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Abstract—Benefiting from free labeling pixel-level samples,
weakly supervised semantic segmentation (WSSS) is making
progress in automatically extracting building from high-resolution
(HR) remote sensing (RS) imagery. For WSSS methods, generating
high-quality pseudomasks is crucial for accurate building extrac-
tion. To improve the performance of generating pseudomasks by
using image-level labels, this article proposes a weakly supervised
building extraction method by combining adversarial climbing and
gated convolution. The proposed method optimizes class activation
maps (CAMs) by using adversarial climbing strategy, generates
accurate class boundary maps by introducing a gated convolution
module, and further refines building pseudomasks by fusing pair-
ing semantic affinities and CAMs with a random walk strategy.
Experimental results on three datasets—two ISPRS datasets and a
self-annotated dataset—demonstrate that the proposed approach
outperformed SOTA WSSS methods, leading to improvement of
building extraction from HR RS imager. This article provides
a new approach for optimizing pseudomasks generation, and a
methodological reference for the applications of weakly supervised
on RS images.

Index Terms—Adversarial climbing (AC), building extraction,
gated convolution, high-resolution (HR) remote sensing (RS)
imagery, weakly supervised semantic segmentation (WSSS).
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1. INTRODUCTION

UTOMATIC building extraction plays an important role

in urban planning [1], building change detection [2], [3],
geographic data mapping, and updating [4]. With the increasing
amount of high-resolution (HR) remote sensing (RS) imagery
becoming an important and reliable data source, efficiently and
accurately extracting buildings from RS images is significant
and challenging.

Building extraction from RS imagery has been driven by
advancing deep learning technology in recent years. Buildings
can be extracted by classifying pixels of RS images as building or
nonbuildings, which is regarded as a semantic segmentation task
in computer vision [5]. Usually, semantic segmentation methods
first train a model by using dense pixel-level samples through
an end-to-end mechanism, and then classify each pixel of the
unlabeled image by using the trained model. Represented by
fully convolutional networks (FCNs) [6], an increasing body of
supervised approaches have been developed to advance building
extraction tasks, achieving significant performance improve-
ments. These methods usually require a large number of labeled
pixel-level samples to learn model parameters, especially given
the great variation of buildings in HR imagery across regions. Al-
though RS images are easily collected, labeling a large number
of pixel-level samples is labor-intensive and time-consuming. In
addition, due to the high complexity and diversity of building
distribution scenes in RS images, greater difficulties are involved
in efficiently obtaining high-quality pixel-level labels [7]. In
general, developing new methods to effectively extract buildings
from HR RS images by utilizing available labeled datasets or
easily obtained labels is urgently needed [8].

Inspired by weakly supervised learning that constructs pre-
dictive models by learning with weak supervision [9], weakly
supervised semantic segmentation (WSSS) methods are pro-
moted to alleviate the issue of lacking pixel-level labels. They
utilize easily obtained labels as week supervision to train mod-
els, such as bounding boxes, scribbles, points, and image-level
labels. The image-level class label indicates the category of
the object presented in an image, which is one of the easiest
types to acquire among these weak labels. Nowadays, a two-step
WSSS framework using image-level labels is widely used, which
includes a classification network and a segmentation network.
The framework generates pixel-level pseudomasks from given
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image-level labels in its first step. Usually, the step obtains a
class activation map (CAM) [10] from the classification network
trained with image labels and generates pseudomasks of objects
by expanding an initial CAM seed. In the second step of the
framework, a segmentation network model is trained by taking
the pseudomasks and the corresponding images as input, then
predicting final masks of objects by using the trained networks
[11].

Several WSSS methods have been developed to extract build-
ings from RS imagery and achieved promising results in the
past two years. For example, SPMF-Net [12] boosted building
segmentation by combining superpixel pooling and fused mul-
tiscale features. The approach generated CAMs that retain the
shape and boundary information in superpixel and contributed
to the accurate extraction of buildings. Li et al. [13] adopted
conditional random field (CRF) to optimize CAMs obtained
by a classification network and introduced CRF loss [14] and
CRF postprocessing in the segmentation network for accurate
building extraction. For WSSS methods, generating high-quality
pseudomasks is crucial for accurate building extraction. There
are two gaps in generating pseudomasks. First, CAMs focus on
the most discriminative parts, thus is prone to partial activation
of buildings regions, resulting in incomplete pseudomasks. In
addition, previous models are not optimized for refining build-
ing boundaries in pseudomasks, failing to produce accurate
buildings boundaries. There is still potential for improving the
performance of building extraction.

To this end, this article proposes a WSSS building extraction
method that integrates an adversarial climbing (AC) mechanism
and gated convolution module (GCM) to accurately extract
buildings from HR RS imagery. The proposed method utilizes
an AC strategy to optimize CAMs, designs a GCM to generate
class boundary maps (CBMs), and refines pseudomasks by
fusing pairing semantic affinities and CAMs with a random walk
strategy, contributing to enhancing the performance of building
extraction from HR RS imagery. The original contributions of
this article are as follows.

1) This article develops a new building pseudomasks gen-
eration framework based on image-level labels, which
advances weakly supervised building extraction from HR
RS imagery.

2) An antiadversarial attack mechanism named AC is in-
troduced to the pseudomask’s generation process, which
generates CAMs through iterative manipulation, helping
CAMs better cover buildings of various shapes.

3) The article introduces CBMs to present the latent bound-
aries of buildings and designs a GCM to generate
accurate CBMs by keeping the low-level boundary-
relevant features, enhancing the ability to extract building
boundaries.

4) Experimental results on three building extraction
datasets—two ISPRS standard datasets and a self-
annotation dataset—show that the proposed method out-
performs state-of-the-art weakly supervised methods.

The rest of this article is organized as follows. Section II
reviews related works. Section III introduces the proposed
framework, which is a weakly supervised building extraction
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method by combining AC and gated convolution. Section I'V de-
scribes the details of experimental settings and results. Section V
discusses factors that affect model performance, including net-
work structure and some hyperparameters. Finally, Section VI
concludes this article.

II. RELATED WORKS

Related works can be classified into the following three
categories: building extraction based on handcrafted features,
building extraction based on deep leaning, and WSSS methods
on RS imagery. They will be discussed in the following three
sections.

A. Building Extraction Based on Handcrafted Features

Traditionally, a large number of methods for building extrac-
tion from RS images are based on handcrafted features, such
as color, spectrum, contextual, shadow, and geometry infor-
mation [15]-[18]. For example, Sirmacek et al. [15] proposed
an approach for building detection using multiple cues, which
includes invariant color features and shadow information. Zhang
[16] developed a texture filtering technique for detecting urban
buildings. Awrangjeb et al. [17] proposed a novel method to
extract buildings in HR RS images based on shadow detection.
These features vary under different circumstances of light, at-
mospheric conditions, sensor quality, scale, surroundings, and
building architectures. The performances of those methods are
highly dependent on the selected features, which require strong
domain-specific knowledge. Especially, the design of empirical
features is varied with datasets sourced from different geograph-
ical regions or sensors. Developing data-adaptive automatic
methods for building extraction from RS images is valuable and
challenging.

B. Building Extraction Based on Deep Learning

Recently, the handcrafted features in an increasing body of
applications are gradually replaced by data-driven deep learning
technology, such as convolutional neural networks (CNN). Deep
learning-based studies have achieved excellent performance in
extracting building from RS images. Building extraction from
HR RS imagery can be treated as a pixel-wise classification task
of deep learning, initially known as semantic segmentation in the
computer vision field. Semantic segmentation methods extract
buildings by assigning each pixel to a class label that indicates
whether the pixel is a building or not.

Most image semantic segmentation methods based on deep
learning are derived from FCNs [6], a pioneer in pixel-wise
classification, and are continuously developing as a result of new
emerging deep learning models. For example, DeConvNet [19],
an encoder—decoder architecture, was developed with deconvo-
lution and unpooling layers based on VGG [20]. U-Net [21],
an end-to-end deep FCN, introduced skip connections between
downsampling and upsampling layers. Different variants of
U-Net have achieved superior performance in different image
segmentation tasks. SegNet [22] is an encoder—decoder neu-
ral network for semantic segmentation, in which the decoder
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introduced pooling indices to perform nonlinear upsampling.
DeepLab and its variants [23]-[25] use dilated convolution to
address the decreasing resolution caused by downsampling.
Recently, a spatial pyramid pooling strategy was introduced to
capture image context to segment objects accurately at multiple
scales. The pyramid scene parsing network [26] utilizes global
contextual information through a pyramid pooling module.

These semantic segmentation models, which were initially
developed for extracting basic objects from classic images,
have also achieved significant performance when applied to RS
image-related tasks. Building extraction from RS has advanced
with numerous variants of these semantic segmentation models.
For example, Siamese U-Net [27] tried improving segmentation
accuracies with shared weights. BRRNet [28] was developed
by combining a prediction module with a residual refinement
module, improving the accuracy of building extraction. Manual
characteristics and the guided filtering technique were applied to
optimize building extraction with anovel ResUNet network [29].
MTPA-Net [30] is a scene-driven multitask parallel attention
convolutional network for resolving the semantic gaps caused by
the large intraclass variance among different kinds of buildings.
Two UNet-based models, called MCG-UNet and BCL-UNet,
are proposed for road and building segmentation from aerial
imagery [31]. MFCNN [32] is a multifeature CNN for pixel-level
segmentation of buildings and utilizes morphological filtering to
regularize building boundaries. A novel FCN was proposed for
accurately extracting buildings, in which a boundary learning
task was embedded to help maintain the boundaries of buildings
[33]. E-D-Net [34] was derived for building segmentation from
visible aerial images, which preserves the edge information of
the images and achieves prediction with higher detail quality.
GRRNet [35] fuses HR aerial images and LiDAR point clouds
for building extraction, which introduces a gated residual mech-
anism including a gated feature labeling unit to reduce unnec-
essary feature information. BR-Net [36] consists of a shared
backend utilizing a modified U-Net and a multitask framework
to generate superior building outlines by addressing restrictions
and regulations of additional boundary information. SENet [37]
integrated three individual segmentation models to obtain fine-
scale spatial and spectral building information. However, these
methods follow a supervised machine learning paradigm. Their
model parameters need to be trained using a large number of
samples with pixel-level labels.

C. WSSS Methods on RS Imagery

Several studies have documented the effectiveness of weakly
supervised deep learning methods on semantic segmentation
tasks. Several weak annotations, including bounding boxes
[38]-[40], scribble [41], [42], and points [43], have been em-
ployed in recent WSSS models. Image-level labels are the most
widely used type of weak annotation mainly because various im-
age classification tasks have built a large number of image-level
samples and accumulated many pretrained image classification
models. The WSSS models usually generate pixel-level pseudo-
masks from weak annotations. Several studies [44]-[50] focused
on generating better CAMs and improving the quality of seed
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area. Some research [51]-[53] aimed to expand the initial CAM
seed to identify more regions of the target object. For exam-
ple, AffinityNet [52] and IRNet [53] employed pairwise pixel
semantic affinities to optimize the pseudomasks with CAMs.

Nowadays, WSSS models have been derived for extract-
ing geographical entities from HR RS imagery. For example,
U-CAM [54], a new image classification network combined
with CAMs, was created for extracting cropland by considering
the distribution of image-level labels. In addition, a masked
U-Net was also proposed to obtain segmentation from sparse
pixel labels. A global convolutional pooling operation and a
local pooling pruning strategy were introduced into a WSSS
framework to address cloud detection [55]. Hierarchical residual
saliency maps combined with superpixel were generated to
fulfill residential-area segmentation with a novel hierarchical
weakly supervised learning method [56]. A weakly supervised
feature-fusion network was proposed to accomplish water and
cloud segmentation in RS images [57]. Adversarial learning and
self-training strategies were combined to develop the framework
for building segmentation in unsupervised domain adaptation
[58].

For building extraction, several studies have been conducted
with image-level labels. For example, SPMF-Net [12] generated
pseudomasks by combining superpixel pooling and multiscale
feature fusion with image-level labels. In SPMF-Net, a super-
pixel pooling layer was added to the classification network
to improve the integrity and boundary accuracy of a detected
building. A two-step training strategy approach was derived by
Li et al. [13], in which the fully connected CRF was utilized to
explore the spatial context in both training and prediction stages.

Although those methods have made significant improvements
in building extraction, their performances are highly dependent
on the quality of pseudomasks [13]. Due to the CAMs focusing
on the most discriminative parts, the generated pseudomasks
have a big gap with the ground-truth (GT) of buildings. It is
promising to improve the accuracy of building extraction by
optimizing the quality of the pseudomasks. To optimize, the
generated pseudomasks is expected to serve for a series of
applications on RS images, and is the research motivation of
this article.

III. METHOD

The article presents a weakly supervised building extraction
framework that combines AC and gated convolution (ACGC).
The ACGC framework takes image-level labels as weak super-
vision, aiming to improve pseudomask generation for accurately
extracting buildings from HR RS images. As shown in Fig. 1,
the whole pipeline contains three key components. In the first
component, the CAMs of buildings are generated and optimized
with AC. Then, the CBMs of buildings are obtained with a GCM
in the second component, and the pseudomasks of buildings are
expanded by CAMs and pairwise affinities from CBMs in the
third component. The three components will be discussed in the
following three sections, respectively.

With the generated pseudomasks, a classic supervised seg-
mentation model can be trained by taking pseudomasks as the
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GT of training samples. The model is expected to learn semantic
information of HR images to identify buildings. Specifically,
the learned supervised segmentation model can be fed with HR
RS images and output the building masks that present extracted
buildings.

A. Optimizing CAMs With AC

The classic WSSS framework generates CAMs mainly
through a trained classification network, which suffers from the
inaccuracy of obtained CAMs [10]. To improve the integrity of
the generated CAMSs, this component introduces an antiadver-
sarial technique named AC [49] into the proposed framework to
optimize generated CAMs.

The component that generates CAMs with AC is composed
of two workflows, as shown in Fig. 2. The first workflow is
classification workflow, which generates initial CAMs based on
image-level labels. The second workflow is AC workflow, which
iteratively optimizes CAMs.

In the first workflow, a typical classification network is em-
ployed to generate the initial CAMs with image-level labels. The
network consists of a ResNet [59] backbone followed by a global
average pooling (GAP) layer and a fully connected layer. The
training task is formulated as a binary classification problem and
employs the binary cross-entropy as its loss function as follows:

23 (g logo(in) + (1~ ys)log(l — o) ()

Overview of the proposed framework for building extraction based on WSSS. (a) Optimizing CAMs with AC. (b) Generating CBMs based on gated

where yp denotes the class label, ¢z denotes the classification
score, and o represents the sigmoid function. The CAMs are
computed from the weighted sum of the feature maps of the
last convolutional layer of the classification network. The value
of each pixel in the CAM is normalized so that the maximum
activation probability of each pixel is up to 1. Specifically,
CAM(x) of an image x can be calculated as follows:

WTf(x)
max(W*f(z))

where f(z) denotes the feature map of image x before the GAP
layer, and W denotes the weight matrix of the fully connected
layer of the classification network.

In the second workflow, AC is introduced to perturb HR RS
images along pixel gradients, thus increasing the classification
score of the building [60]. AC is iteratively executed NI times
to generate manipulated images that are fed into the trained
classifier to obtain CAMs, where NI is a hyperparameter. Given
the initial image x°, the AC process can be presented by

CAM (z) = 2)

=2t eV Y
Y=g —1|RE o HE |

p1_ L if CAM(2'71) >0
B 70, ifCAM(zt 1) <o

Hy' = |CAM(z' 1) — CAM(2")] 3)

where ¢ is the number of iterations ranging from 1 to NI, ¢ is the
size of the adversarial perturbation, and z* denotes the manipu-
lated image by changing the value of each pixel using gradient
updates. V1 Y is the gradient of Y with respect to z'~!
computed using backpropagation. Y'is the regularization formula
of the classification score, RtB’1 is a restricting mask computed
by thresholding CAM (z*~1) with 6, H; " is the differences of
CAMs between z'~! and z°. ® is the element-wise product, ||-||
is the sum operation, and ygl is the classification score of z*~1
of buildings. A is a hyperparameter of masking regularization.
By regularization, scores of high-activated building areas remain
unchanged, whereas scores of low-activated building areas can
be iteratively increased. The nondiscriminative building regions
in the manipulated images are gradually optimized. Thus, the
CAMs can identify more regions of buildings. The optimized
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CAMs, Mg, can be normalized by aggregating the CAMSs
obtained from the manipulated image x at each iteration ¢ as
follows:

/o CAM(z!)
max S CAM(at)

Mg = “

B. Generating CBMs Based on Gated Convolution

Although the CAMs generated in the first component have
been optimized by AC, the building boundaries have not been
accurately refined. In this section, the proposed method further
detects class boundaries to obtain pairwise semantic affinities
[52] as additional information to generate pseudomasks. Here,
a GCM is designed to generate CBMs. CBMs will present po-
tential class boundaries between pixels of the confident building
category and that of the nonbuilding category. The GCM will
filter out the higher-level semantic information that may be
inappropriate for class boundary detection and identify building
boundaries with low-level features of HR images [61].

As shown in Fig. 3, feature maps of the four levels of the
backbone network are fed to the GCM as the input. A set
of residual blocks and gated convolution layers (GCLs) are
employed to detect class boundaries. Specifically, f, and g,
denote the nth-level feature maps of the backbone and the output
of the nth residual block, respectively, where n € 1,2, 3. Then,
an attention map «, is calculated as the input of GCL

Oy = U(lel(f7l,+1 || gn)) (5)

where o is the sigmoid function, C;«; denotes the 1 x 1 con-
volution operation, and || denotes the concatenation operation.
Afterward, the attention map «,, and feature maps f,, conduct
element-wise product ©, following a residual connection, and
channel-wise weighting with kernel w,,. GCL can be calculated
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as follows:

957 = (gn = Wn) (i) = ((Gngi ;) © Qng, ;) + gn(z‘.,j>)Tw“
- (6)
where * denotes GCL operation, and ¢ is the output of GCL.
The kernel w,, with asize of 1 x 1 is applied for each pixel (4, j).
Gn+1 isderived by feeding [],(f’] ) to the residual block as follows:

Gnr1 = res(giD). ()
gn+1 18 fed into the next GCL layer in the GCM. The first
residual block takes the feature map f; as input, and outputs g1,
and the last 1 x 1 convolution produces a CBM. When two pixels
are separated by class boundaries in CBM, they are considered
a pair with a low semantic affinity.
For a pair of pixels z; and x ;, the semantic affinity a;; between
them is defined as follows:
a;; =1-— krglgl); B(xy) (8)
where B € RT*W denotes the CBM, and Hij represents a
collection of pixels on the line between x; and x ;. The maximum
distance of a pair should be less than the radius . That is,
the method ignores pairs whose distance is greater than . The
GT binary edges are not given, which is why this article takes
semantic affinity labels of pairwise pixels defined in IRNet
[53] as the supervision for training our GCM. The semantic
affinity labels derived from the confident region in CAMs have
been proved to be effective in learning and generating class
boundaries.

C. Refining Pseudomask With Pairwise Semantic Affinity

In this section, the pseudomasks of buildings are refined based
on CAMs and CBMs generated in the two previous subsections.
With the trained GCM, the semantic affinity matrix of each pair-
wise pixel can be computed from the predicted CBMs according
to (8). Then, the component performs random walk propagation
[62] on the CAMs with a transition probability matrix derived
from the semantic affinity matrix. Specifically, the transition
probability matrix T, in which diagonal elements are set to 1, is
obtained as follows:

T = S7'A% where S;; = Zafj, A =a;] € Rwhxwh
J
©))
where A denotes the semantic affinity matrix, and A°% is A
to the Hadamard power. The diagonal matrix S is computed
for row-wise normalization of A°?. The semantic propagation
conducted by random walk is performed with T by

vee(Mp) =TP -vec(Mp ® (1 — B)) (10)

where © is the element-wise product, vec( - ) means vectoriza-
tion of a matrix, and p denotes the number of iterations of random
walk. Thereby, the activation value of each pixel is spread to
neighboring regions with the same semantic information accord-
ing to dense semantic affinities.

Finally, this component produces pseudomasks by assigning
“Building” to a pixel with an activation score above the segmen-
tation threshold ST and “Nonbuilding” to other pixels.
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Fig. 4.

Samples of the ISPRS datasets and corresponding GT masks. (a)—(d)
Vaihingen. (e)—(f) Potsdam.

IV. EXPERIMENTS AND RESULTS
A. Data

1) ISPRS Potsdam and Vaihingen Dataset: The Potsdam
and Vaihingen datasets, which are two public semantic labeling
contest datasets provided by the ISPRS II/4 committee, are used
to evaluate the proposed method. The two datasets consist of
three bands of TIFF files and their corresponding digital surface
model data. The Potsdam dataset contains 38 raw large aerial
images, with 24 images in its training set and 14 images in its
test set. All the images are 6000 x 6000 pixels at 5 cm spatial
resolution. The Vaihingen dataset comprises 33 raw large image
patches of different sizes with a ground resolution of 9 cm/pixel,
with 16 images in its training set and 17 images in its test set.
The two datasets can be downloaded from the ISPRS official
website [63].

In this article, raw images with three channels of red, green,
and blue were selected from the Potsdam dataset, and images
with three channels of near-infrared, red, and green were chosen
from the Vaihingen dataset. For the Potsdam dataset, the image
named “top_potsdam_7_10_RGB” that has an error in its an-
notations [64] was removed from its test dataset. Fig. 4 shows
some samples and corresponding building GT masks.

Following the data preprocessing in previous works [13], the
raw images in the training dataset are cropped into 256 x 256
patches with a sliding step size of 128. The image-level labels
in this article are similarly determined by the pixel ratio of
buildings in an image patch. Specifically, a patch is labeled
as building when its pixel ratio is greater than 0.25 and is
labeled as nonbuilding when the image does not contain any
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(d

Fig. 5. Samples of the self-annotated building segmentation dataset and cor-
responding GT masks.

building pixels. The remaining unlabeled images with a pixel
ratio between 0 and 0.25 are removed. The raw images in the
test dataset are also cropped into 256 x 256 patches for adopting
overlapping strategy when inferencing. Finally, the processed
Potsdam dataset contains 38281 image patches from 23 raw
images for training, with 18243 building patches and 20038
nonbuilding patches, and 32256 image patches from 14 raw
images for testing. The processed Vaihingen dataset contains
2588 image patches from 16 raw images for training, with 2092
building patches and 496 nonbuilding patches, and 5530 image
patches from 17 raw images for testing.

2) Self-Annotated Building Segmentation Dataset: The self-
annotated building segmentation dataset is a manually labeled
pixel-level HR RS imagery dataset. Its raw images are sampled
from Google Maps. This dataset contains 7260 patches located in
four cities (Beijing, Wuhan, Shanghai, and Shenzhen) in China.
Each patch has a resolution of 500 x 500 pixels with a ground
resolution of 0.29 m.

The processed self-annotated dataset contains 2352 training
patches, with 2009 building patches, 343 nonbuilding patches,
and 1275 testing patches. Four samples and corresponding GT
masks are shown in Fig. 5.

B. Experimental Settings

The training procedure of this article consists of three steps:
training a classification network, training GCM, and training a
segmentation network. It is performed in the following manner:
image labels are first employed to train a classification network
for producing CAMs. The semantic affinity labels from CAMs
are then utilized to train GCM, which generates CBMs for
refining pseudomasks of all images in the training dataset. Fi-
nally, the pseudomasks are used to tune a segmentation network,
a DeepLabv3+ model pretrained on ImageNet. The training of
the segmentation network is supervised by cross-entropy loss on
both foreground and background pixels in the pseudomask.

For training the classification network, the backbone of the
classification network in the first component is a pretrained
ResNet-50 [59] model, in which the stride of the last down-
sampling layer is adjusted to 2. This article uses the stochastic
gradient descent optimizer with a momentum of 0.9 and weight
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decay of 1 x 10~ for training classification networks. The initial
learning rate is set to 0.001 and the learning rate decay strategy
of “poly” is adopted. The batch size is set to 16. The randomly
horizontal flipping and multiscale training were performed for
40 epochs. For training GCM, the GCM from the ResNet-50
backbone network was trained for ten epochs. In this step, the
initial learning rate was set to 0.01, the batch size was set to 32,
and the backbone was frozen during GCM training. The radius
~ was set to 5 for training and 3 for testing. For training the
segmentation network, the value of batch size was set to 8, and
the number of classes was set to 2. In its inference process, the
testing images were evaluated by an overlapping strategy [13].

The three key components of ACGC were implemented
with PyTorch, and the segmentation network of ACGC was
implemented with PaddleSeg [65]. All the experiments were
conducted on a 2080 super GPU.

C. Evaluation Metrics

Considering the building extraction from HR RS images
used evaluation metrics in semantic segmentation, tasks were
employed for examining model performances, including the
intersection over union (IoU), precision, recall, and F1-score,
which are formulated as follows:

IoU = TP/(TP + FP + FN)
Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1 = 2 x (Precision x Recall)/(Precision + Recall)
(11

where TP means the true positive rates, FP means the false
positive rates, and FN means the false negative rates. Precision
represents the percentage of TP in the ground truth, recall
indicates the percentage of TP in the segmentation result, the
Fl-score is the weighted average of precision and recall, and
IoU is the average value of the intersection of the prediction and
ground truth over their union.

D. Baselines

In this article, the proposed method was compared with three
WSSS models: CAM [10], IRNet [53], and AdvCAM [49].
IRNet is designed for weakly supervised instance segmentation
with image-level labels. IRNet consists of two branches: one
is to predict displacement field and generates instance-wise
CAMs, and the other is to detect CBMs and predict pairwise
semantic affinities between pixels. AdvCAM utilizes adversarial
image manipulation to increase classification scores and produce
CAMs, which helps identify regions occupied by objects more
accurately. In [53], IRNet was employed on the CAMs to ob-
tain pseudomasks. For the three models, their best pseudomask
results in several experiments are chosen to train their segmen-
tation network [48].

Moreover, a widely used fully supervised segmentation model
(Fully) called DeepLabv3+ [25] is used to examine the effective-
ness of the proposed method. DeepLabv3+ employs GT masks
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TABLE I
PSEUDOMASK RESULTS ON THE POTSDAM AND VAIHINGEN DATASET

IoU F1

Dataset Mothod BP NBP BP NBP
CAM [10] 0.783 0.636  0.879 0.777
IRNet [53] 0.818 0.726  0.900 0.841

Potsdam
AdvCAM [49] 0.830 0.736  0.907 0.847
ACGC 0.831 0.744  0.908 0.853
CAM [10] 0.655 0.741  0.791 0.851
IRNet [53] 0.771 0.808  0.871 0.894

Vaihingen
AdvCAM [49] 0.762 0.814  0.865 0.897
ACGC 0.775 0.822  0.873 0.902
CAM [10] 0.388  0.560  0.560 0.718
Self- IRNet [53] 0412 0595 0.584 0.746
annotated AdvCAM [49] 0405 0.612 0.576 0.759
ACGC 0431 0.612  0.603 0.759

The metrics used in the table are the accuracies of pseudomasks on training patches.
BP presents building regions in pseudomasks and NBP presents nonbuilding regions in
pseudomasks. The bold values denote the best results.

instead of pseudomasks to train the model, which means that it
does not indicate that the model is superior even if it has higher
accuracy than ACGC or the WSSS baseline models.

E. Pseudomask Results

Three group experiments were conducted on three datasets
to examine the performances of generating pseudomasks. As
shown in Table I, ACGC achieves the best performance among
the four WSSS methods in terms of the IoU values and F1 values
of the building (BP) and nonbuilding (NBP) pixels. Compared
to pseudomask from the CAM method, the BP IoU increases
by 0.048, 0.120, and 0.043 and the NBP IoU rises by 0.138,
0.081, and 0.052 in these three datasets. Furthermore, the results
from two state-of-the-art methods, i.e., IRNet and AdvCAM,
are also inferior to those of our method. The results suggest
that introducing an antiadversarial attack mechanism and GCM
helps to improve the generation of pseudomasks and further
obtain better building extraction results. Since the segmentation
model is trained with the pseudomasks, the improvement of
pseudomasks will help to extract buildings more accurately.

F. Building Extraction Results

1) Results of ISPRS Potsdam and Vaihingen Dataset: Table I
lists the comparison building extraction results on the Potsdam
dataset and Vaihingen dataset. As shown in Table II, the pro-
posed ACGC framework achieves the best building extraction
performance among the four WSSS methods. Specifically, it
obtains IoU and Fl-score values of 0.784 and 0.879 on the
Potsdam dataset and 0.845 and 0.916 on the Vaihingen dataset,
respectively, making a significant improvement compared with
the three baseline models. Compared with AdvCAM, ACGC
produces output with lower accuracy in terms of precision and
recall on the two datasets. The proposed method still achieves
the best tradeoff in terms of IoU and F1-score. Therefore, ACGC
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Fig. 6.

TABLE 11
BUILDING EXTRACTION RESULTS ON THE POTSDAM AND VAIHINGEN DATASET

Dataset Method ToU Precision  Recall Fl1
CAM [10] 0.764 0.828 0.908 0.866
IRNet [53] 0.827 0.908 0.903 0.905
Potsdam
AdvCAM [49]  0.832 0.931 0.887 0.908
ACGC 0.845 0.920 0.912 0.916
CAM [10] 0.656 0.838 0.751 0.792
o IRNet [53] 0.782 0.872 0.884 0.878
Vaihingen
AdvCAM [49]  0.781 0.896 0.859 0.877
ACGC 0.784 0.928 0.834 0.879

The presented segmentation accuracies are calculated on testing images with an overlapping
evaluation. The optimal adversarial iterations on the two datasets are set as 2 and 3,
respectively. The bold values denote the best results.

shows better building extraction performance, which is mainly
attributed to the quality of the pseudomasks.

To further observe model performances, the results of some
samples in the Potsdam dataset are illustrated in Fig. 6. In some
areas with narrow streets, the proposed method extracted more
BP and misclassified fewer NBP, which can be seen in the first
and third rows of the figure. In the complexity scene, even in
the presence of similar building spectral with other features, the
proposed method generates better boundaries than the baseline
models, which can be seen in the second and fourth rows of the
figure.

Some samples in the Vaihingen dataset are selected to further
illustrate the results of the building extraction, as shown in Fig. 7.
Compared with other WSSS models, ACGC captures more
accurate boundaries and outputs fewer incorrect BP, leading

(© ) ()

Visualized results on the Potsdam dataset. (a) Original RS images. (b) GT. (c) CAM. (d) IRNet. (e) AdvCAM. (f) ACGC. (g) Fully.

TABLE III
BUILDING EXTRACTION RESULTS ON THE SELF-ANNOTATED BUILDING
SEGMENTATION DATASET

Dataset Method IoU Precision Recall Fl
CAM [10] 0.383 0.520 0.593 0.554
Self- IRNet [53] 0386 0513 0.609  0.557
annotated  AdQyCAM [49]  0.436 0.546 0.684 0.607
ACGC 0.457 0.558 0.717 0.627

The presented segmentation accuracies are calculated on testing images with an overlapping
evaluation. The optimal adversarial iterations on the dataset are set as 3. The bold values
denote the best results.

to building boundaries closer to GTs. The results can be ex-
plained by the fact that ACGC captures boundary features during
pseudomask generation and further improves the segmentation
results.

Moreover, the proposed method also shows great performance
for dense buildings. Fig. 8 shows the segmentation results of
two local dense building areas. The proposed method can better
extract BP from the background in those areas.

2) Results of Self-Annotated Building Segmentation
Dataset: A series of experiments is conducted on a self-
annotated building segmentation dataset to further examine the
performance of ACGC. The segmentation model trained by
the high-quality pseudomasks presents the best advantages in
extracting buildings, as shown in Table III. Although the metric
values of all models on this dataset are lower than those of the
above datasets, ACGC achieves a significant improvement of
0.071 and 0.021 in terms of building IoU compared with the
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Fig. 7.

Fig. 8.
proposed method.

IRNet and AdvCAM. This finding suggests that the proposed
framework is effective.

Fig. 9 visualizes some comparison results on the self-
annotated building segmentation dataset. For some challenging
scenes, the shadow interference (as shown in the second row), the
regular building shapes (as shown in the first and fourth rows),
and irregular building shapes (as shown in the third row), the
proposed method can reserve more integral building regions and
clearer building boundaries. These results suggest that ACGC is
promising.

3) Results Compared With Fully Supervised Semantic Seg-
mentation: The segmentation results from the fully supervised
method are also shown in our experiments. ACGC can outper-
form the supervised network in some cases, for example, the
samples in the third row of Fig. 7. As shown in Table IV, the
proposed method can achieve comparable results to the fully

(e) ® (2)

Visualized results on the Vaihingen dataset. (a) Original RS images. (b) GT. (¢) CAM. (d) IRNet. () AdvCAM. (f) ACGC. (g) Fully.

Building extraction results in local dense building areas of two samples in the Vaihingen dataset. (a) and (b) Outputs of [13]. (c) and (d) Outputs of the

supervised method (Fully). In the table, ACGC achieves 93.4%
and 96.4% performance of the fully supervised method in terms
of IoU and Fl-score on the Postsdam dataset and achieves
89.6% and 94.2% performance on the Vaihingen dataset. ACGC
improves segmentation accuracy and narrows the performance
gap between weakly and fully supervised building extraction
models.

V. DISCUSSION

A. Ablation Study

In this section, ablation experiments are conducted on the
Vaihingen dataset to further evaluate the effectiveness of key
components in ACGC. Specifically, we examine model perfor-
mances after removing the AC and GCM. The w/o GCM method
removes GCM as well as the random walk policy that depends on
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Fig. 9.
(e) AdvCAM. (f) ACGC. (g) Fully.

TABLE IV
BUILDING EXTRACTION RESULTS BETWEEN WSSS AND FULLY WSSS oN
THE POTSDAM, VAIHINGEN, AND SELF-ANNOTATED BUILDING
SEGMENTATION DATASETS

Dataset Method IoU  Precision Recall Fl1
ACGC 0.845 0.920 0912 0916
Potsdam
Fully 0.905 0.940 0.960  0.950
ACGC 0.784 0.928 0.834  0.879
Vaihingen
Fully 0.875 0.953 0914 0.933
Self- ACGC 0.457 0.558 0.717  0.627
annotated Fully 0.743  0.849 0857 0852

GCM. To clearly elaborate the findings, the values of evaluation
metrics for both the building pixels (BP) and nonbuilding pixels
(NBP) are recorded and listed in Table IV.

As shown in Table V, the full framework (ACGC) exhibits
the best performance, achieving the best tradeoff according to
IoU and Fl-score on pseudomasks. ACGC has a lower NBP
precision and a lower BP recall compared with w/o Adv. We
argue that AC is employed to generate more integral CAMs and
consequently tend to a higher threshold to reach the best IoU of
pseudomasks, resulting in fewer pixels being labeled as build-
ing. In addition, ACGC employs the GCM and learns pairwise
semantic affinities to further expand the building regions. After
the GCM is removed, all the performance metrics in Table V

Visualized results of building extraction on the self-annotated building segmentation dataset. (a) Original RS images. (b) GT. (c) CAM. (d) IRNet.

B

Image

(b)

Ground Truth

(c) (d)

Fig. 10. Comparison results of the CBMs and pseudomasks generated by
different methods. (a) and (b) CBMs generated by ACGC and IRNet. (¢) and
(d) Pseudomasks obtained by ACGC and IRNet.

are reduced. This result suggests that the GCM helps correct
some errors and learns reliable affinities from confident regions
in CAMs, thus better expanding the building regions.

B. Improvement of CBM From GCL

The GCL is introduced to optimize CBMs and thus improves
the quality of the generated pseudomasks. To observe the im-
provement of CBM from introducing GCL, the results of a
sample are visualized in Fig. 10.
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TABLE V
ABLATION RESULTS WITH DIFFERENT COMPONENTS INTEGRATION IN ACGC ON THE VAIHINGEN DATASET

Model TIoU Precision Recall F1
BP NBP BP NBP BP NBP BP NBP
CAM 0.655 0.741 0.856 0.808 0.736 0.900 0.791 0.851
w/o Adv 0.772 0.812 0.873 0. 895 0.870 0.898 0.872 0.896
w/o GCM 0.723 0.768 0.814 0.822 0.866 0.922 0.838 0.869
Ours 0.775 0.822 0.898 0.884 0.850 0.922 0.873 0.902

The metrics used in the table are the accuracies of pseudomasks on training patches. BP presents building regions in pseudomasks
and NBP presents nonbuilding regions in pseudomasks. The bold values denote the best results.

ter 10  ter 20

lter 5

Fig. 11.  Effect of adversarial iterations for CAMs in the Vaihingen dataset.

As shown in Fig. 10, the GCL contributes to detecting more
precise class boundaries. In the figure, the closer the class
boundaries in CBMs are to the boundaries of buildings, the more
accurate the pseudomasks are. This result can be explained by
the fact that the inappropriate information for class boundary
identification is gradually filtered out with the help of the gating
mechanism, and better CBMs are generated.

C. Effect of the Number of AC

Once the number of iterations reaches NI, the iterative process
of the AC process will be finished. To examine the effect of NI
values, experiments are conducted on the Vaihingen dataset in
this section.

As shown in Fig. 11, when NI is set to 3, the CAMs fit
building regions best. This finding suggests that an excessive
number of iterations will raise the problem of overactivation. In
addition, more nonbuilding regions are wrongly activated if N/
is larger than 3. The NI value in this article is smaller than that in
the classical application [49], in which NI is set to 27. We argue
that the reason for this result is that building extraction is the
process of identifying a single category of pixels, namely the
building category pixels. ACGC extracts fewer categories than
in the PASCAL VOC 2012 dataset task and should employ few
adversarial iterations.

D. Improved Pseudomasks on Various Quality CAMs

ACGC generates optimized pseudomasks based on CAM,
which is why its performance may vary somewhat when various-
quality CAMs are inputted. This section will examine the effect
of CAMs quality on the generated pseudomasks.

With the given CAMs, we conducted experiments by taking
AdvCAM as a baseline and examined their BP and NBP IoU of
pseudomasks. Three groups of CAMs, each with IoUs of 0.714,
0.677, and 0.653, respectively, are selected for our experiments.

Table VI shows that the IoU of CAMs and the IoU of pseudo-
masks are positively correlated. The results are consistent with
our knowledge that better CAMs contribute to better quality
pseudomasks in terms of BP and NBP.

Moreover, the experimental results show that a noisier CAM
(smaller IoU values) corresponds to a greater advantage of our
model over AdvCAM. This result occurred because the GCLs in
the GCM retain the boundary features and simultaneously filter
out irrelevant and incorrect features learned by poor confident
semantic labels. Our GCM generates better CBMs and further
corrects wrongly classified pixels by random walk propagation.
Consequently, ACGC obtained better [oU of pseudomasks when
CAMs have worse quality.

E. Experiments With More Segmentation Model

To further examine the quality of the pseudomasks generated
by the proposed method, three SOTA segmentation networks
are selected for the following experiments on the Vaihingen
dataset. These segmentation networks are trained by feeding the
pseudomasks from ACGC and AdvCAM, respectively. Their
IoU, precision, recall, and F1 on the test dataset are reported in
Table VII. As shown in the table, the three networks using the
pseudomask generated by ACGC have higher IoU, precision, re-
call, and F1 compared to those using the pseudomask generated
by AdvCAM. The results show that the improved pseudomasks
generated by ACGC are robust, which can be combined with
a series of semantic segmentation methods for improving the
performance of weakly supervised building extraction.

F. Experiment on Model Efficiency

To examine the efficiency of ACGC, the comparison exper-
iments were conducted with two WSSS baseline methods on
the Vaihingen dataset. Both training time and inference time
of pseudomasks are reported in Table VIII. As listed in this



1640

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE VI
INFLUENCE OF QUALITY OF CAM ON THE PSEUDOMASKS BETWEEN ADVCAM AND ACGC ON THE VAIHINGEN DATASET

ToU of Pseudo-masks Gap

CAM Method ToU of CAM BP NBP BP NBP
AdvCAM [49] 0.773 0.818

Group 1 0.714 0.002 0.004
ACGC 0.775 0.822
AdvCAM [49] 0.721 0.758

Group 2 0.677 0.012 0.014
ACGC 0.733 0.772
AdvCAM [49] 0.699 0.739

Group 3 0.653 0.015 0.017
ACGC 0.714 0.756

The metrics used in the table are the accuracies on training patches. BP represents building regions of pseudomasks and NBP represents
nonbuilding regions of pseudomasks. The bold values denote the best results.

TABLE VII
COMPARISON RESULTS ON THE VAIHINGEN DATASET OF THREE DIFFERENT
SEGMENTATION NETWORKS USING PSEUDOMASKS FROM ADVCAM AND
ACGC, RESPECTIVELY

Segmentation

Network Method ToU Precision  Recall F1
UNetp1] ~ AdvCAMI49] 0723 0.901 0.785  0.839
ACGC 0.758 0912 0.818  0.863
pSPNet[2s] ANVCAMI49] 0769 0902 0839 0869
ACGC 0.780  0.901 0.853  0.876
HRNet[66] AIVCAMI49] 0774 0900 0.847 0872
ACGC 0.792 0.921 0.849  0.884
TABLE VIII

TIME COST COMPARISON WITH TWO BASELINE METHODS

Method Training time/img(ms) Inference time/img(s)
IRNet [53] 14.727 0.175
AdvCAM [49] 14.727 1.235
ACGC 15.631 1.249

The pseudomasks inference time is the sum of time from AD, GCM, and random walk.

table, the training time cost of ACGC is slightly higher than
that of the two baseline methods, and the inference time of
ACGC is approximately the same as that of AdvCAM. The
experimental results show that the introduction of GCM in
ACGC does not significantly increase time consumption. We
argue that the proposed ACGC offers a better tradeoff between
accuracy and efficiency.

VI. CONCLUSION

This article proposed an approach to improve weak
supervision-based building extraction from HR RS imagery.
The approach uses antiadversarial manipulation to generate
more integral CAMs as building seed regions and optimizes
the boundaries in pseudomasks by introducing a GCM. Ex-
perimental results on three datasets show that the proposed
method outperforms the state-of-the-art methods and achieves
higher IoU and clearer boundaries. This article provides a new
method for generating better pseudomasks of buildings and
offers a methodological reference for the applications of weakly
supervised RS images.

The main limitation of this article is that only one type
of annotation was utilized to generate pseudomasks. The new
model integrating more kinds of weakly supervised annotations
is expected to enhance the proposed model. Moreover, the
approach of expanding CAMs can be explored in greater detail
in the future work.
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