zi,j (Ui,j - 0)\/21',,' (Vi,j - ‘7)
where U, V are the means of all the elements of the matrix
U,V e R*W respectively. Therefore, to regularize the FGA

map, we maximize the PCC between the EEG feature and the
FGA map as follows:

, (1)

PCC(U, V) =

N 3
1 =ege(l)  yeeg 1) / vini
Lig=— ; I_ZIPCC (F (X°%), @ >(X,.““S)) . (12)

where

T C

~ 1

Fh,w = TC I/E 1 /E th,w,t’,C’; (13)
=1c¢/=

Feeg) @D represent the I-th layer of the 3D EEG feature
and FGA map, respectively. To compress the 3D EEG feature
with temporal and channel dimensions, the 3D EEG features
were averaged to those dimensions.
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However, FGA map regularization based on PCC can dis-
turb the training of the EEG branch because the performance
of fNIRS branch is significantly lower than that of EEG
branch, and the fNIRS signals have an inherent delay to
the stimuli. Therefore, we blocked the gradient flow to EEG
branch oriented from the FGA map regularization to preserve
the performance of the EEG branch.

V. RESULT
A. Experimental Setup

We evaluated our FGANet using a benchmark dataset
recorded during MI ad MA tasks, as described in Section II.
EEG and fNIRS data were divided into 3 s segments
using a 1 s sliding window during the —2-10 s interval
(including instruction and task periods) in Fig. 2, resulting
in ten segments for each trial: —2-1s, —1-2's,..., 7-10 s
windows. Let (+ — 3) s - ¢ s time window be defined as the
t s time segment. We conducted a 5-fold cross-validation for
each subject and considered the average to obtain reliable
results. The final result was obtained by averaging the results
of all the subjects. To compare with various conventional
algorithms, we calculated the mean and maximum accuracy
for each algorithm. The mean accuracy was obtained by
averaging the accuracies of ten segments in a trial, and the
maximum accuracy was obtained by taking the maximum
accuracy among ten segments in a trial.

The network parameters of the networks are summarized in
Tables I and II. We utilized the Adam optimizer [53] to update
the network parameters with a learning rate of 0.001 during
200 epochs. The initial trainable residual parameter yain was
set to zero. We used the parameter fine-tuning process for opti-
mizing the network parameters and regularization parameter A.
We first train the network using 90% data of the training set
and then remaining 10% of the data is used as a validation
set. The stride and kernel size of the first convolutional
layer for the temporal dimension is optimized from the set
(kernal, stride) € [(7,2), (7,4), (9, 2), (9,4)] and regulariza-
tion parameter is optimized from the set [1, 0.1, 0.01, 0.001].
Finally, the network parameter is determined as described in
Tables I and II and regularization parameter / is set to 0.1.

To calculate the mean accuracies of the compari-
son algorithms, we implemented the LDA algorithm [20]
and the pth-PF algorithm [33], whose source codes
were shared by the authors. We also implemented the
pth-PF algorithm with EEG branch and fNIRS branch
(pth-PF (EEG + fNIRS branch)) for a fair comparison with
our method to state-of-the art algorithm because the feature
extractor of pth-PF was built with a 1D CNN. Furthermore,
we implemented the pth-PF algorithm with the EEG branch
and fusion branch (pth-PF (EEG + fusion branch)) to compare
the state-of-the art deep learning-based prediction algorithm
with our weighted prediction method. The FC layers of ESNet
and FSNet were utilized to fuse EEG and fNIRS signals in the
3D CNN + pth-PF algorithm.

B. Performance Analysis on Change of Time Segments

Fig. 7. shows the classification result across the moving
time window, where the x-axis indicates the right edge of
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Fig. 7. Mean classification accuracy for the (a) MA task and (b) Ml task
at each 3 s time window in all trials (x-axis represents the right edge of
the time window).
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the moving time window, and the y-axis shows the accuracy.
Until the x-axis reached 3 s, part of the instruction period was
included in the time segment (Fig. 2). Therefore, the perfor-
mance of all the algorithms increased from O s to 3 s. After
3 s, the performance of ESNet was saturated, but that of FSNet
continued to increase until 8 s, especially in the MA task. This
is because the hemodynamic response is significantly slower
than the electrical response, although it is not prominent in
the MI task. Moreover, FGANet outperformed unimodal BCI
systems (ESNet and FSNet) overall time segments for both
MA and MI tasks.

To show a statistically significant improvement in FGANet
compared to ESNet, we calculated a paired t-test for the mean
classification accuracy of ESNet and FGANet. Considering the
delay in the hemodynamic response to the stimuli, we divided
the time segments into the first half (1-5 s) and second half
(6-10 s). As shown in Fig. 8(a) and (b), the performance
of FGANet is significantly better (p < 0.01) than that of
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Fig. 9. The prediction weight values £fUsion and ¢2€9 for the (a) MA task
and (b) Ml task with the 1 s moving window (x-axis represents the right
edge of the moving window).

ESNet in both groups of the MA task. In the MI task, the
FGANet has a significantly better performance (p < 0.01)
than ESNet in the second half group (6-10 s) (Fig. 8(d)),
but there is no significant difference in performance between
FGANet and ESNet at the beginning of the MI task (Fig. 8(c)).
These results show that the proposed FGANet is a promis-
ing hybrid EEG-fNIRS BCI system that can outperform
the EEG-standalone BCI system, but it has a limitation in
improving the performance of the EEG-standalone BCI system
when the performance of the fNIRS-standalone BCI system is
significantly low to identify spatially important areas.

Fig. 9. shows the change in the prediction weight vector &
according to the moving time window for the MA and MI
tasks. In the figure, &S0 red line, is approximately 0.5 (for
EEG and fusion predictions) at the beginning of the trial,
and sharply increases after 2 s in both MA and MI tasks.
The prediction weight of the fusion network &fUsio" seems
to reflect the delay in the hemodynamic response of fNIRS
signals. These results show that the prediction weight can be
adaptively adjusted according to the importance of the fNIRS
signals.

C. Analysis of the Residual Parameter

In the FGA layer, the EEG feature was added to the fusion
network to prevent the loss of EEG information. Table III sum-
marizes the classification results for the change in the residual
parameter y for the EEG features. The results show that
performance can vary according to the value of the residual
parameter; the mean accuracy increases by more than 1.0%,
and the maximum accuracy is enhanced by more than 1.5%
at y = 0.5 in both MI and MA tasks compared to the lowest
performance. To analyze these results, we have rewritten the
last FGA layer according to the residual parameter y for the
special case y = 0 and 1 as follows:

fusion(3)

~fusi 3 fusi 3 .

Epr = Bt + Onuaa Fpnr ity =0, (14)
and

~fusion(3 3 fusion(3 .

EROn) — F2O 4y Y, iy =1 (15)

As shown in Egs. (14) and (15), the EEG feature is not used
in the fusion branch when y = 0, whereas the previous fusion
feature is not added to the FGA layer when y = 1, where the

TABLE Il
THE CLASSIFICATION ACCURACY (MEAN £ STD) ACCORDING TO THE
RESIDUAL PARAMETER v FOR MA AND MI TASK

Task ¥ Mean Acc (%) Max Ace (%)
0 91.32 £ 06.59  94.60 £ 06.62

0.3 91.24 £ 05.58  94.14 &+ 06.79

MA task 0.5 92.29 4+ 06.27  95.69 + 05.97
0.7 91.66 + 05.97  94.71 £+ 05.47

1.0 91.21 £ 05.99  94.37 & 05.87

Yirain ~ 91.96 & 05.82  95.46 + 05.12

0 77.93 4+ 08.66  79.60 + 10.58

0.3 78.36 = 09.04  80.29 + 09.62

MI task 0.5 78.72 + 08.50  80.29 + 10.28
0.7 7743 + 08.86  78.74 + 10.25

1.0 7794 £ 08.63  79.43 4 09.61

Yirain ~ 18.59 + 08.86  80.23 + 09.63

performance is lower than when y = 0.5. Therefore, a proper
residual EEG feature (0 < y < 1) can significantly increase
performance by balancing the EEG information in the fusion
branch. In particular, the performance of the FGA layer at
only the last fusion feature (y = 1) is lower than that of the
stacked FGA layer (0 < y < 1), which implies that early
feature fusion has a higher potential to improve performance
than the late feature fusion method.

The mean of trained residual parameters for all subjects
is 0.54 and 0.61 for the MA and MI tasks, respectively
(Table IIT). The mean and maximum accuracies of FGANet
with the trained y are 91.96% and 95.46% in the MA task,
and 78.59% and 80.23% in the MI task, respectively. The
performance of the trained residual parameter is comparable
to the best accuracy of y = 0.5, which obviates the need to
tune the residual parameter for performance optimization.

D. Feature Visualization

Figs. 10 and 11 show the feature visualization of the EEG

feature F fusion(®) as t-values and the FGA map ®(!) for MA
and MI tasks. Because the raw EEG feature is difficult to
interpret, we used the t-value to find the discriminative region
between the two classes. The t-value was calculated by paired
t-test using all subjects. The red area of the EEG feature
represents the region where the activation value of class 1
(mental arithmetic for MA task, left hand for MI task) is higher
than that of class 2, and vice versa for the blue area. In the
FGA map, a higher value (white color) represents an important
region for brain decoding extracted from fNIRS signals.

In the MA task, the EEG feature of the MA condition
was significantly higher than the baseline condition in all of
the feature regions (red color in the MA task in Fig. 10(a)).
This corresponds to the results of mental workload studies,
which reported that the theta (4-8 Hz) power increases as
the workload increases [20], [45]. In the EEG features, the
t-value of the top area was higher than that of the bottom
area for the MA task. This tendency is also reflected in
the FGA map. As shown in Fig. 10(b), the FGA map also
highlights the top area, whereas the bottom of the feature
is in the baseline condition. This result shows that the FGA
map properly highlights the discriminable region of the EEG
feature.
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In the MI task, the t-value of the EEG feature on the right
side was positive, but the left area was negative (Fig. 11(a)).
This result implies that the EEG feature value of the left
area is higher when the subject imagines moving the left
hand, while the right area is higher for the right hand. This
result is similar to that of other studies, which reported that
the motor imagery of the left hand was positively correlated
with the left central lobe, while the right hand was positively
correlated with the right central lobe caused by the inhibition
process [20], [47]. Therefore, these results show that ESNet
effectively compresses raw EEG signals into discriminable
EEG features. The FGA map follows the trend of the t-values
of the EEG features. The left side of the attention map was
activated in the left-hand condition, whereas the right side was
activated in the right-hand condition (Fig. 11(b)). This result
shows that our FGA map can extract an important region for
EEG decoding in the MI condition.

E. Ablation Study

Table IV presents an ablation study for the MA and MI
tasks. The TAP layer can improve the mean accuracy in the
MA task by almost 1%. In general, brain functioning for
working memory tasks consists of two processes (manipulation
and retention) and the retention period shows the significantly
increased spectral power [52]. The experimental results show
that the TAP layer can capture an underlying key feature of
temporal neural dynamics in the retention period.

In addition, we investigated the effect of FGA map regular-
ization on performance. The performance of FGANet without
FGA map regularization Lfg, is lower than that of FGANet

TABLE IV
CLASSIFICATION ACCURACY (MEAN + STD) ACCORDING TO THE
ABLATION STUDY FOR MA TASK AND MI TASK. SymBoL “-”
DENOTES THE FOLLOWING COMPONENT IS REMOVED

Task Model Mean Acc (%) Max Acc (%)
FGANet 91.96 + 05.82  95.46 + 05.12

MA -TAP layer 91.02 + 06.14  94.71 + 06.09
task - residual parameter 91.32 + 08.66  94.60 £+ 10.58
- FGA map regularization ~ 90.81 &+ 05.80  93.79 + 05.27

- weighted prediction 91.42 + 06.07  94.71 + 05.31

FGANet 78.59 + 05.82  80.23 + 05.12

MI _—TAP layer 78.12 + 08.89  79.94 £ 10.88
task - residual parameter 77.93 £+ 08.66  79.60 £+ 10.58
- FGA map regularization ~ 76.58 4+ 08.64  78.16 £ 10.03

- weighted prediction 7744 £ 0895  79.77 £+ 09.22

with FGA map regularization in both MA and MI tasks.
This indicates that the fusion performance can be improved
by training the model parameters to reinforce the spatial
correlation between the EEG and fNIRS signals. Therefore,
it is crucial to extract the optimal joint representation for
the underlying spatial correlation between the two signals to
maximize the performance of the hybrid EEG-fNIRS BCI
system.

We demonstrated the superiority of the weighted prediction
method as compared to other methods. The component “-
weighted prediction” in Table IV represents the algorithm that
extracts the prediction score by averaging the prediction scores
of the EEG and fusion branches instead of using the weighted
prediction method. The performance of “-weighted prediction”
is inferior to that of FGANet. This is because the weighted pre-
diction method can alleviate the performance degradation that
is caused by the delayed hemodynamic response. As shown in
Fig. 9, the prediction weight of the fusion branch is adaptively
changed according to the reliability of the fusion branch.
Therefore, the weighted prediction strategy is superior to the
averaged prediction strategy.

F. Performance Comparison

We compared the variants of our proposed method with
those of conventional algorithms, and the results are summa-
rized in Table V. In conventional algorithms, the fNIRS-based
BCI system proposed by Aydin et al. [57] achieved the best
performance among unimodal BCI systems, and IDPF [25]
is a state-of-the-art hybrid EEG-fNIRS BCI system that out-
performs all other conventional algorithms. However, these
methods used the entire 10 s data recorded during one trial
for classification, whereas the deep learning-based fusion
algorithm (pth-PF) [33] used only 3 s of data and predicted
the class every second for real-time applications. Considering
the difference in input size, it is difficult to compare the
two algorithms fairly, but the performance of pth-PF can be
regarded as the achievable maximum performance by deep
learning approaches using 3 s data.

It is important to note that our ESNet algorithm using only
EEG signals outperforms pth-PF in the MA task and the
MI task. It seems that the MA task can be easily decoded
by the 3D CNN structure compared to the MI task. This
is because when we applied the EEG and fusion branch
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TABLE V
THE CLASSIFICATION ACCURACY (MEAN + STD) ACCORDING TO THE DIFFERENT ALGORITHM IN MA TASK AND M| TASK
Algorithm Signal type MA task MI task
Mean Acc (%) Max Acc (%) Mean Acc (%) Max Acc (%)
Ergun et al. [54] EEG - 88.71 - -
Ergun et al. [55] fNIRS - 84.94 - -
Ergun et al. [56] fNIRS - - - 72.36
Aydin et al. [57] fNIRS - 89.54 - 78.27
IDPF [25] EEG+{NIRS - 91.15 - 78.56
Shin et al.T [20] EEG+fNIRS  75.60* 4+ 06.69  84.29* 4+ 09.07 60.91* 4+ 09.07  63.85* 4+ 10.83
pth-PFT [33] EEG+fNIRS ~ 87.24* £+ 06.14  91.67* £ 06.09  75.90* £+ 08.89  77.36* £+ 10.88
pth-PFT (EEG+NIRS branch) EEG+NIRS  87.95% 4 05.80  92.53* £ 05.27  73.10% &+ 08.64  74.20% £ 10.03
pth-PET (EEG+fusion branch) ~ EEG+{NIRS  87.99* + 06.67  93.05* + 05.89  74.67* + 08.41  76.26% + 09.88
ESNet EEG 89.14*% £ 07.73  92.07* £ 08.42  76.50* £ 09.63  77.47* £ 10.71
FSNet fNIRS 82.34*% 4+ 08.11  86.95*% + 09.19  67.80* 4+ 08.23  68.68* £ 09.00
FGANet EEG+fNIRS  91.96 + 0582 9546 + 05.12 7859 + 08.86  80.23 =+ 09.63

1) “t” represents the performance of our implementation model for the conventional algorithms.
2) “*” represents the significantly differences (p < 0.05, paired t-test) compared to the FGANet. The paired t-test is only conducted on the our

implementation model.

used in the proposed algorithm to the conventional pth-PF
algorithm, the maximum accuracy increased by 0.86% in the
MA task, but decreased by 3.16% in the MI task. Therefore,
a high-dimensional input structure is not always effective in
improving the performance.

However, the proposed fusion method, FGANet, outper-
formed the state-of-the-art algorithm (IDPF) in both the MA
and MI tasks. More specifically, the maximum accuracy of
FGANet is 4.3% and 1.7% higher than that of the IDPF in
the MA and MI tasks, respectively. Furthermore, the mean
accuracy of FGANet was greater than 2% as (p < 0.05)
compared to the pth-PF, and pth-PF (EEG + fNIRS branch),
which is the state-of-the-art deep learning-based algorithm
in both the MA and MI tasks. These results show that our
fNIRS-guided fusion method can considerably improve the
performance of the hybrid EEG-fNIRS BCI system, and is
applicable to real-time applications. Furthermore, compared to
pth-PF (EEG + fusion branch), the mean and max accuracy
of FGANet was significantly higher (p < 0.05). This result
shows the superiority of our prediction method as compared
to the conventional algorithms.

V. CONCLUSION

In this study, we proposed the fNIRS-guided attention
network (FGANet) as a deep learning-based early fusion
structure. First, the 1D multi-channel EEG and fNIRS signals
were converted into 3D EEG and fNIRS tensors to spatially
align the EEG and fNIRS signals. Thereafter, we extracted a
joint representation of both signals using the proposed FGA
layer. In the FGA layer, fNIRS features were used to create
the FGA map that identifies the important regions of the EEG
features for reliable EEG decoding. The FGA map was trained
to maximize the spatial correlation between the EEG features
and the FGA map using FGA map regularization. Finally, the
prediction score of the EEG branch was added to the final
prediction to alleviate the performance deterioration caused by
the inherent delay of fNIRS signals. The experimental results
showed that our FGANet outperformed ESNet, FSNet, and
the state-of-the-art fNIRS-EEG fusion method. Furthermore,
we verified that the FGA map properly highlighted the spa-
tially important regions of the EEG features. This framework

can be extensively applied to any neural network for hybrid
fNIRS-EEG BClIs.
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