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Physiological Measures of Risk Perception
in Highly Automated Driving

Jaume R. Perello-March , Christopher G. Burns, Stewart A. Birrell , Roger Woodman , and Mark T. Elliott

Abstract— Highly automated driving will likely result in
drivers being out-of-the-loop during specific scenarios and engag-
ing in a wide range of non-driving related tasks. Manifesting in
lower levels of risk perception to emerging events, and thus affect
drivers’ availability to take-over manual control in safety-critical
scenarios. In this empirical research, we measured drivers’
(N = 20) risk perception with cardiac and skin conductance
indicators through a series of high-fidelity, simulated highly
automated driving scenarios. By manipulating the presence of
surrounding traffic and changing driving conditions as long-term
risk modulators, and including a driving hazard event as a
short-term risk modulator, we hypothesised that an increase in
risk perception would induce greater physiological arousal. Our
results demonstrate that heart rate variability features are supe-
rior at capturing arousal variations from these long-term, low to
moderate risk scenarios. In contrast, skin conductance responses
are more sensitive to rapidly evolving situations associated with
moderate to high risk. Based on this research, future driver state
monitoring systems should adopt multiple physiological measures
to capture changes in the long and short term, modulation of
risk perception. This will enable enhanced perception of driver
readiness and improved availability to safely deal with take-over
events when requested by an automated vehicle.

Index Terms— Driver state monitoring, highly automated
driving, monitoring request, take-over request, risk perception.

I. INTRODUCTION

DURING Highly Automated Driving (HAD) (i.e. SAE
Levels 3 and 4) [1], drivers will not be required to

monitor or engage in the driving task during predefined use
cases. When reaching the limits of these use cases, take-
over requests (TORs) can be issued so drivers can take over
manual control. Drivers will likely be engaged in non-driving
related tasks (NDRTs) [2], [3] or even sleeping [4] while
HAD is activated; and thus, would possibly be out-of-the-
loop (OOTL) –i.e. not in physical control of the vehicle, and
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not monitoring the driving situation [5]. Technologies for risk
mitigation and support for impaired drivers will therefore be
essential in such scenarios to guarantee successful and safe
take-overs.

Current driver state monitoring (DSM) systems, mostly built
on eye-tracking parameters, have proven to be an effective
and unobtrusive solution to detect hazardous driving behav-
iours and states, such as fatigue, inattention, distractions,
or drowsiness [6]–[9]. Existing DSM research provides a
robust and reliable ground from which the next genera-
tion of multimodal DSM systems and cooperative intelli-
gent transportation systems for enhancing driving automa-
tion safety functions will be developed. As with current
DSM systems, future systems must compensate for inap-
propriate engagement or human errors, enhance driving
safety and comfort.

A new range of in-vehicle possibilities and NDRTs will
likely become available during HAD. Disengagement from
the driving task will also entail other human factors issues
not present during manual driving, such as OOTL states or
overtrust in automation. Thus, one of the essential functions
of future DSM systems will be detecting drivers’ availability to
take over and drive manually [10]. Drivers’ arousal combined
with gaze behaviour can provide real-time indicators of sev-
eral psychophysiological states relevant for driving readiness,
such as attentional capability, wakefulness, sleepiness, mental
workload or stress [6], [9], [11].

Arousal -or alertness- is a physiological reaction to internal
or external stimuli which the brain perceives as potentially
hazardous. High levels of arousal increase stress to prepare
the body to “fight-or-flight”. This process is essentially con-
trolled by the autonomic nervous system and leads to several
measurable changes in the body, including an increase in
heart rate, breathing rate, pupil dilation, muscle contraction
or sweating [12]. Up to a certain level, arousal increase is
associated with better performance [13], [14], but beyond that,
arousal increases result in performance decrement [15]. This
inverted U-curve trend is often referred to as the Yerkes-
Dodson law [16], although this association has been criti-
cised [17]. Certain NDRTs may increase arousal and mental
workload levels, decreasing performance [18]–[21]. On the
contrary, other tasks may induce under-arousal levels and
hamper performance [14], [22]. Classifying among several
arousal states will become crucial to know if the driver is
currently capable of manual driving, and for this purpose,
algorithms classifying and estimating drivers’ states should be
developed. Consequently, the next generation of DSM systems
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will likely be required to perform multimodal, unobtrusive, and
real-time arousal assessments to deploy adequate warning and
handover strategies.

II. BACKGROUND

The higher the automation level, the greater the chance
drivers engage in NDRTs [2], [3]. Hence, we could expect that
during HAD, drivers will most probably be involved in several
NDRTs; and their situation awareness for the driving task will
be diminished [23], [24]. Especially after a long engagement
in alternative activities, it can be challenging to take over
manual control. For example, for drivers waking from a nap,
the transition from sleep to wakefulness is characterised by
“hypovigilance, confusion, disorientation of behaviour, and
impaired cognitive and sensory-motor performance” [25], and
drivers in such a state would likely be impaired for taking
over manual control. Another case could be those drivers
that have been engaged in a mentally demanding task (e.g.
playing video games, on a phone call or a videoconference).
In such a case, mental overload and high-stress levels could
impair their take-over performance [26]. This applies to the
previously mentioned Yerkes-Dodson law relating arousal lev-
els and performance. The concept of driver availability (or
readiness) refers to the time required for the transition from
the out-of-the-loop state to the in-the-loop state [10], [27].
Arousal levels will be critical to informing the DSM system
of the current OOTL state, which will depend on the nature of
the ongoing NDRT and each individual. In addition, arousal
levels will also inform the optimal in-the-loop -target- state
required to perform a safe and successful take over, which
will depend on the task complexity, mental resources required,
and the available time budget [10]. Before taking over, the
system needs to ensure the driver is ready. Here is where
multimodal DSM systems, relying on psychophysiological
measures, could determine driver readiness.

Several authors have stressed the importance of preparing
drivers for taking over, to guarantee an adequate situation
awareness before the actual TOR is presented [10], [28], [29].
Indeed, [29] compared drivers’ take-over performance when
adding a “monitoring request” seven seconds before a TOR
in a simulated scenario involving pedestrians crossing the
road. Their results indicate that compared to the TOR-only
condition, participants responded to the monitoring request
successfully and showed better take-over performance, with
shorter response time and longer minimum time to collision.
The monitoring request could be directed to bring the driver
back on the loop [5] and for the DSM to start monitoring the
driver until achieving an appropriate attentional level before
the TOR. As proposed in a recent framework [10], monitoring
the entire transition process from preparation prior to the
take-over to the stage after resuming manual control, could
assist in ensuring a safe and successful transition performance.
In this current research, we have focused on the first stage,
where drivers’ psychophysiological and cognitive states will
be determinant towards the successive stages. DSM systems
could be used to determine drivers’ availability to take control,
with sufficient time before the defined HAD use case is due,
and even provide real-time feedback to an in-vehicle interface
to prepare the driver for the transition.

DSM systems will require multimodal data and automatic
learning techniques to create individual user profiles for such
a complex task. The data required will not only involve
eye-tracking but also environmental, behavioural, sociodemo-
graphic, psychophysiological, and possibly neural parameters
in hybrid monitoring systems [7], [11], [30]. The nature of new
in-vehicle possibilities (e.g. rotating seats, augmented reality
head-up displays, holograms) [31], and NDRTs (e.g. read-
ing, video gaming, conferencing, eating) [32], will strongly
determine the integration of these DSM measurements into
future vehicles, as well as reliability, privacy, invasiveness,
and acceptability issues. Such new in-vehicle setups and their
range of possibilities will challenge current eye-tracking based
DSM systems. To date, eye tracking is the most suitable
technique for driver monitoring, as it is ubiquitous, unobtru-
sive, and provides a multitude of information about the driver
state [33]. However, HAD will also require combining mul-
timodal sensors to ensure effective and comprehensive moni-
toring. Physiological measures are robust and reliable sources
of drivers’ state factors as stress, workload, fatigue, drowsi-
ness, or attention, and are not affected by eye-trackers main
limitations, such as weather or lighting conditions [9], [11].

Recent driving simulator experiments, using wearable
electrodermal activity (EDA) and electrocardiogram (ECG)
sensors, have shown a promising alternative to overcome
eye-trackers major drawbacks and towards the development
of multimodal DSM systems [34]–[37]. For example, sim-
ply detecting if the driver is taking a nap with the seat
reclined, awake and listening to music while looking through
the window, or fully immersed in a videogame may imply
radically different preparation to take-over strategies to get the
driver back in the loop. Importantly, none of these scenarios
would suit an eye-tracker to monitor. A solution could be
a multimodal system combining eye-trackers with ECG and
EDA devices.

ECG is an indicator of cardiovascular electrical activ-
ity [38]. The heart is innervated by the sympathetic (SNS) and
parasympathetic (PNS) nervous systems, both branches of the
autonomic nervous system. SNS is tied to stress and fight-
or-flight responses and thus tends to increase cardiac activity
(i.e. heart rate, HR), whereas PNS is tied to vagal and rest-and-
digest behaviours and tends to decrease heart rate [19], [39].
However, modes of autonomic control are multidimensional,
and the SNS is active at a basic level even during periods of
rest to support homeostasis. SNS and PNS can be co-activated,
co-inhibited, reciprocally active or independent [19]. Heart rate
variability (HRV) is often used to derive metrics, especially
from the PNS, which is relevant for psychophysiology in many
aspects like self-regulation mechanisms linked to cognitive or
affective states [40]. For example, PNS -vagal- withdrawal is
required for SNS activation during certain executive functions
like attention or emotional processing [19], [41].

EDA is an indicator of changes in skin conductivity result-
ing from the activation of sweat glands controlled by the
SNS which, as stated above, prepares the body for fight-
or-flight responses [42], [43]. Either background tonic (Skin
Conductance Level: SCL) or rapid phasic components (Skin
Conductance Responses: SCRs) can be extracted from the
EDA signal. Notably, skin conductivity is not influenced by
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the PNS, and hence it is considered a direct indicator of
psychophysiological arousal, and by extension, cognitive and
affective states [42], [43].

Both ECG and EDA have proven their validity in detecting
drivers’ stress or mental workload in naturalistic driving [44]
and driving simulators [37], [45], sleepiness [46], and dis-
comfort [34]–[36]. In particular, increasing stress levels have
been found under complex driving conditions [44], [47],
possibly due to increased perceived risk. However, in previous
work measuring psychophysiological responses to uncom-
fortable (challenging) driving situations in a driving sim-
ulator, the authors found arousal variations during manual
driving, but there were no effects in physiological metrics
between the autonomous driving controllers during discomfort
periods [34].

Relatedly, in a driving simulator study exploring the effect
of opposing levels of trust in automation across several highly
automated driving scenarios -including a mentally demanding
NDRT and a risky manoeuvre [37], we could not find any
significant arousal variations derived from traffic complexity or
an event-related risk scenario. We expected the NDRT would
generate comparable physiological activation to that from the
risk event. However, effects in HR, LF/HF ratio, and RMSSD
indicated the task elicited a more robust response than the risk
event, which only generated a moderate physiological reaction
to the hazardous situation. Although a plausible explanation
for this phenomenon could be that HRV metrics could not
accurately measure rapid and event-related phasic arousal
reactions due to the high decay time in the cardiac signal. skin
conductance metrics should have captured these event-related
reactions.

Notwithstanding, in a series of driving simulator stud-
ies [35], [36], the authors captured rapid event-related phasic
cardiac reactions under several autonomous driving scenarios
eliciting discomfort. They found HR and RMSSD decreasing
only under high discomfort periods. Notably, they reported that
longer lasting and slowly evolving situations with moderate to
low discomfort events did not produce observable physiolog-
ical changes, as these could only be observed during rapid
events associated with moderate to high discomfort.

As drivers tend to be less alert under HAD conditions,
compared to when driving manually [20], [23], [45], [48],
these findings suggest that risk perception might be low-
ered under autonomous driving and consequently challenge
the sensitivity of physiological indicators. Risk perception
has been defined as “the likelihood and consequences of
error” [49] and thus, is considered to play a major role in
the modulation of trust in automation [49]–[53]. Essentially
because trust implies assuming a position of vulnerability in
an uncertain situation -i.e., the risk of delegating the control
of the situation to an agent. However, perceived risk also
relates to the perception, comprehension and projection of
the elements in the environment, for which risk perception
also has strong ties with situation awareness [54]. The rela-
tionship between risk perception and arousal was proposed
by [55] when describing two processes for risk assessment that
would drive the situational trust decision-making. De Visser

identified the recognition-based threat assessment as a rapid
affective evaluation of the information available. Conversely,
the experience-based threat assessment was a slower, more
deliberate evaluation of the risk and benefit based on available
and observable information.

DSM systems could therefore make use of these affective
cues for “threat assessment” to inform drivers’ situational
risk perception, and hence if the driver will be available for
take-over. To enable an enhanced understanding of whether
arousal indicators could be useful to detect risk perception
during HAD, we have designed a driving simulator experiment
with several autonomous driving situations aiming to produce
different levels of perceived risk. The gaps in the literature
this present research will investigate are whether:

- Longer-lasting and slowly evolving situations with low to
moderate risk produce observable changes in physiology.

- And whether rapid events associated with moderate to high
risk produce observable changes in physiology.

III. RESEARCH HYPOTHESES

The purpose of this research was to evaluate whether arousal
indicators could be used to measure risk perception under
simulated HAD conditions –i.e., applicable to both SAE L3
and L4 use cases. Our objective was two-sided:

First, to investigate whether slowly evolving situations with
low to moderate risk would produce observable effects on
arousal, we manipulated the presence of surrounding traffic as
a between-group variable during a highly autonomous drive
involving driving conditions changing slowly.

Second, to determine whether rapid events with moderate
to high risk would generate observable arousal variations,
we included a hazardous driving situation as a within-subjects
variable at the end of the trial.

According to the literature previously discussed, increased
risk perception should induce increased arousal to prepare the
SNS for “fight-or-flight” reactions. Thus, we expect increased
risk perception to reduce vagal HRV metrics and trigger SNS
indicators (skin conductance responses). Conversely, lower
levels of risk perception should induce vagal “rest-and-digest”
low arousal states, observed by increased HRV metrics and
reduced SNS indicators (SCRs).

Hence, we propose the following hypotheses:
H1: The presence of Traffic will increase the perception of

risk and produce group differences in arousal.
H2: Changes across the driving conditions will progres-

sively increase risk perception, and thus, arousal levels will
vary among participants.

H3: The Driving Hazard event should rapidly increase
risk perception and produce a greater arousal response than
baseline and recovery period.

IV. METHOD

A. Participants

Twenty volunteers (10 male and 10 female, mean age
24.60 years, SD = 3.91) were recruited to participate in this
research. All had held a UK-EU driving license for an average
of 5.30 years (SD = 4.18) and possessed an average driving
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Fig. 1. 3×D driving simulator.

experience of 6780 miles/year (SD = 6140.08). Participants
were recruited within the University of Warwick (UK), includ-
ing undergraduate and postgraduate students and professionals.
Recruitment and data collection procedures received approval
from the University of Warwick’s Biomedical and Scientific
Research Ethics Committee. Participants were free to with-
draw at any point and did not receive compensation.

Participants were randomly divided into two groups of
ten. One group experienced the simulated driving scenario
with surrounding traffic, and the other experienced the same
scenario without traffic. Both groups were instructed to sit in
the driver’s seat, but they were not explicitly asked to monitor
the environment. Instead, they were asked to not engage with
the driving task. The rationale for doing this was that they
were about to test a highly automated vehicle that they did
not need to drive manually nor would be requested to take
over. Participants were not free to perform any NDRTs either
as this could disrupt their situation awareness or affect their
arousal.

B. Apparatus

This research was carried out using WMG’s 3xD driving
simulator at the University of Warwick. The 3xD is a fixed-
base high-fidelity driving simulator, equipped with a full-body
Range Rover Evoque and eight projectors generating a 360◦
image, projected into a cylindrical screen eight meters in
diameter and three meters in height (Fig. 1). The simulated
vehicle automation is capable of lateral and longitudinal
control, adapting to speed limits, queuing leading vehicles,
maintaining safe distances, emergency braking, and overtak-
ing slower/stopped vehicles. The simulation also generated
road motion vibration through the seats and environmental
sound.

ECG and EDA data were recorded using BIOPAC MP160
with wearable remote Bio-Nomadix amplifiers. The MP160
base station was mounted behind the driver’s seat inside
the simulator to achieve the best quality signal. Three ECG
electrodes were fitted to each participant, following a standard
3-lead configuration on the participant’s torso. The EDA
device comprised two electrodes on the medial phalanx region

Fig. 2. Experimental timeline. The top timeline represents epochs extracted
for SCR analyses (30 s), and the lower timeline epochs for HR/HRV
analyses (120s).

on the index and middle fingers of the participant’s non-
dominant hand to minimise movement artefacts.

Subjective measures included a bespoke risk perception
questionnaire comprising two items which were asked after
the entire drive:

(1) Did you feel any sensation of risk or threat from the
whole scenario?

(2) Did you feel any sensation of risk or threat from the
traffic accident at the end?

These were rated on a Likert scale ranging from 1 (not
at all) to 7 (extremely). There are no existing validated tools
for risk perception assessment in the driving context to the
authors’ knowledge. [56] had a similar problem when assess-
ing risk perception associated with trusting in automation in a
driving simulator study and used the scale developed by [57].
Even though both studies reported significant effects on risk
perception, the reasons for not using this scale were that it
has not been validated and that the scale measures perceived
situational risk and perceived relational risk. Our research was
interested in comparing perceived situational risk from the
Driving Conditions with the Driving Hazard scenario. Thus,
this would have implied reporting perceived risk at the end
of each condition, which we considered was contraindicated,
due to our continuous driving scenario design and as the
hazardous event occurred immediately after the autonomous
driving conditions. Stopping the scenario immediately before
the Driving Hazard event could have potentially affected
the realism of the scenario and any psychophysiological
reactions.

C. Autonomous Driving Scenario

The trial lasted a total of 11 minutes and 30 seconds.
This began with four minutes of baseline/resting data, four
minutes of autonomous driving scenarios, thirty seconds of
the hazardous event, and two minutes of post-event recovery.
The four minutes of autonomous driving were split into two
scenarios: an initial two-minute suburban driving scenario
labelled as Driving Condition 1 (DC1 for cardiac measures
and DC1.1, DC1.2, DC1.3 and DC1.4 for SCR analyses which
were split into 30-second segments, see Fig. 2).

This scenario started with the ego-vehicle stopped at a red
traffic light at a five-lane roundabout which carries traffic to
and from the highway to the suburbs and the city centre. The
ego vehicle took the third roundabout exit leading to a straight
dual carriageway, separated by a central reservation. Speed was
limited from 30 to 50mph. Surrounding traffic levels were
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very low (<5 road users per minute) at this point for the
Traffic group, and weather conditions were cloudy for both
groups.

Approximately one minute later, the ego vehicle entered
the suburbs. This layout consisted of two lanes passing
through residential areas at a maximum speed of 30mph,
including several left and right turns and give-way exits.
Oncoming traffic (i.e., for the Traffic group) increased to
medium levels (<20 road users per minute), now including
pedestrians, cyclists, and parked cars, on the roadside and in
driveways.

The simulation then continued with a two-minute city centre
scenario, denoted as Driving Condition 2 (DC2 for cardiac
measures and DC2.1, DC2.2, DC2.3 and DC2.4 for SCR
analyses which were split into 30 seconds segments, see
Fig. 2). In this scenario, the ego vehicle entered the city centre,
and the layout changed to a “high street” area surrounded by
commercial buildings, signs, and billboards. For the Traffic
group, this also implied higher levels of moving pedestri-
ans and vehicles, including vans and buses, stopped on the
roadside, which the vehicle had to overtake, and T-junctions
with traffic approaching from both directions (between 20 and
40 road users per minute). The speed limit was 30mph, and
the weather conditions shifted to heavy rain, degrading the
visual range.

Finally, the Driving Hazard event occurred when leaving
the city centre to enter the suburbs again, on the approach
of a T-junction, in a residential area from a straight two-way
lane. This event was the sudden appearance of a heavy single-
cabin semitrailer truck, which accelerated into the scene at
high speed (60mph) from the left side of the T-junction ahead,
moving sideways and headed directly towards the ego vehicle.
The ego vehicle performed a sudden evasive manoeuvre to
avoid the trailer, steered to the right side and eventually
collided with a garden fence. This whole action sequence (i.e.,
from leaving DC2 through to the end of the crash) occurred in
30 seconds. The semitrailer truck was the only vehicle present
in this scenario for the Traffic group to ensure the condition
was equal for both groups.

D. Procedure

Upon arrival, participants were guided into the simulator
control room, where the room temperature was set at 21±2◦C
to control for room temperature affecting EDA or ECG
recordings (the simulator buck’s ventilation system could also
be adjusted to participants’ requirements). Participants were
briefed on lab safety procedures and then filled in the consent
form and demographic inventories. Once all physiological
sensors were connected, participants were instructed to be
careful in applying any pressure to the sensors or stretch-
ing the cables to avoid signal spikes and artefacts. Follow-
ing this, data telemetry from the wearable amplifiers were
checked to ensure signal stabilisation and good quality data
acquisition.

Participants were then guided inside the driving simulator
and were informed that the experiment would start by record-
ing their physiological state baseline for 4 minutes, and after
that, the driving scenario would begin. Participants were asked

to remain seated in the driver’s seat, not to move excessively,
breathe normally, and stay relaxed during the baseline record-
ing. Participants were advised that the experimenter would
inform them of the start and end of the baseline recording.
The driving simulator lights were switched off, the room was
silent, and driving scenarios were not projected on the screen.
Once the baseline was recorded, the autonomous driving trial
began and lasted approximately 5 minutes. After the hazardous
event, participants remained in the vehicle with the scenario
displayed on-screen for 2 minutes to record a post-event
recovery. After that, the experimenter entered the simulator
and accompanied them back into the control room to fill in
the risk perception scale.

E. Analysis

For each participant, a total of 11 minutes and 30 sec-
onds of continuous data were extracted for analysis. This
comprised four minutes of baseline/resting data, four minutes
of autonomous driving scenarios, thirty seconds of the haz-
ardous event, and two minutes of post-event recovery. One
minute of transition was left between baseline and the first
segment of automated driving to allow the signal to stabilise
and was not included in the analysis. One participant was
excluded from EDA analysis due to substantial artefacts on
the raw signal, with N = 19 participants analysed. For ECG
data, all participants were analysed with no missing cardiac
data.

Data were segmented into epochs of 120 seconds for HRV
analyses and 30 seconds for SCR analyses. HRV analyses
used four epochs, comprising baseline (BL), Driving Con-
dition 1 (DC1), Driving Condition 2 (DC2), and the final
epoch (Hazard-&-Recovery), including the Driving Hazard
event and the post-event recovery time. SCR analyses used
eleven epochs of 30s each (see Fig. 2). Data were extracted
using the automated data analysis routines from Biopac’s
ACQKnowledge software (CA, USA; version 5.0.2). EDA data
were sampled at 62.5 Hz and low-pass filtered to a frequency
cut-off fixed at 1 Hz, following standardised guidelines [43],
[58]. Phasic EDA features were extracted using a high pass
filter at 0.05 Hz, and the skin conductance response (SCR)
threshold level was set at 0.03 μS, with a rejection rate set
to 10%.

Phasic features extracted were SCR count (i.e. the total
number of SCR events within each epoch), SCR amplitude,
and SCR magnitude. SCR amplitude represents the delta
value from the offset to the peak of the SCRs. According
to [43], [59], amplitudes below 0.03 μS were rejected from the
analysis. The common practice for normalising these values
is applying the square root transformation [42], [58], [60].
SCR magnitude is obtained from the same delta value, but
non-response accounts for a zero for the final mean. In this
case, the Log+1 transformation is applied to correct for the
presence of skewness and kurtosis [42], [58], [60]. Finally,
these three SCR features were standardised for parametric
statistical analysis to T-scores (M = 50, SD = 10) to allow for
inter-individual comparisons. Means and standard deviations
used for the T-scoring were obtained from each individual to
control inter-individual variability [43], [60].
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ECG data were sampled at 2000 Hz and filtered apply-
ing Biopac’s recommendations, using a bandpass filter with
a 35 Hz high-frequency cut-off and a low-frequency cut-off
at 0.5 Hz. Cardiac features extracted were heart rate (HR; as
in beats per minute) and those heart rate variability (HRV)
metrics that better reflect vagal tone. We extracted the high
frequency (HF) band (between 0.15 and 0.40 Hz) in the
frequency domain. Following the recommendations in [40],
we coupled this metric with a time-domain parameter indexing
vagal tone: the root mean square of successive differences
(RMSSD). This robust metric reflects the vagal tone and is
relatively less affected by respiration [40]. Cardiac features
were standardised to T-scores following the same method
described for SCRs.

This research evaluates whether variations in perceived
risk from either slowly evolving or rapidly evolving HAD
conditions would produce observable changes in physiology.
H1 tested the effect of the grouping variable of Traffic on
Driving Conditions (i.e., Suburbs [DC1] and City Centre
[DC2]). A 2 × 3 mixed ANOVA (Traffic, No Traffic × BL,
DC1, DC2) was performed on HR/HRV measures. Similarly,
we ran a 2 × 9 mixed ANOVA on SCR metrics (Traffic,
No Traffic × BL, DC1.1, DC1.2, DC1.3, DC1.4, DC2.1,
DC2.2, DC2.3, DC2.4). As traffic was not present during
the BL condition, and the BL condition would allow further
control over pre-existing group differences in arousal prior to
experimental manipulations, we included BL in this analysis.

To test for the effect of changing driving conditions within-
participants (H2), we run a repeated-measures ANOVA with
three levels for HR/HRV metrics comparing BL with DC1 and
DC2. A similar test was used for SCR metrics, with 9 levels
(BL, DC1.1, DC1.2, DC1.3, DC1.4, DC2.1, DC2.2, DC2.3,
DC2.4). As H2 tested for the effect(s) of identical driving
conditions for each group (i.e. DC1 and DC2), we merged
these groups after finding no main effects or interaction effects
during the analysis in H1.

To analyse the effect of the rapidly evolving Driving Hazard
event (H3), we ran a repeated-measures ANOVA with two lev-
els for HR/HRV metrics comparing BL with Driving Hazard-
&-Recovery. A similar repeated-measures ANOVA with three
levels for SCR metrics compared BL with Driving Hazard and
Recovery (see Fig. 2). We rationalised this decision as both
groups experienced the same Driving Hazard condition.

The Shapiro-Wilk’s test (p ≥ 0.05) was used to assess
normality assumption violations, and Mauchly’s test was used
to assess the assumption of sphericity. Main effects and inter-
actions were followed-up by pair-wise comparisons corrected
by the Bonferroni method.

V. RESULTS

A. Hypothesis 1

The first hypothesis tested whether the slowly evolving
increase of traffic presence would modulate perceived risk
and produce observable differences in arousal between groups
during driving conditions.

Among all cardiac measures, mixed ANOVA results
revealed that the effect of Traffic was not significant

Fig. 3. T-scored cardiac features for the traffic factor on driving conditions.
Heart Rate (left), HRV-HF (centre) and HRV-RMSSD (right).

Fig. 4. T-scored Skin Conductance Response (SCR) features for the
traffic factor on driving conditions. SCR count (left), amplitude (centre), and
magnitude (right).

between-groups [HR: (F (1, 18) = 0.589, p = 0.453, η2
p =

0.032); HRV-HF: (F (1, 18) = 0.024, p = 0.878, η2
p = 0.001);

HRV-RMSSD: (F (1, 18) = 0.322, p = 0.577, η2
p = 0.018)],

and there were no interaction effects for Driving Conditions
which supported this hypothesis either [HR: (F (2, 36) =
1.935, p = 0.159, η2

p = 0.097); HRV-HF: (F (2, 36) = 0.949,
p = 0.397, η2

p = 0.05); HRV-RMSSD: (F (2, 36) = 0.451,
p = 0.641 η2

p = 0.024)].
Skin conductance response analyses did not show any

group effects of Traffic [SCR count: (F (1, 17) = 2.012,
p = 0.174, η2

p = 0.106); SCR amplitude: (F (1, 17) = 0.088,
p = 0.771, η2

p = 0.005; SCR magnitude: (F (1, 17) = 4.206,
p = 0.056, η2

p = 0.198)], or interaction effects for Driving
Conditions [SCR count: (F (8, 136) = 0.478, p = 0.870,
η2

p = 0.027); SCR amplitude: (F (8, 136) = 0.434, p = 0.810,

η2
p = 0.025); SCR magnitude: (F (8, 136) = 1.064, p = 0.385,

η2
p = 0.059)] that would support our hypothesis either. Trends

for all three SCR features analysed are displayed in Fig. 4.
In accordance with these results, a Mann- Whitney U test

on self-reported risk perception did not show any differences
between groups for Traffic (U = 60.500, p = 0.436. These
results seem to indicate that the presence of traffic had no
effects on the perceived risk between groups.

B. Hypothesis 2

This hypothesis tested whether slow changes across driving
conditions would produce arousal variations within- partici-
pants.

There was a main effect of Driving Conditions on
HRV-RMSSD (F (2, 38) = 4.497, p = 0.018, η2

p = 0.191), with
post-hoc tests indicating a lowered vagal tone from baseline
(M = 55.679, SD = 7.562) to DC1 (M = 47.147, SD =
7.088, p = 0.004) (see Fig. 3). There was also a main effect
of Driving Conditions on HRV-HF power (F (2, 38) = 3.490,
p = 0.041, η2

p = 0.155); however, this effect diminished in
post-hoc tests (see Fig. 3). HR did not report any main effects
of Driving Conditions (F (2, 38) = 0.837, p = 0.441, η2

p =
0.042).
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Fig. 5. T-scored cardiac features for the driving hazard event. Heart Rate
(left), HRV-HF (centre) and HRV-RMSSD (right).

* * *

Fig. 6. T-scored Skin Conductance Response (SCR) features for the driving
hazard event. SCR count (left), amplitude (centre), and magnitude (right).

SCR measures did not report any main effects
within-participants that would support hypothesis 2 [SCR
count: (F (8, 144) = 1.129, p = 0.348, η2

p = 0.059); SCR
amplitude: (F (8, 144) = 1.419, p = 0.228, η2

p = 0.073);
SCR magnitude: (F (8, 144) = 0.396, p = 0.851, η2

p =
0.022)].

These results suggest that HRV features captured slowly
evolving arousal variations across Driving Conditions, but
SCRs were not. We will discuss these findings further in
section VI.

C. Hypothesis 3

The third hypothesis investigated whether the rapidly evolv-
ing Driving Hazard event would produce observable effects in
arousal indicators within participants.

A repeated measures ANOVA revealed a main effect of
Driving Hazard on HRV-RMSSD (F (1, 19) = 5.815, p =
0.026, η2

p = 0.234), with follow-up tests showing a signif-
icantly lower vagal tone during Hazard-&-Recovery (M =
48.499, SD = 7.984), compared to during baseline (M =
55.679, SD = 7.562) as expected (see Fig. 5). No effects
were observed on HR (F (1, 19) = 4.389, p = 0.050, η2

p =
0.188) or HRV-HF power (F (1, 19) = 1.673, p = 0.211,
η2

p = 0.081).
Strong evidence in favour of this hypothesis was found

across all SCR measures (Fig. 6). SCR count revealed a main
effect for Driving Hazard (F (2, 36) = 10.465, p < 0.001,
η2

p = 0.368), with a significantly greater SCR count during
the hazardous event (M = 63.156, SD = 13.092), compared to
baseline (M = 48.293, SD = 9.343, p = 0.004), and Recovery
(M = 48.984, SD = 9.964, p = 0.012).

SCR amplitude showed similar effects (F (2, 36) = 22.415,
p < 0.001, η2

p = 0.555), with post-hoc tests indicating a
significantly greater amplitude during the Driving Hazard
event (M = 60.870, SD = 8.417), than during baseline (M =
49.769, SD = 4.142, p < 0.001), and Recovery (M = 48.898,
SD = 2.655, p < 0.001).

SCR magnitude was also aligned with the previous two SCR
measures and revealed a main effect for Driving Hazard event
(F (2, 36) = 177.834, p < 0.001, η2

p = 0.908). Follow-up
tests showed a significantly greater amplitude during the event
(M = 76.275, SD = 3.975) compared to baseline (M = 47.633,
SD = 7.325, p < 0.001), and Recovery (M = 46.373, SD =
3.988, p < 0.001).

Finally, a Wilcoxon signed-rank test reported a main effect
for self-reported risk perception (Z = 194.5, p = 0.001),
with perceived risk during the Driving Hazard event (Mdn =
5.50, IQR = 3) being significantly higher than during Driving
Conditions (Mdn = 3.00, IQR = 3).

Overall, these results suggest the Driving Hazard event had
a greater effect on skin conductance measures than on cardiac
ones, but instead, HRV was more sensitive to the slowly
evolving effect of Driving Conditions than SCRs. Further
interpretations of these results will be discussed in the next
section.

VI. DISCUSSION

This empirical research aimed to investigate whether slowly
evolving autonomous driving situations with low to moderate
perceived risk; and rapid driving events with moderate to
high risk would produce observable changes in physiological
indicators of sympathetic and parasympathetic activity.

A. Hypothesis 1

The first hypothesis predicted that the presence of Traffic
would slowly increase the perception of risk in one group
across driving conditions and result in significant group dif-
ferences in arousal. The presence of Traffic did not have
the expected effect on the perceived risk, however, since
no between-group or interaction effects were reported for
any of the physiological indicators or self-reported perceived
risk.

Whereas the reduced group size has likely contributed to
this absence of effects, the lack of arousal differences due to
the presence of Traffic seems to indicate this variable would
not strongly modulate perceived risk during autonomous
driving, as opposed to when manually driving [34], [44], [47].
Regardless, we would instead remain cautious about making
such inferences because a genuine criticism of driving simu-
lators is that they lack real risk, and participants are aware of
this. Perhaps real-world trials would obtain different results,
and therefore, future research should investigate perceived risk
from naturalistic autonomous driving conditions. Besides, the
influence of traffic on perceived risk might be tightened to
individual differences such as personality traits, age or gender,
especially when the sample size is small.

B. Hypothesis 2

The second hypothesis investigated whether long-term
evolving Driving Conditions with low to moderate risk would
produce observable changes in arousal within participants –i.e.
from BL to DC2. Considering the median of self-reported
perceived risk during Driving Conditions was 3 out of a
maximum of 7, we would assume moderate levels of risk
during these.
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Evidence in favour of this hypothesis was observed in HRV,
which reported a vagal tone decrease between baseline and
suburbs (i.e. Driving Condition 1, DC1). Previous research
in the driving context has associated uncoupled vagal with-
drawal (i.e. with unaltered sympathetic activity) from baseline
resting with increased monitoring during single-driving tasks
requiring perceptual-central processing [19], [61]. It would
therefore provide some evidence in favour of this hypothesis.
In particular, RMSSD would have captured such long-term
and slowly evolving arousal fluctuation associated with low to
moderate risk from resting to driving through suburbs (DC1).
The other HRV parameter, HF-power, coupled these results,
but effects diminished with post-hoc comparisons. Given the
nature of the HRV signal, perhaps evolving manipulations in
our driving scenarios with relatively short periods and with-
out enough recovery time between may have contributed to
this.

Skin conductance responses (SCRs) did not report any
effects for Driving Conditions in hypothesis 2 either. It might
be that these measures were less sensitive to moderate per-
ceived risk levels (note that median self-reported perceived risk
during Driving Conditions was 3 out of a maximum of 7). This
would also relate with previous work in which we observed
SCRs trends increasing along with driving complexity but not
reporting any significant effects [37]. However, this lack of
significant effects could also be interpreted as SCR features
being less sensitive to long-term arousal variations. Our SCR
measures here were over a 30-second epoch, and like [35] who
used similar short epochs for SCL, we did not observe any
changes in SCR either. Longer epochs would likely be more
sensitive to long-term changes in arousal. However, in previous
research [37], we did not observe any effects on SCR features
over two-minute epochs either, so perhaps future work should
also consider exploring other electro-dermal activity features
for driver state monitoring of slowly evolving risk changes.
For example, endosomatic electro-dermal activity measures
such as skin potential level or skin potential responses, mea-
sure the nervous impulses that activate sweat glands with-
out directly applying current to the body. Unlike SCRs and
SCLs, endosomatic measures are less affected by electrode
artefacts [43]. Skin potential responses have been success-
fully used in the driving context for detecting sympathetic
reactions to unexpected events [62], suggesting they could
be a promising alternative to traditional exosomatic features,
worth exploring for its integration in DSMs. Notwithstanding,
skin potential measures have certain drawbacks for recording
and evaluation as described in [43], which must be carefully
considered.

The lack of arousal variations between the two Driving
Conditions of suburbs (DC1) and city centre (DC2) may
suggest that autonomous driving users might be less aware
of slowly changing driving conditions. Indeed, in our previ-
ous work in the driving simulator using a different sample,
our cardiac features captured long-term arousal variations
due to mental workload from an NDRT, but not due to
driving conditions [37]. Similarly, [34] detected arousal vari-
ations associated with discomfort towards abnormal driving
behaviours during manual driving, but not through several

autonomous driving controllers. However, as stated earlier in
H1, these assumptions must be cautiously considered, and
further research is needed.

C. Hypothesis 3

The third hypothesis predicted that a rapid driving event
associated with moderate to high-risk perception would pro-
duce arousal variations compared to baseline resting and
post-event recovery resting. Considering that self-reported
perceived risk was significantly greater during this event than
during Driving Conditions, substantial evidence favouring this
hypothesis was found particularly throughout skin conductance
response features. All three indices reported robust statistical
effects indicating that SCRs were particularly sensitive to
arousal fluctuations from a rapid driving event with moderate
to high risk associated. These findings are consistent with pre-
vious literature reporting greater SCRs with increased mental
workload [47], stress [44], or discomfort [34] due to complex
driving conditions.

Even though SCRs are well known for being particularly
sensitive to phasic arousal changes due to unexpected environ-
mental stimuli [42], [43], the novelty of these results lies in
that these would be physiological indicators of a rapid increase
of perceived risk. Aside from indicating we successfully
generated and measured a greater perception of risk during the
event, these findings add evidence to those from [56] in that
abnormal traffic behaviours are also perceived as risky during
HAD. However, the mere presence of surrounding traffic
behaving normally may not strongly influence risk perception
as H1 suggests.

Results from cardiac parameters were less robust, how-
ever. Only HRV-RMSSD reported a significant vagal tone
decrement between baseline and the epoch comprising
driving Hazard-&-Recovery, as it was expected that the haz-
ardous event would produce a startle response activating
the sympathetic system and deactivating the parasympathetic
branch [19]. Nevertheless, heart rate (HR) and HRV-HF did not
report any supporting effects, and on the contrary, trends indi-
cated a higher rate during baseline resting than during driving
Hazard-&-Recovery, suggesting participants may have been
more aroused during baseline resting than during Hazard-&-
Recovery. Such a non-reciprocally coupled mode of autonomic
control would indicate a co-activation during baseline because
sympathetic activation exceeded parasympathetic activation;
and a co-inhibition during Hazard-&-Recovery, which may
occur because a parasympathetic inhibition exceeded sympa-
thetic inhibition [19], [39], [61].

For this co-activation, likely, our participants were not
completely relaxed during the baseline, and thus, it was not
necessarily a low arousal state. This was possibly due to the
novelty of the experiment. Therefore, we could recommend
future research to collect baseline recordings in a more familiar
and duller environment, but it could also be argued that such
an environment would lack ecological validity. In contrast, co-
inhibition observed during Hazard-&-Recovery was possibly
due to the hazardous event was followed by a recovery period,
which was essentially a state of rest. Therefore combining
the hazardous event and post-event recovery into one epoch
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could have contributed to this effect, although it was necessary
to combine these periods to meet the minimum epoch length
recommended for HRV measurements [40], [63].

As a whole, our results provide important insights into risk
perception and its measurement with physiological indices
during HAD. It is evident that HAD implies a driving task
reallocation and changes the way users perceive and interact
with the vehicle. As stated in section II, perceived risk
modulates trust in automation and situation awareness, and
consequently, driver readiness towards a take-over request
(TOR). Whilst this phenomenon may be mitigated in SAE-L4
with driving automation acting as a fallback, it may become
a safety-critical aspect in SAE-L3, where the driver is the
fallback user when a TOR is issued. Inadequate situation
awareness because of lowered perceived risk is likely to
increase trust in automation inappropriately, and that, as has
already been explicitly evidenced in several road accidents in
the US, may lead to fatal consequences [64]–[67]. Now that
autonowashing [68] is a hot topic in the automotive industry,
it is vital that these vehicles integrate DSM systems for risk
mitigation of impaired or unavailable drivers. In this sense,
we agree with [28], [29] that monitoring requests to get the
driver back on the loop towards the upcoming TOR will be
strongly required.

Based on the model of affective risk assessment pro-
posed by De Visser [55], our results suggest a promising
pathway for measuring drivers perceived risk with arousal
indicators. Hence, situational trust in automation and cur-
rent situation awareness when issuing a monitoring request
towards a planned take-over. Even though arousal indices
alone cannot infer such complex psychological states, artificial
intelligence and machine learning algorithms could potentially
be trained to do so [69]. Furthermore, the effect of individual
factors such as personality traits (e.g., sensation seeking [70]
or locus of control [71]), age and gender [72] cannot be
ignored. Multimodal DSM systems combining eye-tracking
data with arousal indices could classify driver states and mon-
itor the transition process until reaching driver availability for
take-over.

SCR data derived from the EDA signal would be instrumen-
tal in detecting whether the driver has perceived the monitoring
request warning issued in non-safety critical TOR. Because
SCRs indicate sympathetic activation and thus increased alert-
ness level, they are particularly sensitive to startle stimuli -as
we observed in the hazardous event-, which a TOR can
be to an OOTL driver. Driver awareness of the monitoring
request could be complemented with gaze behaviour indicators
(e.g., driver glancing at the interface screen issuing the visual
warning) and even with an active behavioural confirmation
(e.g., pressing a button or verbally confirming).

Whilst HR/HRV data from the ECG signal would be benefi-
cial for detecting variations in tonic arousal levels. For exam-
ple, vagal withdrawal and heart rate increases would be good
indicators of optimal alertness when monitoring the prepara-
tion for take-over and the take-over transition itself, as modes
of autonomic control can indicate the source of attentional
demands during task performance [19]. Although we only
find two effects for cardiac features in the present research,

substantial evidence supports the robustness of HR/HRV in
detecting arousal from driving conditions of stress [9], [12],
or mental workload [19], [39], supports this claim. More-
over, we encourage future work to explore whether shorter
or fine-sliding windows are sensitive to shorter-term arousal
variations, especially with RMSSD, which allows so [40], and
has shown the most robust effects for HRV here. Eye-tracking
data could also complement this by ensuring the driver is back
on the loop [5] (e.g. actively seeking information on the road
ahead, side mirrors or checking the navigation system).

It is essential to bear in mind that psychophysiological
variations are relative to a previous state, and this state may
vary depending on the NDRT performed before the monitoring
request. As mentioned, the arousal state from a driver sleeping
will widely differ from, e.g., one playing videogames. Whereas
the former may need to increase its alertness level, the latter
may need to reduce it to make effective decision-making (the
reader may remember the inverted U-shape relating to arousal
and performance) [17].

Future research should test the sensitivity of SCRs to
monitoring requests. The latency of the signal is between
1-3 seconds after issuing the request, and thus, SCR could
inform that the driver has perceived the warning. It would
also be crucial to explore how different levels of mental
workload induced by NDRTs may affect the perception of
monitoring request warnings. Relatedly, it would also be rele-
vant to explore transitions from either resting versus mentally
demanding NDRTs after issuing the monitoring request.

VII. CONCLUSION

Findings from this research demonstrate that future driver
state monitoring systems for highly automated driving will
need to combine multiple data sources to overcome current
eye-tracking-based systems’ main drawbacks. Our empirical
research provided evidence on how heart rate (HRV) and skin
conductance (SCR) features provide valuable additional real-
time data to determine drivers’ perceived risk, which can be
used to indicate their availability to take over control. Overall,
our findings indicate that:

• Low to moderate risk perception should be measured with
HRV features, which are more sensitive to longer-term
changes in arousal levels due to environmental and
traffic-related factors than SCRs,

• Moderate to high perceived risk should be measured with
SCRs, indicative of the short-term changes to rapidly
evolving, safety-critical driving events.

Furthermore, HRV and SCR measures face significant chal-
lenges, such as detecting moderate arousal levels required for
take-over, false positives due to high tonic arousal, or even
false negatives due to highly arousing non-driving related
tasks – all of which could mask actual physiological indicators
needed for safe take-over of control. Eye-tracker data could
potentially be used in tandem in such cases to alleviate
these limitations of physiological data alone. Ultimately, future
DSM systems will benefit from the knowledge generated by
this research through the development of machine learning
methods used for determining when drivers would be on the
loop, and their availability for optimal take-over performance.
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