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ABSTRACT With the rapid pace of urbanization, the number of vehicles traveling between cities has
increased significantly. Consequently, many traffic-related problems have emerged, such as traffic jams
and excessive numbers and types of vehicles. To solve traffic problems, road data collection is important.
Therefore, in this paper, we develop an intelligent traffic-monitoring system based on you only look
once (YOLO) and a convolutional fuzzy neural network (CFNN), which record traffic volume, and vehicle
type information from the road. In this system, YOLO is first used to detect vehicles and is combined
with a vehicle-counting method to calculate traffic flow. Then, two effective models (CFNN and Vector-
CFNN) and a network mapping fusion method are proposed for vehicle classification. In our experiments,
the proposed method achieved an accuracy of 90.45% on the Beijing Institute of Technology public dataset.
On the GRAM-RTM data set, the mean average precision and F-measure (F1) of the proposed YOLO-CFNN
and YOLO-VCENN vehicle classification methods are 99%, superior to those of other methods. On actual
roads in Taiwan, the proposed YOLO-CFNN and YOLO-VCFNN methods not only have a high F1 score
for vehicle classification but also have outstanding accuracy in vehicle counting. In addition, the proposed
system can maintain a detection speed of more than 30 frames per second in the AGX embedded platform.
Therefore, the proposed intelligent traffic monitoring system is suitable for real-time vehicle classification
and counting in the actual environment.

INDEX TERMS Traffic-monitoring system, fuzzy neural network, vehicle classification, feature fusion,

deep learning.

I. INTRODUCTION

Road traffic monitoring is an important research topic.
By analyzing the types of vehicles and traffic flow on the
road, current traffic conditions can be understood, and action-
able information can be provided to traffic management
agencies. This information can help these agencies to make
decisions that improve people’s quality of life. For example,
on holidays, information regarding the road traffic volume
can be used to suggest alternate routes to drivers to divert
traffic from congested areas. In addition, if large trucks often
use a certain road, roadside warnings can be installed to alert
drivers and reduce traffic accidents. Moreover, the type and
color of a specific vehicle can be used to identify and track
the vehicles of criminals. The abovementioned applications
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all rely on information collected by a road monitoring system
for analysis. Therefore, to obtain information on passing
vehicles, many researchers have used different methods to
achieve vehicle detection and classification.

Traditional vehicle-detection methods are mainly divided
into two types: (1) Static-based methods [1]-[7] that use
sliding windows or shape feature comparison methods to
generate vehicle prediction frames and verify them based
on the information in the prediction frames and (2) methods
that use the dynamic features of a moving object [8]-[12] to
separate it from the image to obtain the contour of the object.
Regarding static-based methods, Mohamed et al. [1] pro-
posed a vehicle-detection system that uses Haar-like features
to extract vehicle shape features and inputs the extracted fea-
tures into an artificial neural network to realize vehicle classi-
fication. Wen et al. [2] also used Haar-like features to extract
the edge and structural features of vehicles and input them
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into AdaBoost to filter important features. Then, the filtered
features were input into a support vector machine (SVM)
for classification to improve its recognition accuracy.
Sun et al. [3] and David and Athira [4] used Garbor filters
to obtain vehicle characteristics and then input them into an
SVM to determine whether a vehicle is present in an image.
Wei et al. [5] designed a two-step vehicle-detection method.
First, they used Haar-like features and AdaBoost to obtain
the region of interest with vehicles and subsequently used the
histogram of oriented gradients (HOG) [6] and an SVM to
reverify the region. According to their experimental results,
their method exhibited improved vehicle-detection capability.
Yan et al. [7] designed a vehicle-detection system that used
vehicle shadows to select the boundaries of vehicles and the
HOG to extract features. These features were then input into
an AdaBoost classifier and SVM classifier for verification.
In this method, when vehicles block each other, they are
regarded as one vehicle because the shadows are connected
to each other, which weakens the detection effect.

In terms of dynamics, Seenouvong et al. [8] pro-
posed a vehicle-detection and counting system based on
dynamic features. Background subtraction was used to obtain
a difference map from a given current image to achieve seg-
mentation of the corresponding foreground image. In addi-
tion, various morphological operations were used to obtain
the outline and bounding box of a moving object, detect
moving vehicles, and count the vehicles passing through
a designated area. A few researchers have used Gaussian
mixture models (GMMs) [9], [10] to model the background
or adaptive background [11]-[13] with the aim of solving
the problem of background subtraction due to background
images. Poor foreground segmentation is caused by grad-
ual changes in brightness. The aforementioned static and
dynamic methods have many limitations in overcoming this
problem. For example, traditional feature extraction meth-
ods must be manually designed by experts on the basis of
their experience, meaning that the process is complicated.
Moreover, the extracted features are mostly pieces of shallow
vertical and horizontal information, which cannot effectively
describe the changes in vehicle features and cannot be widely
used. The dynamic feature method increases the complex-
ity of subsequent image processing operations in cases of
extensive background changes in addition to yielding poor
detection results. With recent advancements in deep learning,
these conventional methods have gradually been replaced by
deep learning techniques.

Il. LITERATURE REVIEW

In recent years, deep learning has been widely used in many
fields, and good prediction results have been obtained with
this method. Compared with traditional methods that require
artificial feature determination, the convolutional neural net-
work (CNN) method greatly improves the accuracy of image
recognition. Initially, Lecun et al. [14] proposed the LeNet
model to solve the problem of recognizing handwritten digits
in the banking industry. Krizhevsky et al. [15] proposed
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AlexNet to improve the traditional CNN by deepening the
model architecture and using the ReLU excitation func-
tion and the dropout layer to increase the effectiveness
of the network during learning and prevent overfitting.
Szegedy et al. [16] proposed GoogleNet, which uses mul-
tiple filters of different sizes to extract features that enrich
feature information. Simonyan and Zisserman [17] proposed
two models, namely VGG-16 and VGG-19. They replaced
the large convolution kernel by successively using multiple
small convolution kernels to perform operations and proved
that increasing the depth of a model can improve its accuracy.
He et al. [18] proposed the ResNet model. They used resid-
ual blocks to solve the problem of gradient disappearance
and convergence inability due to excessive network depth.
Howard et al. [19] proposed MoblieNet, which uses deep
separation convolution to extract fewer and more useful fea-
tures and reduces the number of redundant parameters in
a CNN model.

The aforementioned studies have focused on improving
the feature description capabilities of a CNN to extend the
application of CNNs to more complex problems, such as
object detection. Several researchers [20]-[24] have used
region-based CNN (R-CNN) series models to solve the
vehicle-detection problem. R-CNN uses the region proposal
network (RPN) [25] to extract the position of an object and
then classifies it by using a traditional CNN. RetinaNet [26]
is the latest network architecture of R-CNN models. The
R-CNN framework comprises a two-stage mechanism and
uses a multilayer neural network for classification [27], [28].
This architecture substantially increases the number of
parameters used and decreases the execution speed; thus, it is
unsuitable for real-time detection. To solve this problem, one-
stage mechanism methods have been proposed for vehicle
detection, such as the you-only-look-once (YOLO) frame-
work model [29]-[31] and the single-shot multibox detector
(SSD) [32] framework model. One-stage methods are fast
and can detect objects in real time, but their classification
accuracy is lower than that of R-CNN methods [33], [34].

The aforementioned object-detection methods have the
following problems: 1) Two-stage object-detection methods
have high classification accuracy, but the large of network
parameters decrease the detection speed. 2) One-stage object-
detection methods have a high real-time detection speed
but lower accuracy than two-stage object-detection methods.
3) To increase the number of object categories, the entire
network must be retrained, which is time-consuming and
reduces the scalability of the method.

Recently, fuzzy neural networks (FNNs) [35]-[39] that
have a human-like fuzzy inference mechanism and the pow-
erful learning functions of neural networks have been widely
used in various fields, such as classification, control, and fore-
casting. Asim et al. [35] applied an adaptive network-based
fuzzy inference system to classification problems. Compared
with traditional neural networks, this method yielded higher
classification accuracy. Lin ef al. [36] used an interval type-2
FNN and tool chips to predict flank wear, and their method
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yielded superior prediction results. A few researchers have
used a locally recurrent functional link fuzzy neural net-
work [37] and Takagi—Sugeno—Kang-type FNNs [38], [39]
to solve system identification and prediction problems, and
both methods have yielded good results. In this study, an FNN
was embedded into a deep learning network to reduce the
number of parameters used in the network and obtain superior
classification results. Conventional CNNs use pooling, global
pooling [40], and channel pooling [41] methods for feature
fusion. Global pooling methods sum the spatial information
and perform operations on each feature map to achieve fea-
ture fusion and can be divided into global average pooling
(GAP) [42] and global max pooling (GMP) [43]. Thus, global
pooling methods are more robust to spatial translations of
the input and prevent overfitting. Channel pooling methods
include channel average pooling (CAP) [44] and channel
max pooling (CMP) [45], which perform feature fusion by
computing average or maximum pixel values, respectively,
at the same positions in each channel of feature maps.
Furthermore, these methods only compress features and do
not contain learnable weights, leading to poor classification
results. In this study, a new feature fusion method named net-
work mapping was proposed to enhance the utility of feature
fusion and explore the effectiveness of different feature fusion
methods.

To design an intelligent traffic-monitoring system with
fast execution speed, high classification accuracy, and high
category extensibility, a two-stage object-detection method
was adopted in this study. The proposed intelligent traffic-
monitoring system based on YOLO and a convolutional
FNN (CFNN) collects real-time information on traffic vol-
ume and vehicle type on the road. In this system, a novel
modified YOLOv4-tiny (mYOLOv4-tiny) is first used to
detect vehicles and is then combined with a vehicle count-
ing method to calculate the traffic flow. Furthermore,
two effective models (CFNN and Vector-CFNN) and a
network mapping fusion method that improve the com-
putational efficiency, classification accuracy, and category
extensibility were proposed for vehicle classification. The
proposed model architecture has fewer network parameters
compared to other models; therefore, the system can achieve
real-time, high-accuracy vehicle classification with limited
hardware resources and flexible extensibility for different
categories.

The contributions of this study can be summarized as
follows:

« An intelligent traffic-monitoring system was developed
to record real-time information about traffic volume, and
vehicle types.

o An mYOLOv4-tiny model was proposed to achieve
real-time object detection and improve detection
efficiency.

o Two effective models (CFNN and Vector-CFNN) that
adopt a new network mapping fusion method were
implemented to increase the classification accuracy and
greatly reduce the number of model parameters.
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o Category extensions (e.g., vehicle type) only require
training of the classification model (CFNN) with-
out retraining of the object detection model (YOLO).
This not only saves substantial training time but also
improves the flexibility of category extension.

o The proposed intelligent traffic monitoring system was
implemented on the NVIDIA AGX Xavier embedded
platform and applied to provincial highway 1 (T362)
in Kaohsiung, Taiwan for real-time vehicle tracking,
counting, and classification.

The remainder of this paper is organized as follows:
Section 3 introduces the proposed YOLO-CFNN method
for intelligent traffic monitoring. The experimental results
of the proposed method are described in Section 4.
Section 5 presents our conclusions and an outline of future
work.

Ill. PROPOSED YOLO-CFNN FOR INTELLIGENT TRAFFIC
MONITORING

In this section, an intelligent traffic-monitoring system is
introduced. The proposed system has three functions, namely
(1) vehicle detection, (2) vehicle counting, and (3) vehicle
classification. The system architecture is illustrated in Fig. 1.

Vehicle counting using
Kalman filter and

o Hungarian algorithm
Vehicle detection using ®

mYOLOv4-tiny

Vehicle classification
using CFNN

FIGURE 1. Three functions of the proposed intelligent traffic-monitoring
system.

A flowchart of the proposed intelligent traffic-monitoring
system is presented in Fig. 2. First, real-time road images
are obtained from traffic cameras. Then, the proposed
mYOLOv4-tiny model is used to detect the position of a
vehicle. To solve the problem of the repeated recording
of the same car as different vehicles in different frames,

Data collection

FIGURE 2. Flowchart of the proposed intelligent traffic-monitoring
system.

VOLUME 10, 2022



C.-J. Lin, J.-Y. Jhang: Intelligent Traffic-Monitoring System Based on YOLO and CFNNs

IEEE Access

FIGURE 3. Virtual detection area.

a counting algorithm is introduced to track the vehicle.
In other words, a vehicle is assigned the same identity (ID)
across different frames. Before execution of the counting
algorithm, the virtual detection area (as shown in Fig. 3) of the
target vehicle is screened to reduce the computational burden.
Finally, the vehicles passing through the virtual detection area
are counted and classified, and the resulting information is
collected and stored for subsequent analysis.

A. VEHICLE DETECTION USING MODIFIED YOLOv4-tiny

The conventional YOLOv4-tiny is a lightweight network
simplified using YOLO. It uses convolutional layers and
max pooling layers to extract object features. In addition,
YOLOv4-tiny uses UpSampling and Concat layers to merge
features and expand feature information to further improve
detection. Compared with other YOLO and SSD methods,
YOLOv4-tiny has a faster detection speed. However, the
detection accuracy of YOLOV4-tiny is worse than that of
YOLO and SSD methods due to its greatly simplified net-
work architecture. Conventional YOLOv4-tiny uses two out-
puts for object detection. To improve the detection accuracy,
an mYOLOv4-tiny that has three outputs was designed for
vehicle detection. The network architecture of mYOLOv4-
tiny is depicted in Fig. 4. In total, 24 convolutional layers and

Input Backbone

Route Route

cou LG ) <o LRI o

800 < 480 < 3

three max pooling layers were used. Finally, three scales—
25 x 15,50 x 30, and 100 x 60—were used for prediction.
In this system, the mYOLOv4-tiny model is only used to
detect vehicle objects.

B. VEHICLE COUNTING METHOD

The above-described YOLO object detection method can
be used to identify a vehicle and its location information
from a single picture. However, in actual traffic applications,
a continuous image frame is provided as the input. The vehi-
cles detected in different image frames are independent of
each other. Therefore, the same vehicle is counted multiple
times, and the collected vehicle information would be wrong.
To solve this problem, the ID of the detected vehicle must
be configured to prevent double counting. In the proposed
system, an object counting method is added to correlate and
match the vehicles detected in different image frames and to
determine whether a detected vehicle is newly added. In this
study, the multiobject counting method [46] is adopted, which
uses vehicle position information from the previous frame
obtained by the detection method to predict the position of
a vehicle in the current frame by applying a Kalman filter.
Then, the actual vehicle position detected in the current frame
and the current vehicle position estimated using the Kalman
filter are used to calculate the intersection over union (IoU) as
the distance cost. Finally, the Hungarian algorithm is applied
to match vehicles to achieve vehicle tracking.

C. VEHICLE CLASSIFICATION USING CFNN
By using the methods described in Subsections 2.1 and 2.2,
the vehicle position can be determined from the complete
image and the vehicle can be segmented. Next, to collect more
detailed information, such as vehicle type, the segmented
vehicle image is analyzed and the results are obtained after
classification. If information items must be added, the YOLO
model need not be retrained; thus, it has superior extensibility
and reduced training time after category expansion.

To identify relevant vehicle information, two CFNNs,
called CFNN and Vector-CFNN, are proposed, as illustrated

| _
Route

25 x 15 < 18

50 % 30 < 18

Route

FIGURE 4. Network architecture of mYOLOv4-tiny.
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in Fig. 5. In the CFNN model in Fig. 5(a), at the outset, the
convolutional layer is used to extract features from the image,
and the maximum pooling layer is then used to compress
these features to reduce the amount of calculation. The inter-
active stacking method is used to increase the model depth to
complete various shape feature combinations, and a feature
fusion layer is added to reduce the dimensionality of the fea-
ture size and integrate information. Finally, the fused feature
information is sent to the FNN for classification to obtain the
classification result of vehicle type. To solve the problem of
multiple redundant parameters in the traditional CNN model,
this study proposes a Vector-CFNN model (i.e., Fig. 5(b)).
The architecture of this model is similar to that of CENN, and
the traditional convolutional layer is replaced with a two-layer
vector kernel convolutional layer [47] to further reduce the
number of parameters and computational complexity of the
model.

FIGURE 5. Schematic of the proposed network architecture: (a) CFNN
model and (b) Vector-CFNN model.

Next, the feature fusion layer and FNN classifier are
explained in the proposed models.

1) FEATURE FUSION LAYER

In the feature fusion layer, different fusion methods can be
used to integrate different types of feature information to
obtain more useful features. Given a large number of input
features, a suitable fusion method is selected to compress
the features and reduce the dimensionality of the information
between them. For method selection, the features are fused
using either pooling operations or network mapping. Based
on the different operation rules between features, different
fusion results can be obtained, as summarized in Table 1.

In this study, a network mapping fusion method is pro-
posed. This method assigns a weight to the information of
each extracted feature and then integrates these weights to
obtain new features. The calculation method is shown in
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TABLE 1. Different fusion methods.

Fusion methods Operation Description

Maximum operation Calculate each feature

Global pooling and fuse the entire
fusion Average operation feature map (width and
height) separately.
Maximum operation Fusion of all channels
Channel

(depth) between feature

pooling fusion Average operation

maps.
Each element in the
Network mapping Weighted product

operation

feature map uses
fusion different weights for

fusion.

Fig. 6, and the calculation formula is as follows:

fo= Z?:l Wzi % Xi. )]

where f; is the output of the zth fusion, 7 is the total number
of input features, x; is the ith input feature element, and wy; is
the ith input weight used in the zth fusion result.

Weights

Feature map

input output
(Network mapping Fusion)

FIGURE 6. Schematic of the network mapping fusion method.

2) FNNS

FNNs mimic human logical thinking and learning abilities.
In terms of network design, an FNN can be divided into the
input layer, fuzzification layer, rule layer, and defuzzification
layer. The fuzzy set is contained in the fuzzy layer, and its
members can have different degrees of membership on the
interval is [0, 1]; this is known as a membership function.
The fuzzy membership function converts input data to a value
in [0, 1] based on the degree of membership of a specified set,
providing a measure of the degree of similarity of an element
of a fuzzy set. Common fuzzy membership functions include
triangular, trapezoidal, bell-shaped, and Gaussian; among
these, the Gaussian membership function has the highest
accuracy [48]. Therefore, the Gaussian function is adopted as
the membership function in the proposed CFNN. The feature
vectors extracted by convolution operation are classified by
a FNN. The If-then can be used to represent the fuzzy rules
to make fuzzy inferences (Fig. 7).
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Input layer  Fugzzification layver Rule layer  Defuzzification layer Output

FIGURE 7. Schematic of a fuzzy neural network.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed intelligent traffic-
monitoring system, three experiments were performed in
this study. Section 4A describes the evaluation indicators
and the parameter settings of the CFNN model. Section 4B
compares the classification efficiency of various CNN mod-
els and feature fusion methods by using the Beijing Insti-
tute of Technology Vehicle data set (BIT-Vehicle Dataset).
Section 4C applies the public GRAM road-traffic monitoring
(GRAM-RTM) data set to compare the evaluation indicators
between the proposed YOLO-CFNN and the state-of-the-art
object detection methods. Section 4D presents the proposed
intelligent traffic monitoring system that was implemented in
the AGX Xavier embedded platform and applied to provincial
highway 1 (T362) in Kaohsiung, Taiwan for vehicle classifi-
cation, tracking, and counting.

A. EXPERIMENTAL DESIGN
To evaluate the output results of the model, this study used the
category with the highest model output value (top-1) as the
classification result and accuracy as the evaluation indicator.
The calculation formula is as follows:

(TP+1N)

accuracy = 2)
(TP+ FP+1TN + FN)

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively. The mean aver-
age precision (mAP), precision, recall, F-measure (F1), and
detection speed (FPS) were also adopted to verify the effec-
tiveness of various object detection models. The evaluation
indicators can be calculated as follows:

k=n
AP,
MmAP — 21 APk 3)
n
. TP @)
4 = -
precision TP+ FP
TP
recall = —— (@)
TP + FN
2precision X recall
Fl = — (6
precision + recall
frame
FPS = (N
second

Here, n indicates the number of classes, and AP denotes the
(AP) of class k. In the experimental environment, TensorFlow
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TABLE 2. Parameter settings of the proposed CFNN model.

Layer Kernel Number of filters Stride
Size
Input - - -
Convolution_1 3x3 32 2,2
Max_pooling_1 2x2 - 2,2
Convolution 2 3x3 64 1,1
Max_pooling_2 2x2 - 2,2
Convolution 3 3x3 128 1,1
Max_pooling 3 2x2 - 2,2
Convolution_4 3x3 64 1,1
Max_pooling_4 2x2 - 2,2
Feature fusion - 128 -
Fuzzy Rule Layer - 64 -
DeFuzzify Layer - Number of categories -

TABLE 3. Parameter settings of the proposed Vector-CFNN model.

Layer Kernel Number of filters Stride
Size
Input - - -
Convolution_1-1 3x1 32 2,1
Convolution_1-2 1x3 32 1,2
Max_pooling_1 2x2 - 2,2
Convolution_2-1 3x3 64 1,1
Convolution_2-2 1x3 64 1,1
Max_pooling_2 2x2 - 2,2
Convolution_3-1 3x1 128 1,1
Convolution_3-2 1x3 128 1,1
Max_pooling 3 2x2 - 2,2
Convolution_4-1 3x1 64 1,1
Convolution_4-2 1x3 64 1,1
Max_pooling_4 2x2 - 2,2
Feature fusion - 128 -
Fuzzy Rule Layer - 64 -

DeFuzzify Layer - Number of categories -

and Keras were used as the deep learning environment and
developmental tool, respectively, and an RTX2080Ti graphics
card was used to train the network model. The parameter
settings of the proposed CFNN and Vector-CFNN models are
summarized in Tables 2 and 3, respectively.

In the CFNN model, the input image size is set to 224 x
224 x 3, and four sets of convolutional layers and pooling
layers are used to achieve feature extraction. In each convo-
lutional layer uses a 3 x 3 (see Table 1), 3 x 1,or 1 x 3
(see Table 2) convolution kernel to extract features. Each
feature is compressed through the largest pooling layer of
size 2 x 2 to reduce the computational load. In the convo-
lutional layer, 32, 64, and 128 are used as the number of
convolution kernels in the first three layers to extract various
shape feature combinations. Then, the number of convolution
kernels in the last layer is set to 64, and the feature fusion layer

14125



IEEE Access

C.-J. Lin, J.-Y. Jhang: Intelligent Traffic-Monitoring System Based on YOLO and CFNNs

TABLE 4. Number of each vehicle type.

Vehicle . ..
Bus  Minibus  Minivan  Sedan SUV  Truck
types
Quantity 558 883 476 5,921 1,392 823
Training 200 200 200 200 200 200
Testing 200 200 200 200 200 200

FIGURE 8. Vehicle images after segmentation in BIT dataset.

is added to reduce the dimensionality of the features. Here,
by using the proposed network mapping method, a total of
128 features are fused and input into the FNN for classifica-
tion. The output size represents the number of categories of
different vehicles.

B. CLASSIFICATION RESULTS OF BIT-VEHICLE DATASET
The BIT-Vehicle Dataset [49] is a public dataset for vehicle
classification collated by Beijing Institute of Technology. The
dataset contains a total of 9,850 vehicle images, all of which
were captured using 2 cameras at different times and locations
on highways. These images differ in brightness, proportions,
and surface color. The dataset includes six vehicle types:
buses, minibuses, minivans, sedans, sports utility vehicles
(SUVs), and trucks. Each image contains 1 or 2 vehicles.
The vehicle positions marked in advance in the dataset are
segmented (Fig. 8), and the vehicle types and numbers after
segmentation are listed in Table 4.

In the training and testing of the model, according to
the processing method described in [49], 200 vehicles were
randomly selected from each category to be the training and
testing data. In total, 2400 images each were used as the
training and test datasets for the experiment. Ten experiments
were performed using these data sets and the average of the
values obtained in these experiments was used for evalua-
tion. This study used different fusion methods to evaluate
the performance of the proposed CFNN and Vector-CFNN
models. The experimental results are listed in Table 5. The
accuracies of the CFNN and Vector-CFNN models reached
90.20% and 90.45%, respectively, with the network mapping
fusion method. Compared with the global pooling and chan-
nel pooling methods, the proposed network mapping fusion
method has higher accuracy.

Moreover, the two proposed models were compared with
other common models, namely AlexNet, Googl.eNet, VGG-
16, VGG-19, ResNet50, Sparse Laplacian CNN [49], and
PCN-Net [50]. The experimental comparison results are sum-
marized in Table 6. According to the table, the accuracy of the
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TABLE 5. Experimental results of CFNN and Vector-CFNN models with
various feature fusion methods.

Feature fusion methods Worst Best Average
accuracy accuracy  accuracy

Global  Average 85.50% 87.83% 86.61%

Pooling Max 80.67%  89.00% 85.23%

CFNN  Channel Average 81.75%  85.42% 83.69%
Pooling Max 81.75%  85.17% 83.68%

Network Mapping 85.67% 92.00% 90.20%

Global  Average 78.75%  86.17% 82.91%

Vector-  Pooling Max 79.08% 87.25% 84.42%
CFNN  Channel Average 81.50% 85.42% 83.02%
Pooling Max 82.92%  85.58% 84.53%

Network Mapping 89.50% 91.25% 90.45%

TABLE 6. Experimental results of vehicle classification using various
models.

A The amount
verage
Models & of parameters
accuracy .
(10
AlexNet [15] 85.33% 29.99
GooglLeNet [16] 87.08% 3.23
VGG-16 [17] 86.25% 65.08
VGG-19 [17] 86.58% 70.38
ResNet50 [18] 87.08% 21.98
Sparse Laplacian CNN [49] 88.11% 1.38
PCN-Net [50] 88.52% 0.653
CFNN 90.20% 0.315
Proposed method
Vector-CFNN 90.45% 0.28

TABLE 7. Number of vehicles in the training and testing phases using
GRAM-RTM.

Vehicle

Big-truck  Truck Car Van  Motorcycle
types
Quantity 914 805 1063 896 754
Training 712 694 814 670 600
Testing 202 111 249 226 154

two CFNN models is higher than that of other deep learning
classification methods. The accuracy of the two CFNN and
Vector-CFNN models is 0.89% and 1.93% higher, respec-
tively, than that of PCN-Net, and 51.7% and 57.1% fewer
parameters are used in the CFNN and Vector-CFNN models,
respectively, than in PCN-Net.

C. VEHICLE CLASSIFICATION RESULTS ON THE
GRAM-RTM DATA SET

The GRAM-RTM (M-30) data set [51] was used to compare
the performance of the proposed YOLO-CFNN and state-of-
the-art object detection methods, including RetinaNet, SSD,
YOLOv4, and YOLOV4 tiny. The M30 contains 7520 frames
with a resolution of 800 x 480 at 30 fps recorded using a
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TABLE 8. Vehicle classification results for the proposed YOLO-CFNN with various object detection methods.

Method Backbone  Big-truck  Truck Car Van Motorcycle  Precision ~ Recall Fl1 mAP FPS
Retinanet ResNet50 98.99%  97.53%  94.44%  93.14% 92.21% 98.45%  54.48%  351%  95.26% 16
SSD VGG16 99.61%  98.85%  98.79%  98.93% 97.55% 97.54%  91.49% 94.11% 98.15% 25
YOLOv4 CSPNet 100% 99.79%  99.81%  99.83% 99.54% 97.46%  97.75%  97.6%  99.79% 44
YOLOV4 tiny CSPNet 99.71% 99.8% 89.39%  96.93% 66.01% 96.975 85.1%  90.64%  90.37% 291
YOLO-CFNN CSPNet 100% 100% 98.8% 100% 98.44% 99.71 99.51%  99.6%  99.45% 73
YOLO-VCFNN CSPNet 100% 100% 98.77% 100% 98.44% 99.4% 99.49%  99.44%  99.44% 78

TABLE 9. Specifications of the NVIDIA Jetson AGX Xavier platform.

Specification Content

GPU 512-core NVIDIA Volta GPU with Tensor Cores
CPU 8-core NVIDIA Carmel ARM 64-bit CPU
Memory 16GB LPDDR4x 2133MHz
Storage 32GB eMMC 5.1
Size 87 mm x 100 mm

Nikon Coolpix L20 camera. Vehicle types include large truck,
truck, car, van, and motorcycle. The ratio of training data to
test data was 8:2. That is, 80% of the data (6016 frames) were
used for training and 20% of the data (1504 frames) were used
for testing. The number of vehicles in the training and testing
phases are presented in Table 7. First, the vehicle object detec-
tion model (mYOLOv4-tiny) was trained, followed by the
classification models (CFNN and Vector-CENN). The vehicle
classification results are listed in Table 8, which reveals that
the proposed YOLO-CFNN, YOLO-VCFNN, and YOLOv4
yield a mAP as high as 99%. The proposed YOLO-CFNN
and YOLO-VCFENN methods had a higher F1 score than other
models.

The traditional YOLOv4-tiny model had a higher detection
speed (300 FPS) but lower F1 and mAP than other mod-
els. However, the proposed two-stage vehicle classification
models (YOLO-CFNN and YOLO-VCENN) achieved a high
score for the evaluation indicators and a detection speed of
over 70 FPS. Thus, the proposed YOLO-CFNN and YOLO-
VCFNN models can be employed for real-time vehicle clas-
sification applications.

D. APPLICATION TO PROVINCIAL HIGHWAY 1 (T362) IN
KAOHSIUNG

To verify the effectiveness of the system in an actual environ-
ment, the proposed intelligent traffic-monitoring system was
applied to roads in Taiwan, and its architecture is depicted
in Fig. 9. In this architecture, each monitored road section
houses a camera and an AGX Xavier embedded computing
platform. The specifications of the AGX Xavier platform
are listed in Table 9. Real-time images are processed using
the AGX Xavier platform to obtain detailed traffic data, and
the data are sent to the road monitoring center for analysis
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FIGURE 9. Intelligent traffic-monitoring system in Taiwan.

through the wireless network. Therefore, three functions are
achieved on the road monitored for testing, namely vehicle
classification, and traffic flow calculation. Moreover, a T362
vehicle data set, which contained vehicle type, is established
for Kaohsiung, Taiwan to verify the performance of the pro-
posed model.

The number of vehicle types image data points in the T362
vehicle dataset was 1,815. The images were captured from
different lanes and at different times. Therefore, the captured
images were illuminated by different light sources, and some
vehicles were blocked, as illustrated in Fig. 10. The T362
vehicle dataset has the following six vehicle types: buses,
trucks, cars, motorcycles, and trailers. The numbers of each
vehicle type are listed in Table 10. In terms of model training
and testing, this study used 80% of the collected vehicle type
dataset as the training data and 20% as the testing data. The
input image size of the classification model was uniformly
adjusted to 224 x 224 x 3, and 10 experimental runs were
performed to ensure the stability of the experiment.

1) CLASSIFICATION RESULTS FOR VEHICLE TYPE

In the evaluation conducted using the vehicle type dataset, the
experimental results obtained using CNN and Vector-CNN
with different fusion methods are summarized in Table 11.
The CFNN and Vector-CFNN models with the proposed
network mapping fusion method exhibited the best accuracy
values of 94.68% and 95.28%, respectively. The proposed
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FIGURE 10. Samples of collected vehicle images in the T362 vehicle
dataset.

TABLE 10. Numbers of each vehicle type.

Vehicle .
Bus Truck Car  Motorcycle Trailer
type
Quantity 109 435 572 139 88
Training 87 348 457 111 70
Testing 22 87 115 28 18

TABLE 11. Vehicle type classification results obtained using CFNN and
Vector-CFNN with different fusion methods.

. Worst Best Average

Feature fusion methods
accuracy ~ accuracy — accuracy
Global Average  85.50% 87.83% 86.61%
Pooling Max 80.67% 89.00% 85.23%
CFNN Channel Average  81.75% 85.42% 83.69%
Pooling Max 81.75% 85.17% 83.68%
Network Mapping 85.67% 92.00% 90.20%
Global Average  78.75% 86.17% 82.91%
Vector- Pooling Max 79.08% 87.25% 84.42%
CFNN Channel Average  81.50% 85.42% 83.02%
Pooling Max 82.92% 85.58% 84.53%
Network Mapping 89.50% 91.25% 90.45%

TABLE 12. Vehicle type classification results obtained using various
models.

The
amount
Models Worst Best Average of
accuracy ~ accuracy ~ accuracy ~ parame
ters
(10%
AlexNet 92.60% 94.79% 93.56% 46.7
VGG-16 90.41% 93.15% 91.97% 134.2
MobileNet 77.53% 92.32% 85.61% 42
LeNet 83.01% 89.86% 87.73% 5.2
Propos  CFNN 93.15% 95.89% 94.68% 0.5
ed Vector-
94.24% 96.16% 95.28% 0.5
method CFNN

network mapping method is superior to the other fusion
methods in vehicle classification.

The CFNN and Vector-CFNN models proposed in this
study were compared with a few common deep learning
methods, and the experimental results are listed in Table 12.
The accuracy of the proposed models with the network
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(a) road traffic at 07:00

(c) road traffic in rainy day

FIGURE 11. Three actual road traffic videos.

FIGURE 13. The visual vehicle detection and counting.

mapping fusion method was superior to that of the other
classification methods. The accuracy of the proposed models
was 1.83%, 3.59%, 8.6%, and 11.29% higher than the accu-
racy of AlexNet, VGG16, LeNet, and MoblieNet, respec-
tively. In terms of the number of parameters, the proposed
CFNN and Vector-CFNN models had the lowest parameter
value of approximately 0.5 M. In addition, compared with
the lightweight MobileNet, LeNet, and AlexNet, the two
proposed CFNN models reduced the number of parameters
by up to 86.8%, 89.4%, and 98.8%, respectively. Thus, the
proposed models achieve favorable classification and offer a
competitive advantage when few parameters are used.

2) COUNTING RESULTS OF ACTUAL ROAD TRAFFIC FLOW
Finally, the vehicle counting method used in this study
was evaluated and verified. In this experiment, the same
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FIGURE 14. Precision vs. recall curves of the various detection methods by using actual road traffic videos at 7:00.
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FIGURE 15. Precision versus recall curves of the various detection methods by using actual road traffic videos at 17:00.

traffic scene was used for verification. Three actual road
traffic videos were used to evaluate the proposed vehicle
counting method. Each video was 5 min long, and the
two selected videos were recorded at 07:00 and 17:00.
The remaining videos were taken in rainy conditions.
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Still images from the three videos are displayed
in Fig. 11.

In the evaluation, the proposed vehicle flow counting result
was divided by the manual counting result to determine the

accuracy of vehicle counting. In addition, different occlusion
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FIGURE 16. Precision versus recall curves of the various detection methods using actual road traffic videos for rainy conditions.

TABLE 13. Traffic flow counting results obtained using actual road traffic videos at 7:00.

Bus Truck Car Motorcyc Trailer Accuracy
Method le Precision Recall F1 mAP FPS of flow
counting
Retinanet 99.17% 90.36% 97.04% 92.31% 91.67% 84.83% 68.94% 76.06% 94.11% 8 —
SSD 99.76% 89.85% 98.29% 85.8% 100% 90.39% 82.54% 86.28% 94.74% 12 —
YOLOv4 99.35% 91.42% 98.13% 90.77% 64.44% 84.29% 86.86% 85.55% 88.82% 22 —
YOLOv4 99.29% 88.87% 94.29% 65.49% 100% 85.33% 80.93% 83.07% 89.59% 145 —
tiny
YOLO- 91.67% 90.91% 96.68% 94.74% 100% 96.33% 94.31% 99.6% 95.3% 33 97.05%
CFNN (33/34)
YOLO- 91.67% 96.1% 89.09% 94.18% 100% 91.13% 95.35% 99.44% 93.19% 36 97.05%
VCFNN (33/34)

conditions were included in the real road scene as presented
in Fig. 12. As shown in Fig. 12, a larger bus blocks a car,
resulting in a missed count. The visual vehicle detection and
counting are shown in Fig. 13. The text in the first half of
the green label in Fig. 13 represents the type of vehicle and
the text in the second half represents the number of counts.
When a vehicle enters the virtual detection zone, the proposed
intelligent traffic-monitoring system immediately performs
vehicle classification and counting.

The traffic flow counting results of each video are summa-
rized in Tables 13—15. The precision versus recall curves of
the proposed YOLO-CFNN and YOLO-VCFNN models are
shown in Figs. 14—-16. As shown in Table 13, the mAP of Reti-
naNet and SSD was 94%, but the F1 scores were only 76.06%
and 86.28%, respectively. The mAP and F1 score of YOLOv4
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were 88.82% and 85.55%, respectively. However, the mAP
for trailers was only 64.44%. Although YOLOv4-tiny has a
detection speed of 145 FPS, the motorcycle detection per-
formance was poor (65.49%). The proposed YOLO-CFNN
and YOLO-VCFENN are superior to other methods in terms
of F1 score (99%). After introducing the counting method
into CFNN and VCFENN, FPS can be maintained above 30 to
achieve real-time detection. The two proposed methods also
had an accuracy of 97.05% in traffic flow vehicle counting.
For the afternoon road traffic video (Table 14), the mAP
and F1 of YOLO-CFNN and YOLO-VCFNN were higher
than those of other methods. The accuracy of flow count-
ing was 98.5%. For the rain video (Table 15), except for
the SSD method, the mAP of the motorcycle detection was
lower because images captured in rainy conditions are blurry,

VOLUME 10, 2022



C.-J. Lin, J.-Y. Jhang: Intelligent Traffic-Monitoring System Based on YOLO and CFNNs

IEEE Access

TABLE 14. Traffic flow counting results obtained using actual road traffic videos at 17:00.

Bus Truck Car Motorcyc Trailer Accuracy
Method le Precision Recall Fl1 mAP FPS of flow
counting
Retinanet 100% 75.67% 96.22% 99.06% 81.48% 86.97% 71.15% 76.06% 78.26% 7 —
SSD 100% 87.43% 94.8% 100% 85.8% 91.75% 83.39% 86.28% 87.37% 13 —
YOLOv4 100% 88.89% 96.85% 100% 72.06% 89.53% 89.66% 85.55% 89.59% 21 —
YOLOv4 100% 75.21% 96.18% 92.2% 77.04% 90.16% 84.7% 83.07% 87.34% 148 —
tiny
YOLO- 90% 98.21% 100% 95.24% 100% 97.5% 97.04% 99.6% 97.26% 32 98.5%
CFNN (66/67)
YOLO- 100% 98.21% 92.77% 95.24% 100% 90.77% 97.6% 99.44% 94.06% 35 98.5%
VCFNN (66/67)
TABLE 15. Traffic flow counting results obtained using actual road traffic videos for rainy conditions.
Bus Truck Car Motorcyc Trailer Accuracy
Method le Precision Recall Fl1 mAP FPS of flow
counting
Retinanet 100% 83.57% 96.28% 68.34% 78.68% 83.47% 69.47% 75.82% 85.38% 7 —
SSD 99.93% 82.74% 98.55% 97.62% 82.12% 87.91% 86.26% 87.07% 92.19% 10 —
YOLOv4 100% 86.49% 98.7% 68.3% 83.33% 85.76% 83.73% 84.73% 87.36% 18 —
YOLOv4 99.45% 87.96% 97.66% 66.67% 67.53% 88.87% 81.17% 84.84% 83.85% 140 —
tiny
YOLO- 94.44% 100% 94.73% 75% 100% 97.63% 93.88% 95.71% 92.83% 30 100%
CFNN (47/47)
YOLO- 88.89% 100% 96.7% 75% 100% 97.83% 91.66% 94.64% 92.12% 33 100%
VCEFNN (47/47)

affecting the judgment results. However, the mAP and F1 of
the two proposed methods were higher than 90%, and the
counting accuracy was 100%. These scenarios reveal that the
proposed intelligent traffic-monitoring system is suitable for
real-time vehicle counting in actual environments and has a
high counting accuracy.

V. CONCLUSION

In this study, an intelligent traffic-monitoring system was
proposed to calculate traffic flows and classify vehicle types.
The major contributions of this study are as follows:

« A novel intelligent traffic-monitoring system combin-
ing a YOLOv4-tiny model and counting method was
proposed for traffic volume statistics and vehicle type
classification.

o The proposed CFNN and Vector-CFNN were designed
by introducing the fusion method and FNN, which
can not only effectively reduce the number of network
parameters, but also enhance the classification accuracy.

o The proposed network mapping fusion method was
superior to the commonly used pooling method, and it
could effectively integrate image features and improve
the classification accuracy.
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« Compared with the current state-of-the-art object detec-
tion methods (Retinanet, SSD, YOLOv4, and YOLOv4
tiny), the proposed YOLO-CFNN and YOLO-VCFNN
have a high mAP rate, accurate counting accuracy,
and real-time vehicle counting and classification ability
(over 30FPS).

The experimental results indicated that the performance
of the proposed CFNN and Vector-CFNN models was supe-
rior to that of common deep learning models. On the BIT
dataset, compared with the pooling method, the proposed
network mapping fusion method improved the recognition
accuracy by 3.59%-5.92%. In addition, compared with the
PCN-Net model, the proposed CFNN and Vector-CFNN
models improved the accuracy by 1.93% and reduced the
number of parameters by 57.1%. On the GRAM-RTM data
set, the mAP and F1 of the two proposed vehicle classifi-
cation methods were 99%, higher than those of other meth-
ods. In addition, among the FPS indicators, the proposed
method was 1.65 times faster than the traditional YOLOv4.
On the T362 vehicle type dataset, compared with the gen-
eral pooling methods, the accuracy of the proposed network
mapping fusion method was 2.3%—5.36% higher. In addi-
tion, compared with the AlexNet model, the accuracy of the
proposed CFNN and Vector-CFNN models was 1.19% and
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1.83% higher, respectively, and the number of parameters
decreased by 98.8%. In three actual road traffic scenarios,
the proposed YOLO-CFNN and YOLO-VCEFNN methods
yielded a high F1 score for vehicle classification and high
accuracy for vehicle counting. In summary, the CFNN and
Vector-CFNN models proposed in this study not only have
favorable vehicle classification effects but also have fewer
parameters relative to other models. Therefore, the proposed
models are suitable for information analysis in environments
with limited hardware performance.

In terms of the extensibility of the proposed models, many
factors that affect the machining accuracy of machine tools
in intelligent manufacturing have been identified, such as
temperature and tool wear. Therefore, developing an accurate
model of the effects of these factors is crucial. In future stud-
ies, the proposed CFNN and Vector-CFNN models and the
network mapping fusion method will be applied for modeling
in intelligent manufacturing.
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