
Received November 2, 2021, accepted January 3, 2022, date of publication January 14, 2022, date of current version January 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3143653

Market Making Strategy Optimization
via Deep Reinforcement Learning
TIANYUAN SUN , DECHUN HUANG, AND JIE YU
Business School, Hohai University, Jiangning District, Nanjing 211100, China

Corresponding author: Jie Yu (yujiehhu@126.com)

This work was supported by the Innovative Team of Philosophy and Social Sciences in Jiangsu Higher Learning Institutions
under Grant 2017ZSTD002.

ABSTRACT Optimization of market making strategy is a vital issue for participants in security markets.
Traditional strategies are mostly designed manually, and orders are mechanically issued according to rules
based on predefined market conditions. On one hand, market conditions cannot be well represented by
arbitrarily defined indicators, and on the other hand, rule-based strategies cannot fully capture relations
between the market conditions and strategies’ actions. Therefore, it is worthwhile to investigate how to
incorporate deep reinforcement learning model to address those issues. In this paper, we propose an end-
to-end deep reinforcement learning market making model, i.e., Deep Reinforcement Learning Market
Making. It exploits long short-term memory network to extract temporal patterns of the market directly
from limit order books, and it learns state-action relations via a reinforcement learning approach. In order
to control inventory risk and information asymmetry, a deep Q-network is introduced to adaptively select
different action subsets and train the market making agent according to the inventory states. Experiments
are conducted on a six-month Level-2 data set, including 10 stock, from Shanghai Stock Exchange in
China. Our model is compared with a conventional market making baseline and a state-of-the-art market
making model. Experimental results show that our approach outperforms the benchmarks over 10 stocks by
at least 10.63%.

INDEX TERMS Deep reinforcement learning, LSTM, market making, stock market.

I. INTRODUCTION
Market making (MM) strategy is a kind of buy-side high-
frequency trading strategy in stock market. It is usually used
to enliven the market, stabilize market orders, improve liquid-
ity of the stock and promote the development of the market.
The profit of a MM agent is obtained by capturing the spread
of the market, which is basically the volatility of the market
and differences between best bid and ask prices. The agent
frequently quotes its own bid and ask prices simultaneously,
and makes profit by waiting both legs hit by other orders, and
in some situations loses money due to price trending. There-
fore, how to design the MM strategy and make it profitable
becomes an important question.

Traditional MM strategies are designed by human experts.
Trading rules are mechanically made based on experiences,
and the MM strategy makes its trading actions according to

The associate editor coordinating the review of this manuscript and

approving it for publication was Yin Zhang .

those rules. Issues with this approach are 1) the traditional
MM strategy cannot well describe or represent the market
and strategy states and 2) the manually-designed rules cannot
well capture the relations between states and proper trading
actions. In recent years, deep reinforcement learning has been
widely exploited in many research areas as well as industries.
For example, the Alphastar trained by deep reinforcement
learning algorithm in [1] exceeds 99.8%human players. Deep
Q-network (DQN), which combines reinforcement learning
with deep neural networks [2], uses deep neural network to
extract data features, and realizes end-to-end optimization
of complex decision problems through reinforcement learn-
ing. However, most of existing deep reinforcement learning
tasks that are relevant to stock market focused on long- or
mid-term stock trading, e.g., Deng et al. [3] used direct
deep reinforcement learning method to represent real-time
financial signals, and trained an agent for financial asset
trading, and few work has been done on the buy-side market
making strategies. Challenges in this task have three folds:

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9085

https://orcid.org/0000-0001-5430-119X
https://orcid.org/0000-0002-1772-0763


T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

1) State representation. There are two categories of states that
trading models need to capture i.e., internal state including
strategies’ inventory etc. and market state including whether
it is trending or stable. 2) Decision frequency. MM agents
need to deal with high-frequency market data, including sev-
eral levels of bid and ask prices and related waiting orders
in each level, and they need to make real-time decisions on
how to place their own orders in the limit order book (LOB)
and cancel orders when market is against the strategy.
3) State-action mapping. MM strategies need to learn the
relations between massive states and different combinations
of trading actions, which makes the learning process more
difficult.

In this paper, we propose an end-to-end reinforcement
learning MM trading model based on recurrent deep neu-
ral network representation, which is termed deep reinforce-
ment learning MMmodel (DRLMM). The model is designed
to have three modules: 1) Feature capture. A deep recur-
rent Q-network (DRQN) architecture [4] is exploited and
applied to MM agent learning, where the DRQN is based on
DQN and modified by replacing the first post-convolutional
fully connected layer with a recurrent long short-term mem-
ory (LSTM) layer. TheDRQNwith the LSTMunits automati-
cally learns temporal market states from the LOBwithout any
hand-designed features. 2) Action selection. The action space
is different from many previous works that it is designed
to be adaptive to strategy’s internal state instead of a fixed
action set. The action set contains several subsets, and at
each time, the MM agent selects the appropriate subset as
action space according to its internal state, such as inventory.
Action selection policy is then learned by DRLMM. 3) Cross
engine. A near-to-real market cross engine is designed to sim-
ulate order execution in stock exchange. Market data are fed
into both strategies and the engine, and the engine executes
strategies’s orders based on predefined rules. Comparative
experiments are conducted on a Level-2 data set of 10 stocks
in Shanghai Stock Exchange of China. The experimental
results show that our model is effective and can make more
profits.

The key contributions of this paper are as follows:
• We design an end-to-end reinforcement learning MM
trading model based on recurrent deep neural network
representation. The model uses LSTM units to capture
temporal market information and exploits DRQN to
optimize the MM strategy.

• We design an adaptive action selection policy, which
selects a subset of actions from the whole action space
based on strategy’s internal state. This mechanism
makes the model training more efficient.

• We backtest the DRLMM model in Chinese stock mar-
ket using Level-2 limit order book data, and experimen-
tal results show that DRLMM is better than the baseline
strategies in many metrics.

The rest of this paper is organized as follows. In Section II,
we review the relevant works of reinforcement learning
and deep reinforcement learning in the financial field.

In Section III, we introduces the MM model framework
based on deep reinforcement learning. In Section IV, the
experiments are introduced, and, performances of DRLMM
model and baseline are compared through market simula-
tion. In Section V, we give our conclusions and future work
directions.

II. RELATED WORK
There have been many research works that are related to
MM and reinforcement learning. In recent years, with the
development of deep learning and successful application of
deep reinforcement learning, more and more attentions are
given to this area by both researchers and practitioners. In this
section, many previous works of market making strategy
design, reinforcement learning and deep reinforcement learn-
ing are reviewed.

A. MARKET MAKING STRATEGY
MM strategy is concerned by many research areas, including
both finance andmachine learning. In finance and economics,
MM is generally studied as an optimal control problem.
Scholars use stochastic dynamic programming to study opti-
mal bidding. For example, Avellaneda et al. [5] studied the
pricing strategy in LOB. Guilbaud and Pham [6] considered
the influence of execution priority. A large number of lit-
eratures have investigated the establishment of MM model.
In the early stage, Ho and Stoll [7] proposed the classic model
of single dealer. Since then, many researchers have extended
the MM model. Das [8] expanded the scope of application
of the model on the basis of glosten and Milgrom’s market
maker model [9]. However, these methods based on market
microstructure modeling rely heavily on conditional assump-
tions and are not suitable for application in complex real
markets.

B. REINFORCEMENT LEARNING
In recent years, reinforcement learning has been used to solve
many kinds of financial problems. Chan and Shelton [10]
applied reinforcement learning to the MM model for the first
time to endow the MM agent with learning ability. Then,
researchers applied various reinforcement learning methods
to market makers. Spooner et al. [11] designed a market mak-
ing agent based on time differential reinforcement learning,
and applied return function to control inventory risk. Lim and
Gorse [12] first proposed an optimized market making model
based on reinforcement learning in high frequency trading,
and used constant absolute risk aversion (CARA) as the final
optimization function of the model. In the aspect of multi-
agent, Patel [13] applied the multi-agent reinforcement learn-
ing framework to market making strategy, and made trades
with the help of macro and micro agents. Ganesh et al. [14]
established a multi-agent simulation system of a dealer mar-
ket, and proposed a reinforcement learning reward method
based on yield. Zhong et al. [20] collaborated with a market

9086 VOLUME 10, 2022



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

making firm and developed a market making strategy based
on Q-learning, and they make the strategy become a lookup
table that is easier to be implemented in real production.
Spooner et al. [21] proposed an adversarial reinforcement
learning based market making strategy and claimed that the
agent can converge to Nash equilibrium in several special
cases.

C. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning can solve the problem of
high-dimensional and dynamic strategy optimization by com-
bining the high-dimensional input of deep learning with rein-
forcement learning. Kumar [23], in his extended abstract,
proposed a deep reinforcement learning Q-network based
market making strategy which is simulated and tested on
his market simulator. Similarly, Gasperov et al. [22] pro-
posed a deep learning market maker that utilizes trading
signal generator to help predict market trends, and they
test their strategy with one month bitcoin market tick data.
Mnih et al. [2] and Alpha Go [15] have proved the prac-
ticability and effectiveness of DQN. Deep reinforcement
learning’s powerful representation ability and its end-to-
end strategy optimization ability also attracted attentions of
researchers in the field of quantitative trading. They tried to
use DQN to solve the problem of investment decision-making
under complex market conditions. Deng et al. [3] used
direct deep reinforcement learning for financial asset trading.
Ning et al. [16] established a fully connected neural network
trained by experience replay and double DQN, and proved
that its performance is better than the standard benchmark
approach. Jia et al. [17] and others applied reinforcement
learning based on LSTM to quantitative trading. Gueant and
Manziuk [18] proposed a discrete-time model-based role
criticism algorithm and compared it with the classical finite
difference method.

III. DEEP REINFORCEMENT LEARNING MARKET MAKING
The reinforcement learning can be modeled as markov
decision process (MDP) and represented by a tuple of
four elements, i.e. (S,A, π, r), where in the tuple, S is
a state space, A is an action space, π is policy, r is
reward. In reinforcement learning algorithm, Q-learning
is a representative value based algorithm. Its main goal is
to build a two-dimensional Q-table to store Q-values of
each pair of states and actions, and constantly optimize the
values.

Q′(s, a) = Q(s, a)+ α[r + γmaxa′Q(s
′, a′)− Q(s, a)], (1)

where α is learning rate, s′ is the next state of s, a′ is the action
at state s′, and γ is a discount factor.

Taking one step further, DQN uses a deep neural network
instead of the Q-table in order to solve the problem of contin-
uous state space or action space. The neural network is used
to approximate the value function. The loss function of the

network is defined as follows,

Lt (θt ) = E(s,a,r,s′)[(yt − Qθt (s, a))
2], (2)

yt = r + γmaxa′Qθt (s
′, a′), (3)

where t is the current time step, and yt is an estimate of the
expected return.

DRQN [19] replaces the first post-convolutional fully con-
nected layer with a recurrent LSTM on the basis of DQN.
DRQN has been proved that it can deal with some observable
information, and it is better handling loss of information than
DQN. For the stock trading environment, many unknown
variables in the time dimension can not be foundwell byDQN
framework. So we use LSTM module in DRQN framework
to construct market information representation. In this way,
we can define the state closer to a comprehensive observation
of the trading environment. The structure of the network is
designed as follows: 1) a LSTM layer. It processes the market
data in order to generate strategy’s states; 2) a hidden layer.
It is fully connected to the first layer and outputs four possible
actions.

A. FORMULATION
The high-frequency market making strategy basically pro-
vides liquidity to the market by continuously quoting (both
bid and ask sides) in the LOB. It processes incoming
intra-day tick data, determines external (market) and its inter-
nal states, and takes instant actions simultaneously. It makes
profits largely by capturing spreads in LOB, and loses money
to inside traders in situations such as price trending. In gen-
eral, market making strategies can issue new orders and wait
for executions in order to capture more spreads, and cancel
old orders that are placed in a risky position in order to
avoid losses. In this paper, the state-determination and action-
making are formulated in the DRQN framework, and we
design a MM trading strategy based on DRQN, as shown
in Figure 1.

FIGURE 1. Deep reinforcement learning market making framework. The
framework contains two networks, and state-determination and
action-making are formulated in the DRQN framework.

VOLUME 10, 2022 9087



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

Firstly, in each time step, the MM agent will send the
state information as input to the neural network. Secondly,
through several hidden full connection layers, the Q-network
is used to estimate the possible value of each state-action.
Thirdly, through the spatial selectionmodule, the correspond-
ing action is selected, and the real reward is returned through
the cross engine simulator. Finally, the gradient descent
method is used to update the θ parameters.
Our definition of the state, action and reward are as

follows:

1) STATE S
The state set in the model consists of two parts: internal state
and external state, S = {Sin, Sout }. The internal state Sin =
{m, I ,O}, including money m, inventory I , and remaining
order information O; the external state Sout mainly contains
the market information, and in contrast to many previous
literatures that generally extracted data from LOB, construct
features manually, and build a multi-dimensional state space,
we directly choose entire LOB and let LSTM to build states
for the agents. The entire LOB at each time stamp is a set of
multi-dimensional data, including 10 bid/ask price levels (at
the sell side ask10 . . . ask1 and the buy side bid10 . . . bid10,
prices are highest at ask10 and lowest at bid10, and ask1 is
the lowest sell price a.k.a best ask, and bid1 is the highest
buy price a.k.a best bid) and waiting order queues corre-
sponding to each level. For each time stamp t , we select
previous five snapshots of LOB data, and input it to LSTM
iteratively to generate its external state at t . Therefore, the
MM agent can retain the cognition of the previous mar-
ket transaction data when the external state is constantly
updated.

2) ACTION A
In this paper, we divide the fixed finite set of action space
into many subsets, i.e. A = {A1,A2,A3 . . . ,An}. At each
time step t , the space selection module selects the appropriate
action space At after analyzing the existing state st and trans-
mits it to the network. DRQN traverses every action A in At
and updates the corresponding Q-value continuously. Other
actions not in At will be excluded from consideration, and the
model will not select such actions for the state st . Specifically,
At consists of three parts, i.e. A = (D,P,N ), where D is
order side, P is order price, and N is the number of shares.
The order side can be either ‘buy’ or ‘sell’; the price ranges
all the prices that can be placed in the market, e.g. any level
from ask10 to bid10; the number of shares can be adjusted
according to the demand of placing orders, with a minimum
of one lot size. Rules for action subset selection are as
follows,
• If there is no open order, the action space includes
issuing two new orders which are on the best bid and
ask respectively.

• If there is only one open order, the action space includes:
1) wait for the order getting executed; 2) cancel the order
and issue a new order with a new price.

• If there are two legs of open orders waiting in the LOB,
the action space includes: 1) wait for the orders getting
executed; 2) cancel either of them and issue a new order
with a new price; 3) cancel both orders and issue two
new orders.

3) REWARD R
The reward function in reinforcement learning is generally
defined as cumulative reward, i.e., UT =

∑T
t=1 Rt , where

Rt is the reward in each step, which is also the value func-
tion in the classic deep reinforcement learning framework.
Rt is usually defined by the profit earned in many normal
trading models. However, since the goal of MM agent is
different from normal trading models, Rt in DRLMM needs
to be defined from two major perspectives: 1) market liq-
uidity. DRLMM needs to quote on both sides of the LOB
simultaneously in order to provide liquidity to the market;
2) inventory risk. DRLMM needs to consider the risk of
inside traders that have extra information and make market
price trending. Therefore, the reward in DRLMM is defined
as,

Rt =



1, if ‘buy’ and ‘sell’ limit orders
are executed,

−0.5, if cross-spread order (market order)
is executed,

0, others.

(4)

If two legs (‘buy’ and ‘sell’ limit orders) are executed at the
same time or within a very short time period, the MM agent
captures the LOB spread (makes profit) and also provides
liquidity to the market. In this case, Rt is 1 (positive, two half-
spreads). If one leg is executed first, the MM agent waits for a
period of time and finds its inventory is at risk, the MM agent
cancels the other leg and sends a new order that crosses the
spread to get an immediate execution in order to get inventory
at balance. In this case, the MM agent loses money, thus Rt
is −0.5 (negative, one half-spread). In the other cases, the
MM agent can be considered as waiting, so the Rt is 0.

B. CROSS ENGINE SIMULATOR
A near-to-real cross engine simulator is designed and imple-
mented in order to assist the order transaction for our
MM agents. The simulator is designed to accept historical
Level-2 data and orders from the MM agents. Since there
are only quotes and trades data in the historical data, and no
order queue data is provided, we cannot accurately know the
waiting time of the limit orders generated by the MM agents.
Therefore, in this simulator, we use waiting time (a constant
number suggested by practitioners) to simulate the waiting
behaviors of limit orders, i.e., when other conditions do not
change, the limit orders can be traded at the price level only
when there has a constant number of trades happened. As
shown in Figure 2, in detail, the matching mechanism in this
simulator is summarized as follows:

9088 VOLUME 10, 2022



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

FIGURE 2. Cross engine.

• When buy order’s price crosses the order book spread
and touches the ask side, or sell order’s price crosses the
order book and touches the bid side, 1) if the order’s
quantity is less than the shares in the waiting queue,
it will be executed immediately; 2) if the order’s quantity
is more than the shares in the waiting queue, part of it
will be executed immediately and the rest part will wait
in the queue.

• When buy order’s price is on the best bid or sell order’s
price is on the best ask, the order will wait for a con-
stant number of n trades and get fully executed if its
quantity is less than the shares of the next trade, oth-
erwise, the rest part of the order will remain in the
queue.

IV. EXPERIMENTS AND DISCUSSIONS
In this section, the data set and setup used in the experiments
are firstly introduced, and secondly, experimental results are
presented and analyzed with discussions.

A. DATA SET
We evaluate the DRLMM by real financial market data.
The data set is Level-2 tick-by-tick data of A-shares from

Shanghai Stock Exchange of China, including quotations
and transactions. We selected 10 actively traded stocks,
i.e., Shanghai Pudong Development Bank (600000.SS),
Inner Mongolia Baotou Steel Union (600010.SS), Huaxia
Bank (600015.SS), China Minsheng Bank (600016.SS),
China Petroleum and Chemical Corporation(600028.SS),
Citic Securities Company Limited (600030.SS), China Mer-
chants Bank (600036.SS), Poly Developments and Holdings
Group (600048.SS), China United Network Communications
(600050.SS), and Tebian Electric Apparatus (600089.SS).
Data from June 2014 to December 2014 (about 100 trading
days) are used in the experiment, therefore, there are totally
4,739,610 quotes and 42,590,258 trades.

B. BASELINE
Two baseline methods are introduced in the experiments.

• Rule-based market making strategy (RMM). The
first baseline is a traditional rule-based market mak-
ing strategy. The strategy places buy and sell orders
only on bid1 and ask1 respectively, and as the same
with DRLMM, the order’s quantity is set to one lot
(100 shares) for all the stocks. Figure 3 demonstrates

VOLUME 10, 2022 9089



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

the rules used in RMM, and the detailed trading logic
of RMM is summarized as follows,
– Place two orders (two legs) at the same time, one

buy order on bid1 and one sell order on ask1;
– If both orders are executed (or closed), two new

orders will be issued at the next time point. Accord-
ingly, the prices will be updated to new bid1 and
ask1;

– If only one of the two legs is executed, e.g., only
the buy order is executed, the other leg will wait for
three trades until the order gets executed, otherwise,
the sell order will be canceled and a new sell order
with bid1 price is issued (cross the spread) and
executed immediately.

– If the strategy is going to end market making (e.g.,
market is going to close), the strategy cancels any
open order and closes open inventory by using mar-
ket orders.

• Reinforcement learning based market making strat-
egy (RLMM). A modified version of the reinforce-
ment learning based market making introduced by
Lim et al. [12] is employed as the second baseline in
our experiments. The inputs of the RLMM are snapshots
of LOBs, which are vectors of prices and corresponding
shares on each price levels. The LOB vectors are taken
as states, and the RLMM uses Q-learning as its core
algorithm to learn mappings between states and actions,
where the action set is defined in the same way as the
DRLMM.

FIGURE 3. Trading logic of RMM: 1) if no open order, place two orders
(two legs) at the same time, one buy order on bid1 and one sell order on
ask1; 2) if both orders are executed (or closed), two new orders will be
issued at the next time point, and their prices will be updated to new
bid1 and ask1; 3) if only one of the two legs is executed, the other open
leg will wait for three trades until the order gets executed, otherwise, the
order will be canceled and a new order is issued (cross the spread) and
executed immediately; 4) if the strategy is going to end market making,
the strategy cancels any open order and closes open inventory by using
market orders.

C. SETUP
We choose ε-greedy algorithm for model’s action selec-
tion during training, and gradually reduce the probability of

exploration along with the learning process of the agent. The
action set of theMMagent contains only best bid and best ask,
and the size of limit orders are set to be one lot (100 shares).
At the beginning of each tranche, the inventory I (I > 0,
enough to buy and short stocks) is set to be a constant. In the
last minute of each tranche, if the inventory is not balanced,
i.e., the agent did not close any live orders, the MM agent
needs to take a series of done-for-day action: 1) stop market
making, 2) cancel all the live orders, and 3) sell all holding
positions, in order to keep the inventory balanced. In addition,
without loss of generality, transaction cost is 0, since most
market makers have market making licenses and do not need
to pay any transaction fee (in some market they can even get
rebate from market making).

The detailed experiment setup is summarized as follows,

• Data processing: each trading day is equally divided into
8 parts, and each part is 30 minutes (a tranche). Models
are then trained and tested on the set of tranches. All the
data are divided into a training set (first 80 days) and a
test set (last 20 days).

• Model training: the network has one LSTM layer fol-
lowed by one Linear layer. The structure of the network
is set as Input -> LSTM(43, 20) -> (batch, 20) -> Lin-
ear(20, 6) -> (batch, 6) -> softmax -> (batch, 1) -> Out-
put. one tranche in the training set is taken as a training
episode. During the training, an episode is randomly
selected to train the model, and it loops 10,000 times.
The network is implemented in Python 3.7, Pytorch 1.2
and Pandas 1.1, trained on two Titan Xp.1 ε in
ε-greedy is set as 0.7, δε is set as 0.95, discount factor γ
is set as 0.9, batch size is set as 128, loss function is set
as ‘‘MSELoss’’, optimization strategy is set as ‘‘Adam’’
and replay memory size is set as 10,000. There are two
other parameters to be tuned, which is learning rate (lr)
and number of output nodes in LSTM (n). lr is selected
from {1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3}, and n is
selected from {10, 15, 20, 25, 30, 35, 40, 45, 50}. There
are totally 54 combinations of those two parameters, and
after tuning lr is set as 1e− 3 and n is set as 20.

• Model testing: after the training, the model is applied to
the tranche in the test data set, and the DRLMM is then
compared with baselines in terms of total PnL (Profit
and Loss) and winning rate.

D. RESULTS AND DISCUSSIONS
In this section, we evaluate the DRLMM performance by
comparing with the baselines. We use average profit (AP)
over trading days and its standard deviation (std.) to evaluate
the profitability and stability of the tradingmodels. In Table 1,
results of 10 stocks are presented, and numbers marked by
bold font indicate that the model performs better than the
other two models. It can be observed that the DRLMM wins
in all the 10 stocks with smaller standard deviation.

1Resources are available at https://pan.baidu.com/s/1Fgb-Cg7woZ2lKZ-
zi5nQKw

9090 VOLUME 10, 2022



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

TABLE 1. Average profit and standard deviation of MM models.

Since there are 8 tranche for each trading day, thus, there
are totally 160 tranche in the test data set. In each trading
period, e.g. 9:30-10:00, there are 20 tranche from 20 trading
days in the test data set. In addition to the AP comparison
between those models, we compare strategies’s AP over dif-
ferent trading tranche, i.e., for each trading period, we calcu-
late the AP of that period over 20 trading days, and compare
their performances. In Table 2, numbers in bold font indicate
the model performs better than the other twomodels. It can be
observed that, the DRLMMwins 67 out of 80 trading tranche
over 10 stocks, which indicates that the DRLMM performs
better than the baselines in different trading periods. It can
also be observed from the results that during the opening
and closing hour of the market, strategies tend to make more
profit than the time periods near the noon. It is because that
the market is usually actively traded during the opening and
closing hours, which gives MM strategies more chances to
get both legs of orders executed and make profit.

To take one step further, we use winning number to com-
pare the strategies in different trading periods. If a strategy
gets more profits than the other strategy in one trading period,
it gets 1 score. Therefore, the highest score that one strategy
can get in one trading period is 20 in the test data set. Results
of winning number in the test data set are shown in Table 3
and Table 4. Numbers in bold font indicate that the strategy
performs better than the other strategy. It could be observed
from the results that the DRLMMperformed overwhelmingly
better than the baselines in terms of winning number.

TABLE 2. Average profit over different tranches.

In summary, the performance of DRLMM in our experi-
ments is better than the baselines. It could reliably generate
more profits in the volatile market. From the experimental
results, it could be observed that the LSTM can bring bet-
ter market state representations than manually feature engi-
neering. In addition, the deep reinforcement learning can

VOLUME 10, 2022 9091



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

TABLE 3. Winning number, RMM v.s. DRLMM.

TABLE 4. Winning number, RLMM v.s. DRLMM.

learn a better mapping between strategy states and actions,
and make smarter actions to obtain more profits and lower
risks.

V. CONCLUSION
The market making strategy optimization is an attractive
topic for both researchers and practitioners. With the devel-
opment and successful application of deep reinforcement
learning models, how to use deep reinforcement learning

model to market making strategy becomes an interesting
research problem. In this paper, we propose an end-to-end
reinforcement learning market making strategy based on
recurrent deep network representation, DRLMM. It exploits
LSTM network to extract temporal patterns of the market
directly from the LOBs, and it learns state-action relations
via a reinforcement learning approach. In order to control
inventory risk and information asymmetry, a deep Q-network
is introduced to adaptively select different action subsets and

9092 VOLUME 10, 2022



T. Sun et al.: Market Making Strategy Optimization via Deep Reinforcement Learning

train the market making agent according to the inventory
states.

Experiments are conducted on a six-month Level-2 data
set, including 10 stock, from Shanghai Stock Exchange in
China. Our model is compared with two baseline market
making strategies. Experimental results show that: 1) the
DRLMMperforms better than the benchmarkMM strategies;
2) using DRQN to directly extract market information and
construct market features can make the state representation in
DRLMM better than manually made features; 3) the adaptive
action space can improve the training process of DRLMM as
well as the profitability of the MM strategy.

In future work, DRLMM can be extended to a multi-agent
setting, where many agents with different parameters are
trained to learn market making and a meta-learning mecha-
nism could be further introduced to select agent in order to
build a more profitable MM strategy.

REFERENCES
[1] O. Vinyals et al., ‘‘Grandmaster level in StarCraft II using multi-agent

reinforcement learning,’’ Nature, vol. 575, no. 7782, pp. 350–354, 2019.
[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[3] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement
learning for financial signal representation and trading,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[4] L. Chen and Q. Gao, ‘‘Application of deep reinforcement learning on
automated stock trading,’’ inProc. IEEE 10th Int. Conf. Softw. Eng. Service
Sci. (ICSESS), Oct. 2019, pp. 29–33.

[5] M. Avellaneda and S. Stoikov, ‘‘High-frequency trading in a limit order
book,’’ Quant. Finance, vol. 8, no. 3, pp. 217–224, Apr. 2008.

[6] F. Guilbaud and H. Pham, ‘‘Optimal high-frequency trading with limit and
market orders,’’ Quant. Finance, vol. 13, no. 1, pp. 79–94, Jan. 2013.

[7] T. Ho and H. R. Stoll, ‘‘Optimal dealer pricing under transactions and
return uncertainty,’’ J. Financial Econ., vol. 9, no. 1, pp. 47–73, Mar. 1981.

[8] S. Das, ‘‘A learningmarket-maker in the Glosten–Milgrommodel,’’Quant.
Finance, vol. 5, no. 2, pp. 169–180, Apr. 2005.

[9] L. R. Glosten and P. R. Milgrom, ‘‘Bid, ask and transaction prices in
a specialist market with heterogeneously informed traders,’’ J. Financial
Econ., vol. 14, no. 1, pp. 71–100, Mar. 1985.

[10] N. T. Chan and C. R. Shelton, ‘‘An electronic market-maker,’’ in Proc.
Conf. Soc. Comput. Econ., Jan. 2001, pp. 1–43.

[11] T. Spooner, J. Fearnley, R. Savani, and A. Koukorinis, ‘‘Market making via
reinforcement learning,’’ 2018, arXiv:1804.04216.

[12] Y.-S. Lim and D. Gorse, ‘‘Reinforcement learning for high-frequency
market making,’’ in Proc. ESANN, Apr. 2018, pp. 521–526.

[13] Y. Patel, ‘‘Optimizing market making using multi-agent reinforcement
learning,’’ 2018, arXiv:1812.10252.

[14] S. Ganesh, N. Vadori, M. Xu, H. Zheng, P. Reddy, and M. Veloso, ‘‘Rein-
forcement learning for market making in a multi-agent dealer market,’’
2019, arXiv:1911.05892.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, ‘‘Mastering the game of go with deep neural networks
and tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[16] B. Ning, F. H. T. Lin, and S. Jaimungal, ‘‘Double deep Q-learning for
optimal execution,’’ 2018, arXiv:1812.06600.

[17] J. Wu, C. Wang, L. Xiong, and H. Sun, ‘‘Quantitative trading on stock
market based on deep reinforcement learning,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[18] O. Guãant and I. Manziuk, ‘‘Deep reinforcement learning for market
making in corporate bonds: Beating the curse of dimensionality,’’ Appl.
Math. Finance, vol. 26, no. 5, pp. 387–452, Sep. 2019.

[19] M. Hausknecht and P. Stone, ‘‘Deep recurrent Q-learning for partially
observable MDPs,’’ 2015, arXiv:1507.06527.

[20] Y. Zhong, Y. Stone, and A. Ward, ‘‘Data-driven market-making via model-
free learning,’’ in Proc. IJCAI, 2020, pp. 4461–4468.

[21] T. Spooner and R. Savani, ‘‘Robust market making via adversarial rein-
forcement learning,’’ in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 1–7.

[22] B. Gasperov and Z. Kostanjcar, ‘‘Market making with signals through deep
reinforcement learning,’’ IEEE Access, vol. 9, pp. 61611–61622, 2021.

[23] P. Kumar, ‘‘Deep reinforcement learning for market making,’’ in Proc.
AAMAS, 2020, pp. 1892–1894.

TIANYUAN SUN received the master’s degree
in business administration from Nanyang Techno-
logical University, Singapore, and the E.M.B.A.
degree from Shanghai Jiao Tong University,
China. He is currently pursuing the Ph.D. degree
with Hohai University, Nanjing, China. After
graduating with a master’s degree, he worked in
several listed companies, engaging in asset man-
agement and securities investment related works.
His research interests include stock market and
deep reinforcement learning.

DECHUN HUANG received the bachelor’s degree
in grain engineering from Jiangnan University,
Wuxi, China, in 1989, and the M.S. and Ph.D.
degrees in management from Hohai University,
Nanjing, China, in 1999 and 2003, respectively.
He is currently a Professor with the Department
of Finance, Business School, Hohai University.
He presided over and participated in many national
research projects funded by NSSFC, NSFC, and
other institutions. He is the author of more than ten

books, publishes more than 100 papers in journals and conferences, and wins
some awards. His research interests include enterprise strategic investment,
risk management, industrial economy, and investment economy. He was a
fellow of the Institute of Applied Technology, Fraunhofer, Germany, in 2015,
and the Deputy Director of the International Federation of East Asian Man-
agement Associations (IFEAMA), in 2014.

JIE YU was born in Nantong, China, in 1992.
He received the B.S.E. degree in engineering man-
agement from Yangzhou University, Yangzhou,
China, in 2011. He is currently pursuing the Ph.D.
degree with Hohai University, Nanjing, China.
He has participated in several research projects
funded by the NSFC and NSSFC. He is the coau-
thor of one book on investment risk and coauthored
papers in journals and conferences. His research
interests include corporate finance, strategic
management, and water-energy-food nexus.

VOLUME 10, 2022 9093


