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ABSTRACT An accurate frequency estimation method of multi-component sinusoidal signal in additive
white Gaussian noise (AWGN) is proposed. The algorithm is implemented in the frequency domain and
based on discrete Fourier transform (DFT). The maximum DFT spectral line and two Discrete-Time Fourier
Transform (DTFT) samples located on the same side of the maximum DFT spectral line are used to estimate
the frequency of a sinusoidal component. And this algorithm is utilized in both the coarse estimation and
the fine estimation. Simulation results show that compared with the competing estimators, the presented
method is closer to the Cramer-Rao lower bound (CRLB). And it is almost independent of the frequency
displacement. The numerical complexity of the presented method is similar with the competing DFT-based
algorithms.

INDEX TERMS DFT, frequency estimation, multiple sinusoids, CRLB.

I. INTRODUCTION
In the area of digital signal processing, accurate and effective
estimation of multi-component sinusoidal frequencies in the
background of AWGN is a classic and important topic. Multi-
component sinusoidal frequency estimation has been widely
used in signal processing, system identification, power
system, communications, measurement and radar systems
[1]–[4]. For example, the frequency modulated continuous
wave (FMCW) radar system transmits a continuous fre-
quency modulated millimeter wave through the antenna,
receives the reflected signal of the target, and estimates the
frequency of multiple sinusoidal sums to realize the ranging
and velocity measurement [5].

Frequency estimator of single-tone sinusoid is the basis
of estimating the frequencies of multiple sinusoids. Many
researchers have proposed their estimators of single-tone
sinusoid in the background of AWGN. These estimators can
be categorized into time domain estimators [6]–[11] and
frequency domain estimators [12]–[24]. Time domain estim-
ators include autocorrelationmethods [6], [7], maximum like-
lyhood methods [8], [9] and least square methods [10], [11].
The three essential factors of evaluating frequency estima-
tors are the estimation accuracy, the estimation range and
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the computation amount. Time domain estimators are usu-
ally accurate, but they need large amount of computation.
As a result, they are inappropriate to deal with problems
in timely manner in some application areas. The frequency
domain methods are mainly based on fast Fourier transform
(FFT), which have relatively low computational complex-
ity and are appropriate for real-time operations. Therefore,
they have been widely used. The three DFT spectral lines
interpolation estimator (TDSL estimator) [12] is a general
method which uses the largest DFT sample and two DTFT
samples arbitrarily located in the DFT main lobe. To reduce
the influence of spectrum leakage of interference signal on
the desired frequency, the TDSL estimator with rectangular
window is extended to the case of maximum sidelobe decay
window [16]. In [17], three DFT samples near the maximum
DFT sample are calculated, and parabolic interpolation of the
DTFT peak is utilized to estimate the frequency. In [23], the
Aboutanios and Mulgrew algorithm [14] is generalized, and
the frequency estimate is obtained iteratively by interpolation
on the shifted DFT coefficients.

Frequency estimators of multiple sinusoids have been pro-
posed by researchers. MUSIC estimator [25] and ESPRIT
estimator [26] are subspace-based parametric methods.
Although they can reach the CRLB when the signal-to-
noise ratio (SNR) is not low, they have relatively higher
computational complexity [27]. In [27], the coarse-to-fine

40230
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3880-1386
https://orcid.org/0000-0003-4654-6511
https://orcid.org/0000-0002-3219-5303
https://orcid.org/0000-0003-3607-0003


N. Liu et al.: DFT-Based Frequency Estimation of Multiple Sinusoids

HAQSE (CFH) algorithm is extended to the case of multi-
component complex sinusoids. In [28], the detection and esti-
mation of multiple sinusoidal frequencies are implemented
by the Djukanovic algorithm in the frequency domain [28].
In both the algorithms of [27] and [28], the first step is to
detect the strongest spectrum of the signal by FFT for the
multi-component complex sinusoidal signal. The second step
is to eliminate the strongest component from the total signal.
And then iterative algorithms are adopted until there are not
peaks of sinusoids in the remaining signal spectrum. In [29],
an efficient interpolation strategy is used to estimate each
component of the multiple sinusoids in turn by combining
the iterative leakage subtraction scheme.

In this paper, an algorithm for frequency estimation of
multi-component sinusoidal signal in the background of
AWGN is proposed. A three spectral line interpolation esti-
mator (TSLI estimator) is proposed to estimate the frequency
of a single component. The TSLI estimator utilizes the max-
imum DFT sample and two DTFT samples located on the
same side of the maximum DFT sample to perform the
frequency estimation. The presented estimator for multiple
sinusoids is carried out in the frequency domain and based on
the TSLI estimator. Firstly, TSLI estimator is used to estimate
the frequency of the strongest component. Then the strongest
component is removed from the total signal. At last, iterative
methods are used until the last component is estimated. In this
way, the coarse frequency estimates are obtained. The fine
frequency estimation is carried out which is also based on the
TSLI algorithm. As indicated by the simulation results, com-
pared with the competing estimators, the presented estimator
is closer to the CRLB. It is independent of the frequency
displacement except when the frequency displacement is very
small. The numerical complexity of the presented method is
similar with the competing DFT-based algorithms.

The rest of the paper is organized as follows. Section II
describes the proposed frequency estimation method.
In Section III, the proposed estimator is contrasted with
the existing estimators and the CRLB. Finally, Section IV
concludes this paper.

II. PRESENTED ALGORITHM
In this section, we present a frequency estimator of multi-
component sinusoidal signal in the background of AWGN.
A three spectral line interpolation (TSLI) estimator is pro-
posed to estimate the frequency of a single sinusoidal compo-
nent. The presented estimator of multi-component sinusoidal
signal is based on the TSLI estimator and includes two main
steps: coarse estimation and fine estimation.

The multiple sinusoidal signal is

x(n) = sK (n)+ w(n), n = 0, 1, . . . ,N−1 (1)

sK (n) =
K∑
k=1

Ak exp [j(2π fkn/fs+φk )], n=0, 1, . . . ,N−1

(2)

where sK (n) is the noise-free multiple sinusoids and w (n)
is AWGN with zero mean and variance σ 2. N is the

signal length, and the total number of sinusoidal components
is represented by K . Ak , fk and φk denote the frequency,
amplitude and initial phase of the k-th sinusoidal component,
respectively. fs is the sampling frequency. The frequency of
each component can be expressed as

fk = (mk + δk) ·1f (3)

where mk is the index number of the maximum FFT spectral
line corresponding to the k-th component, δk ∈ (−0.5, 0.5] is
the fractional frequency deviation from fk . 1f = fs/N is the
FFT frequency resolution.

A. THREE SPECTRAL LINE INTERPOLATION METHOD
A single-tone sinusoid frequency estimator based on three
DFT samples interpolation is proposed. Firstly, FFT is per-
formed on the sampled sinusoidal signal, and the rough fre-
quency estimation is carried out by searching the position of
the discrete spectral line with the maximum amplitude. Then,
the precise frequency estimate is acquired by interpolating the
maximum FFT sample and two DTFT samples on the same
side of the maximum FFT sample.

The discrete Fourier transform of a single-tone sinusoid in
a noiseless case is as follows:

S [m+ k] =
N−1∑
n=0

Aej(2π fn/fs+φ)e−j2πnk/N

= e jφe jπ
N−1
N (δ−k) A sin [π (δ − k)]

sin [π (δ − k)/N ]
,

k = 0, 1, . . . . . . ,N − 1 (4)

The rough frequency estimation is carried out by searching
the discrete frequency index of the maximum DFT spectral
line which is denoted as m.
Hereinafter, S [m+ k] is uniformly denoted as Sk for sim-

plicity. The spectral line with the largest amplitude is denoted
as S0, and its expression can be written as

S0 = e j[φ+πδ(1−1/N )]
·
A sin(πδ)
sin (πδ/N )

(5)

Then the precise frequency estimate is obtained by interpo-
lating the maximum FFT spectral line and twoDTFT samples
located on the same side of the maximum spectral line. At the
location f = (m + q)1f , the DTFT sample value of the
sampled sinusoid is

Sq = ej[φ−π (q−δ)(1−1/N )]
·
A sin (π (q− δ))
sin (π (q− δ)/N )

(6)

According to (5) and (6), the absolute values of S0, S0.1
and S0.2 are expressed as follows:

|S0| =
A sin(πδ)
sin (πδ/N )

(7)

|S0.1| =
A sin (π (0.1− δ))
sin (π (0.1− δ)/N )

(8)

|S0.2| =
A sin (π (0.2− δ))
sin (π (0.2− δ)/N )

(9)
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From (7)-(9), we can get
|S0.1|
|S0|
=

sin(0.1π ) cot(πδ)− cos(0.1π )
sin(0.1π/N ) cot(πδ/N )− cos(0.1π/N )

(10)

|S0.2|
|S0|
=

sin(0.2π ) cot(πδ)− cos(0.2π )
sin(0.2π/N ) cot(πδ/N )− cos(0.2π/N )

(11)

After some algebraic operations, we have

|S0.1| sin(0.1π/N ) cot(πδ/N )− |S0.1| cos(0.1π/N )

= |S0| sin(0.1π ) cot(πδ)− |S0| cos(0.1π ) (12)

|S0.2| sin(0.2π/N ) cot(πδ/N )− |S0.2| cos(0.2π/N )

= |S0| sin(0.2π ) cot(πδ)− |S0| cos(0.2π ) (13)

From (12) and (13), we have, (14), as shown at the bottom
of the page.

In the above derivation process, we utilize the two DTFT
samples S0.1 and S0.2 which are on the right of the maximum
spectral line S0. We can also use the two DTFT samples S−0.1
and S−0.2 which are on the left of S0. After similar derivation
process, we have, (15), as shown at the bottom of the page.

The steps of the presented TSLI estimator are shown in
Table 1. To improve the estimation performance, the algo-
rithm in [12] (i = 1) is utilized to obtain a preliminary
estimate δ̂1 of the fractional frequency deviation. And with
this preliminary estimate δ̂1, we can decide which estimation
formula ((14) or (15)) should be used to get the final estimate
of the single-component sinusoid.

B. COARSE FREQUENCY ESTIMATION
The proposed estimation method for multiple sinusoids starts
from the strongest component. The coarse frequency estimate
of the strongest component is obtained by TSLI algorithm and
denoted as f ck (c stands for the coarse estimate).
Then the strongest component is removed from the total

signal x (n) by the methods below:
(1) Firstly, x (n) is moved through negative frequency shift

to low frequency band, and the result is

xF (n) = x(n)e−j2πnf
c
k /fs (16)

(2) The amplitude of the strongest component is estimate
as follows

Âk = xF (n) (17)

where xF (n) expresses the mean value of xF (n).
(3) Eliminate the strongest component from x(n) as

follows

x∗(n) = x(n)− Âkej2πnf
c
k /fs (18)

TABLE 1. The steps of TSLI algorithm.

After the first step, the strongest components will be con-
verted to the low frequency band. In the third step, most
energy of the strongest component is eliminated and x∗(n)
is obtained.

By repeating the above three steps, the proposed method
can coarsely estimate all frequencies and amplitudes until
each frequency in the total signal is estimated. When the
frequency of the previous component is estimated and elimi-
nated, the bias in the estimation gradually decreases. There-
fore, the estimation performance of the last component is
better than that of the other components. In order to reduce
the bias effect, we suggest that all parameters of all the
K components should be coarsely estimated by the coarse
estimation method.

C. FINE FREQUENCY ESTIMATION
Inspired by [27] and [28], the fine frequency estimation is per-
formed in this part. By eliminating all the coarsely estimated
single-component sinusoids except the k-th com-ponent from
the total signal, the fine estimate of the k-th component can
be acquired as

x̂k (n) = x(n)−
K∑
m=1
m6=k

Âmej2πnf̂m/fs (19)

δ̂=
N
π

tan−1
{

|S0.2| sin( π5N ) sin(
π
10 )− |S0.1| sin(

π
10N ) sin(

π
5 )

|S0| sin( π10 )+ |S0.2| cos(
π
5N ) sin(

π
10 )− |S0.1| cos(

π
10N ) sin(

π
5 )

}
(14)

δ̂ =
N
π

tan−1
{

|S−0.2| sin( π5N ) sin(
π
10 )− |S−0.1| sin(

π
10N ) sin(

π
5 )

− |S0| sin( π10 )− |S−0.2| cos(
π
5N ) sin(

π
10 )+ |S−0.1| cos(

π
10N ) sin(

π
5 )

}
(15)
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where Âm is the amplitude of each component in the coarse
estimation. Then, the fine frequency estimate of the k-th
component is obtained by applying the TSLI algorithm with
the following formula

f̂ fk = TSLI
{
x̂k (n)

}
(20)

In order to accurately estimate the frequency values
of all the components, (19)-(20) are performed on all
K components.

In the fine estimation process, all the other single-
tone components except the k-th component are removed.
Therefore, the influence of the bias effect caused by other
components can be minimized. And a better frequency
estimate will be produced. Table 2 describes the steps of
the proposed frequency estimator for multiple sinusoids.
Steps 1-6 describe the coarse frequency estimation stage. And
steps 7-11 describe the fine estimation.

TABLE 2. The steps of the presented algorithm.

III. SIMULATION RESULTS
In this section, the performance of the presented estimator
is evaluated by computer simulations and compared with the
existing estimators and the CRLB. In all the experiments of
this section, the initial phase of each sinusoid is random-ly
selected in the range of (-π , π ), and the sampling frequen-cy
fs = N . The signal length is N = 256. The SNR of the k-th
sinusoidal component is computed by the following formula

SNRk =
A2k
σ 2 (21)

In addition, the CRLB of frequency estimation for multi-
component complex sinusoidal signal is expressed as [30]

var
(
f̂k
)
≥

3f 2s
2π2SNRkN

(
N 2 − 1

) (22)

FIGURE 1. MSE of bi-component sinusoidal signal with respect to SNR
(N = 256, MSE of f1).

We consider the case of bi-component sinusoid at first. The
frequencies are selected as f1 = 50Hz and f2 = 55.7Hz.
The amplitudes are A1 = 1 and A2 = 0.9. Fig.1 and
Fig.2 show the mean square error (MSE) of f1 and f2 respec-
tively. The presented algorithm is compared with CFH algo-
rithm [27], Djukanovic algorithm [28] and TDSL windowing
algorithm [16]. The SNR varies from −15dB to 30dB. For
different values of SNR, 20,000 runs are considered. In Fig.1,
the enlarged figure demonstrates that the presented algorithm
is closer to the CRLB than CFH algorithm and Djukanovic
algorithm. And the MSE of TDSL windowing algorithm is
larger than that of the other three algorithms. That is due
to the fact that though TDSL windowing algorithm reduces
the impact of spectrum leakage from other components with
time-domain windowing, it can’t eliminate the effect of spec-
trum leakage completely. The accuracy of the presented esti-
mator is the highest among all the algorithms. And the TDSL
windowing algorithm is characterized by a deviation from the
CRLB starting at SNR = 15dB. In Fig.2, similar conclusions
can be drawn.

Then we consider a bi-component complex sinusoid with
frequencies f1 and f2 = f1+1fd , where1fd is the frequency
displacement between the two signal components. Fig.3
shows the MSE of different algorithms versus 1fd which
is uniformly distributed from 1Hz to 64Hz with a step of
1Hz. The frequency f1 is randomly selected from 0 to 128Hz.
In addition, the amplitudes are A1 = 1 and A2 = 0.9, and
N = 256, SNR1 = 15dB. For each value of1fd , 20,000 runs
are considered.

As illustrated in Fig.3, the MSE of the TDSL windowing
method is about 4dB higher than that of the other algorithms.
And it can be observed from the enlarged figure that the
presented estimator is closer to CRLB than CFHmethod [27]
and Djukanovic method [28]. Therefore, the accuracy of the
presented estimator is the highest among all the algorithms.
When 1fd ≤ 2Hz, the MSE of all algorithms are very
large. This is because when f1 and f2 are very close, the main
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FIGURE 2. MSE of bi-component sinusoidal signal with respect to SNR
(N = 256, MSE of f2).

FIGURE 3. MSE of bi-component sinusoidal signal with respect to the
frequency displacement 1fd (N = 256, MSE of f1).

lobes of the two components overlap, and all the estimators
based on DFT interpolation cannot estimate the frequency
accurately. When 1fd > 3Hz, all the curves tend to be
stable. Therefore, the performance of the presented estimator
is independent of 1fd except when 1fd is very small.
Next, we consider a five-component signal. The freque-

ncies are selected as f1 = 10.12Hz, f2 = 25.33Hz, f3 =
50.27Hz, f4 = 90.38Hz and f5 = 109.09Hz, and the
corresponding amplitudes are A1 = 1, A2 = 0.85, A3 =
0.58, A4 = 0.69 and A5 = 0.43. The number of samples
N = 256. Fig.4 shows the spectrum of this five-component
signal in AWGN and SNR1 = 10dB. Fig.5 and Fig.6 show the
MSE of the presented estimator compared with CFH algo-
rithm [27], Djukanovic algorithm [28] and TDSL windowing
algorithm [16] calculated at variable SNR. For different values
of SNR, 20,000 runs are considered.
In Fig.5, it can be observed from the enlarged figure that

the presented estimator is closer to the CRLB than CFH
algorithm and Djukanovic algorithm. And it is obvious that
the MSE of TDSL windowing algorithm is larger than that of
the other three algorithms. That is due to the fact that though

FIGURE 4. Spectrum of five-component signal embedded in AWGN
(N = 256, SNR1 = 10dB).

FIGURE 5. MSE of five-component sinusoidal signal with respect to SNR
(N = 256, MSE of f1).

TDSL windowing algorithm reduces the impact of spectrum
leakage from other components with time-domain windowin-
g, it can’t eliminate the effect of spectrum leakage completely.
Therefore, the accuracy of the presented estimator is the
highest among all the algorithms. In Fig.6, similar conclu-
sions can be drawn.

The numerical complexity of different algorithms is shown
in Table 3. When performing complexity analysis for all
algorithms, we ignore all complexity items with O (1)
and complexity items which are independent of N . For
K-component signal, the presented algorithm needs K TSLI
operations to coarsely estimate theK frequencies. TSLI algo-
rithm requires O

(
N log2 N

)
complex operations. In coarse

estimation, the presented estimator needs KN -point FFT
calculation, K FFT maximum search, K TSLI algorithm
calculation and K sinusoidal removal from the considered
signal (formula (18)). Therefore, the coarse estimation needs
O
(
KN log2 N

)
complex operations. Similarly, the fine esti-

mation needs O
(
KN log2 N

)
complex operations. From the

above discussion, we can conclude that the total amount of
calculation complexity is O

(
KN log2 N

)
. This is the same as
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FIGURE 6. MSE of five-component sinusoidal signal with respect to SNR
(N = 256, MSE of f5).

TABLE 3. Numerical complexity of different algorithms.

CFH algorithm [27] and Djukanovic algorithm [28]. There-
fore, compared with the other methods, the presented esti-
mator has relatively similar computation cost, but achieves
more accurate frequency estimation. Though the computa-
tional complexity of TDSL windowing algorithm [16] is
O
(
N log2 N

)
which is the lowest among all the methods, the

MSE of TDSL windowing method is the largest according to
the simulation results of Fig.1, Fig.2, Fig.3, Fig.5 and Fig.6.

IV. CONCLUSION
Frequency estimation of multi-component sinusoidal signal
has a wide range of applications. In this paper, an estimator
of multiple sinusoids based on DFT is proposed. Firstly, the
spectrum of the strongest component is estimated by FFT.
Then, the strongest component is removed from the total
signal and the iterative algorithm is used until the coarse esti-
mate of the last component is obtained. Finally, all the other
components except for the component to be finely estimated
are subtracted from the total signal, and the fine estimation
is performed by the three DFT spectral line interpolation
algorithm. Simulation experiments are conducted and the
results show that the presented estimator reaches CRLBunder
the condition of variable SNR. Its performance is better than
that of CFH algorithm, Djukano-vic algorithm and TDSL
windowing algorithm. And the proposed algorithm is almost
independent of the frequency displacement. The complex-
ity is similar to Djukanovic algorithm and CFH algorithm.
Therefore, the presented estimator is suitable for estimating
the frequencies of multiple sinusoids and can be used in
practical applications.
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