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Estimation of Driver’s Gaze Region From Head
Position and Orientation Using Probabilistic

Confidence Regions
Sumit Jha , Member, IEEE, and Carlos Busso , Senior Member, IEEE

Abstract—Visual attention is one of the most important aspects
related to driver distraction. Estimating the driver’s visual atten-
tion can help a vehicle understand the awareness state of the driver,
providing important contextual information. While estimating the
exact gaze direction is difficult in the car environment, a coarse
estimation of the visual attention can be obtained by tracking the
head pose. Since the relation between head pose and gaze direction
is not one-to-one, this paper proposes a formulation based on
probabilistic models to create salient regions describing the driver’s
visual attention. The area of the estimated region is small when
the model has high confidence, which is directly learned from the
data. We use Gaussian process regression (GPR) to implement the
framework, comparing the performance with different regression
formulations such as linear regression and neural network based
methods. We evaluate these frameworks by studying the tradeoff
between spatial resolution and accuracy of the probability map
using naturalistic recordings collected with the UTDrive platform.
We observe that the GPR method produces the best result creating
accurate estimations with localized salient regions. For example,
the 95% confidence region is defined by an area covering 3.77%
region of a sphere surrounding the driver.

Index Terms—In-vehicle safety, advanced driver assistance
system, driver visual attention, gaze detection.

I. INTRODUCTION

ROAD safety is a major concern in today’s world. The main
cause of road accidents is the negligence of distracted

drivers [1]. Therefore, monitoring the driver’s actions can be
useful for estimating their behaviors, creating warnings to avoid
impending mistakes due to lack of awareness. Smart vehi-
cles today are equipped with multiple sensors, which provide
relevant real-time information inside and outside the vehicle.
The challenge is incorporating heterogeneous information to
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provide high-level knowledge to understand the driver, the
vehicle, and the road. Monitoring the driver’s behaviors can
also serve as a tool to design advanced user interfaces for
infotainment and navigation systems where the drivers naturally
interact with the car, without using manual resources [2] (e.g.,
interpreting commands such as “what is the address of this
building?,” while the driver briefly glances towards the target
location). With semi-autonomous cars, monitoring the driver
behavior can also be helpful in negotiating hand-over control
from the vehicle to the driver, or vice-versa.

Visual attention is a major factor when modeling the driver’s
intentions. The majority of the tasks involved while driving
require visual cues. The direction of the driver’s gaze strongly
depends on the primary driving task and the road condition.
Implementing a robust gaze detection system for cars can be
helpful in signaling the cognitive state [3], [4], situational
awareness [5]–[7], and attention level [8], [9] of the driver.
These systems can also be helpful in enhancing in-car dialog
systems [2].

In human-computer interaction (HCI), the gaze of a subject is
estimated by locating the pupil using various appearance based
and feature based techniques [10]–[12]. However, these tech-
niques are not practical in a vehicle environment with challeng-
ing situations such as varying lighting conditions, high degree of
head rotations, and possible occlusions [13]. Moreover, in the de-
tection of the driver’s attention is often more important to achieve
robustness across conditions rather than high performance under
restricted conditions. A coarse estimation of the driver’s visual
attention is usually enough for many applications. Following
this strategy, studies have proposed the use of head pose to
infer the driver’s gaze [14]–[17]. Head pose has a strong cor-
relation with gaze, but the relationship is not deterministic [18].
Taking the eyes-off-the-road during longer periods significantly
increases chances of accidents. Therefore, drivers tend to have
short glances, which involve head and eye movements. This
relationship changes according to the driver, primary driving
task, secondary driving task, and the traffic condition. Therefore,
the head orientation cannot uniquely determine the exact gaze
direction.

Instead of aiming to detect the precise gaze direction, this
paper proposes to estimate a probabilistic visual map describing
the region of visual attention where the driver is most likely to
direct her/his gaze. Building upon our previous work [19], [20],
we propose to create this probabilistic visual map using a two
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dimensional Gaussian distribution that is directly learned from
data. The formulation relies on Gaussian process regression
(GPR) to estimate the distribution of the gaze given a certain
position and orientation of the driver’s head. The proposed
model provides not only the probabilistic visual map, but also
confidence regions, which can be extremely useful for HCI appli-
cations for infotainment and navigation systems, and advanced
driver assistance systems (ADAS). The size of the salient region
decreases when the confidence of the model increases, learning
all the parameters of the models directly from the data. We
train and evaluate the system with recordings from real driving
scenarios using affordable equipment that can be easily installed
on regular cars.

The experimental evaluation demonstrates the effectiveness
of the proposed GPR system, analyzing the tradeoff between
accuracy and spatial resolution of the probabilistic visual map.
We compare our proposed solution with alternative machine
learning methods to estimate the visual maps, including simple
regression techniques, deep neural networks and mixture density
networks (MDNs). The results indicate that our proposed model
offers the best accuracy and spatial resolution in estimating the
probabilistic region of the driver’s gaze. For example, 95% of
the target markers lie inside the probabilistic region estimated
by the system, where its temporal resolution includes 3.77% of a
sphere surrounding the user’s range of vision. Finally, we
demonstrate the benefit of the proposed probabilistic model
by mapping the probabilistic visual map to areas on the road,
allowing us to identify coarse regions outside the car that the
driver is directing her/his gaze to.

This study is organized as follows. Section II discusses related
studies about the importance of visual attention when studying
driver’s behavior. Section III describes the data collection pro-
cedure that we followed to train and evaluate our algorithms.
Section IV describes the proposed method to obtain the prob-
abilistic salient visual map to represent visual attention. It also
introduces the baseline methods. Section V discusses the results
obtained from different models, comparing the tradeoff between
spatial resolution and accuracy of the probabilistic salient visual
maps. Finally, Section VI concludes the study, suggesting future
research directions.

II. RELATED WORK

A. Visual Attention of the Driver

Maintaining visual attention while driving a vehicle is im-
portant to reduce hazard scenarios. Drivers obtain most infor-
mation through vision, which is important to maintain road
awareness and to complete driving maneuvers [5]. Therefore,
several studies have considered the visual patterns of the driver,
creating useful automatic tools for intelligent vehicle systems.
Liang and Lee [21] conducted experiments by inducing visual
distraction, cognitive distraction and a combination of both by
asking subjects to perform distracting tasks while operating a
driving simulator. They observed that the driving performance
was worse when the subjects were performing visually dis-
tracting tasks compared to the performance when performing
a combination of visual and cognitive distracting tasks.

Robinson et al. [22] studied the visual search patterns of a
driver by looking at her/his head movements during lane changes
and when entering a highway after a stop sign. They observed
longer search times at a stop sign, where the drivers had to
observe the whole scene before making a decision. In contrast,
for lane change actions the search time was shorter since the
driver had to make quick decisions. Underwood et al. [23] used
eye trackers to study the eye movement behavior of experienced
and novice drivers in three different types of roads: rural, sub-
urban and divided highways. They analyzed the most common
sequences of fixation in various regions of the road to compare
the driving behavior. They observed that a novice driver tends to
change her/his fixation more often, while an experienced driver
tends to use peripheral vision to pick up subtle information such
as the demarcation of lanes.

Understanding visual attention can also help us infer infor-
mation about visual and cognitive distractions. Sodhi et al. [24]
used a head-mounted, eye-tracker in a vehicle, where they asked
multiple subjects to drive a predetermined route while perform-
ing tasks that stimulate distractions. They used the eye-tracker
to obtain the position and diameter of the pupil. They studied
the impact of infotainment systems on driving by stimulating
various cognitive and visual distractions. The study observed
that the eye movement patterns changed when the driver was
distracted by a secondary task. Kutila et al. [25] recorded the
face of the driver with stereo cameras in a naturalistic driving
scenario. They used head and gaze information along with lane
position and controller area network (CAN)-Bus data to detect
visual and cognitive distraction. Gaze data was obtained using
a gaze tracker. The driver’s visual attention is inferred using
eyes-off-the-road duration. The eye movement is fused with
cognitive workload inferred from the driving data to obtain
cognitive distractions. Liang et al. [26] designed a support vector
machine (SVM) classifier that used measures of driving perfor-
mance such as steering angle and lane position, and features
from eye movement data such as fixations and saccades to detect
cognitive distraction. They obtained an accuracy of 96.1% in
a simulated environment. Murphy et al. [27] implemented a
real-time system to track the six degrees of freedom of the
head pose of a driver. They designed an appearance based
particle filter to design a 3D model of the face in augmented
reality. Rezaei and Klette [17] monitored both the driver and
the road to find possible hazard situations. They designed an
asymmetric active appearance model (AAM) to estimate the
driver’s head pose, which was used in conjunction with features
extracted from the vehicles detected on the road to design a
fuzzy logic based system to estimate the risk level of the driving
situation.

Understanding the driver’s behavior is even more relevant
with the advances in autonomous cars. Information and datasets
derived from drivers in naturalistic conditions, including their
visual attention, can be instrumental in the design of autonomous
cars [28], following the ideas of behavior cloning [29]. Likewise,
cars that are aware of the driver’s visual attention can more effec-
tively negotiate hand over situations. Zeeb et al. [30] compared
the take-over time and quality between a distracted driver and
an attentive driver. The drivers were asked to be involved in
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secondary tasks such as watching videos and writing emails.
They observed that while a driver could quickly resume control
of the car when prompted, the quality of the take over was worse
when the driver was distracted.

B. Estimation of Visual Attention

Several studies have worked on estimating the visual attention
of the driver, realizing the importance of visual attention in mon-
itoring the behaviors of the driver. The most common approach is
to partition the gaze region of the driver into different gaze zones.
Then, the problem is formulated as a classification problem to
identify the area that the driver is directing her/his attention.
Tawari and Trivedi [14] video recorded the face of the driver from
two different angles in the car to capture the head pose. The two
cameras increased the angular range of the head pose estimation.
The task was to classify the driver’s gaze into eight different gaze
zones. They used annotations obtained from human experts as
the ground truth for the target gaze zone, training a random forest
classifier with the head pose as features. The zone estimations
had high confusion between adjacent zones such as looking
forward and looking at the speedometer. Lee et al. [15] suggested
a robust method to estimate the yaw and pitch of the head. The
method relied on simple edge features from the face, making the
approach robust to rotation and illumination, and fast enough to
be run in real time. They used the estimated yaw and pitch angles
to identify one of the 18 predefined gaze zones using an SVM
classifier. Chuang et al. [16] designed a gaze estimation system
using a smartphone camera. They placed the smartphone on the
dashboard to record the driver’s face. They used the location of
the eyes, nose and mouth regions as features to classify the gaze
among eight different zones. Vora et al. [31] tried a generalized
approach to classify gaze zones which is subject invariant. They
used convolutional neural networks (CNNs) to obtain the gaze
zone from the driver’s facial image. The best network achieved
a 93.36% accuracy while performing a seven class classification
task (six gaze zones plus a class for eye closure)

While the gaze zone provides useful information about the
visual attention of the driver, this information is too coarse for
several applications. However, it is challenging to design gaze
estimation methods with high precision that work well inside
a vehicle. Although there is a strong relationship between head
movement and gaze direction, the relation is not one-to-one [18].
In naturalistic driving scenarios, the driver relies not only on
head movements to direct her/his gaze toward a target location,
but also on eye movement. The interplay between head and
eye movements depends on the cognitive load of the driver and
the underlying driving task. A feasible alternative to gaze zone
estimation or unreliable gaze algorithms that do not work in
a vehicle is the definition of a probabilistic salient visual map
describing the visual attention of the driver. This probabilistic
salient visual map can be used to define spatial confidence
regions describing the direction of the driver’s gaze. This study
pursues this novel formulation, creating models that capture the
relationship between head pose and gaze, creating a probability
distribution of the gaze given the orientation and position of the
driver’s head.

C. Relation to Prior Work

The formulation of creating a probabilistic salient visual map
to model driver attention is novel. To the best of our knowledge,
the only relevant study is our preliminary work [19], [20], which
provided initial evidences of the benefits of using this promising
formulation. Jha and Busso [19] used the GPR framework to
estimate the gaze distribution conditioned on the head pose. Jha
and Busso [20] explored a nonparametric approach to create
this probabilistic salient visual map. This paper builds upon
these preliminary studies providing better modeling capabilities,
which are evaluated with exhaustive experiments. The contribu-
tions of our paper with respect to prior work are:
� We improve the modeling capability of the GPR framework

by exploring multiple configuration including implement-
ing the basis function with a neural network, and using
automatic relevance determination (ARD) for the kernel
function. These approaches increase the capacity and flex-
ibility of the models, leading to better performance.

� We explore multiple regression-based frameworks and
compare them to our method to establish the superiority
of the proposed approach in comparison to other methods.

� We demonstrate the application of using confidence maps
with our method to project the angular distribution onto
the road scene, moving us closer to deploy our solution in
practical applications.

Instead of relying on methods that assume a one-to-one
relationship between head pose and gaze, which has been the
predominant approach in previous studies, our method creates
a probability distribution that takes in consideration the un-
certainty in the predictions. This approach represents a novel
formulation from a theoretical perspective. The implementation
of the approach in a real system is feasible, but not the primary
goal of this paper.

III. DATA COLLECTION

This study uses recordings from real driving scenarios col-
lected with the UTDrive platform [32], [33], which is a vehicle
equipped with multiple sensors (Fig. 1(a)). The UTDrive has
been successfully used to study driver behaviors [34]–[36].
Instead of using the specific sensors from this car, we decided
to only use the commercially available dash camera Blackvue
DR-650GW-2ch (Fig. 1(b)), which can be easily installed in any
regular car. The device features two cameras along with a global
positioning system (GPS) and accelerometer sensors. The front
camera was used to record the road view, while the rear camera
was used to record the face of the driver. The system is currently
implemented offline.

A. Data Collection Protocol

For the analysis, we require data where we know the ground
truth information about the direction of the gaze. We achieve
this goal by asking the driver to look at predefined markers.
We place 21 numbered markers on the windshield (#1-#13),
mirrors (#14-#16), side windows (#17-#18), speedometer panel
(#19), radio (#20), and gear (#21) (Fig. 1(c)). Then, we ask
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Fig. 1. (a) Vehicle used for data collection. (b) Dash camera (Blackvue DR-650GW-2ch) used to record the face of the driver (primary camera) and the road
(secondary camera). (c) Markers placed on the windshield (1-13), mirrors (14-16), side windows (17-18), speedometer panel (19), radio (20), and gear (21). The
subjects were asked to look at these markers.

the subjects to look at these markers multiple times, where we
carefully annotated the corresponding timing information. We
recruited 16 students (10 males, 6 females) with valid US driver
licenses from the University of Texas at Dallas. We designed a
three-phase protocol:

Phase 1: The first phase is recorded when the vehicle is
parked. The subject is asked to sit in the driver seat, looking
at different markers. The numbers are called out in random
order and the driver is asked to look at the corresponding points.
Each number was repeated five times in random order. We did
not provide any further instruction. The goal of this phase is
to estimate and model the gaze-head relationship when our
subjects are not driving. They have plenty of time to complete
this task without worrying about visual, manual and cognitive
demands associated with the driving tasks. The drivers can also
get familiar with the task in a safe environment.

Phase 2: The second phase consists of the same task while the
subject is driving the vehicle. The subject is asked to drive on a
straight road with low traffic. Following the protocol approved
by the institutional review board (IRB) at UT Dallas, we carried
out the data collection during the day, avoiding peak hours to
reduce the cognitive load of the driver in traffic conditions. A
passenger reads the numbers, pointing to the target location
reducing the cognitive demand of the task. The numbers are
requested only when the driver does not have to perform any
maneuver. The safety of the subject is our first priority. We do
not provide any additional instruction on how to look at the
markers. We use this phase to estimate and model the gaze-head
relationship while the subject is driving.

Phase 3: During the third phase, we ask the driver to park
the car and perform the same task again. This time, the driver is
asked to look at each marker directing her/his head toward the
point. In this controlled condition, the gaze of the driver is the
same as the head pose, without the bias added by the movement
of the eye. To enforce this requirement, we request the driver
to wear a glass frame with a low power laser mounted at the
center (Fig. 2). The driver is asked to point the laser towards
the marker. The windows of the car are covered during this
phase to reduce the lighting inside the car to make the laser
more visible for the subject to complete the task. This approach
also prevents the laser beam to project outside the car. Each
number was repeated three times at random for each marker.
This phase provides valuable data, where the gaze is exactly
aligned with the head orientation. While this phase is not used

Fig. 2. Laser pointer mounted on a glass frame for the controlled head pose
condition during phase 3 of the data collection.

Fig. 3. (a) Example of a AprilTag, (b) Headband with AprilTags for robust
head pose estimation.

in the experiments discussed in this study, it provides valuable
calibration information for other studies [18].

Additionally, we asked the last three of our subjects to look at
specific locations on the road including billboards, street signals,
and buildings to validate our systems in real-world applications.
This data is used to assess the mapping between gaze detection
and objects on the roads.

B. Head Pose Estimation Using AprilTags

It is challenging to use computer vision algorithms in a
car environment. In our previous work [13], we demonstrated
that the robustness of a state-of-the-art head pose estimation
algorithm was low for non-frontal faces rotated more than 45◦.
For this analysis, we aim to have more robust estimations of
head poses regardless of the head orientation. We achieve this
goal by using a headband with AprilTags (Fig. 3(a)). For future
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Fig. 4. Description of the process to calibration the cameras and define a common reference system. Figures (a)-(d) show the calibration for the markers’ locations
and the face camera. Figures (e)-(f) show the calibration for the road camera.

work, we can rely on depth cameras to obtain robust head pose
estimation [37], [38].

AprilTags [39] are 2D barcodes primarily used for augmented
reality applications, robotics and camera calibration. Fig. 3(a)
shows an example of an AprilTag. The unique black and white
patterns of each AprilTag are easy to automatically detect with
computer vision algorithms. From the pattern, it is possible
to accurately estimate the position and orientation of the tags.
Instead of using a single AprilTag, we rely on many tags to
robustly estimate the position and orientation of the head. For
this purpose, we designed a headband with 17 square faces
(2 × 2 cm each), separated by an angle of 12◦. Each of the
square faces contains a 1.6 cm × 1.6 cm unique tag. Fig. 3(b)
shows the headband worn by the participants. During the data
collection, the subject is asked to wear the band for the entire
recording. The selected design allows us to observe multiple
tags for each video frame, regardless of the orientation of the
driver’s head. Therefore, we can robustly infer the position and
orientation of the headband.

The AprilTags from the headband are used to obtain the
position and orientation of the driver’s head. The AprilTag
toolkit provides an estimate of the position and orientation of
each tag present in an image. The structure of the headband and
orientation of the visible bands help us estimate the pose of the
headband.

The use of the headband facilitates the analysis of head pose
regardless of the orientation of the head or the environmental
condition in the vehicle. For real-world applications, the head
orientation will be estimated using automatic algorithms using
either RGB cameras [40] or depth cameras [37], [38].

C. Calibration of Camera and Markers

A key challenge is to define a common coordinate system.
We need the location and orientation of the driver’s head along

with the location of each enumerated marker in a 3D space with
respect to a single coordinate system. Fig. 4(a) shows the view
from the rear camera facing the driver, and Fig. 4(f) shows the
view from the road camera. It is clear from these two figures
that most of the markers are not included in the view of either
of the camera. The problem is even more challenging as we aim
to map the gaze direction to areas on the road camera. We need
a calibration process to find the exact target marker location in
the 3D space and the transformation between the cameras to
represent all the coordinates in a single reference system. The
calibration process relies on AprilTags to find the location of the
markers in the 3D space and to find the relative homogeneous
transformation between each camera. The proposed solution
consists of placing AprilTags in the vehicle. The AprilTags
are used to establish a connection between the road and face
cameras, which do not have any overlap in their field of view. The
calibration process has two steps: create a common reference
coordinate system, and create a mapping between objects outside
the vehicle.

The first step in the calibration is to establish a reference
coordinate system. AprilTags are placed on each of the markers
(Fig. 4(d)), and some reference locations in the field of view
of the face camera (Figs. 4(a)-4(d)). These tags are only used to
calibrate the system, and are removed during the data collection.
Then, we use a third camera to take multiple pictures contain-
ing subsets of these AprilTags (Fig. 4). This camera captures
locations that are not in the field of view of either of the dash
cameras. The relationship between frames containing multiple
common tags is calculated. The face camera captures a subset of
these additional tags. Using the location of these tags, we create
homogeneous transformations to obtain the location of all the
tags, including the 21 markers, with respect to the coordinate
system of the face camera.

The second step in the calibration consists of estimating a
mapping between the reference coordinate system and objects
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outside the vehicle. For this step, the third camera is fixed inside
the vehicle such that it records the windshield and the road view
(Figs. 4(e) and 4(f) – these two images were simultaneously
taken). As a result, we have two cameras facing the road: the
road camera used in the data collection and the third camera used
for calibration. We printed an AprilTag sign, which is placed
in front of the vehicle such that it is in the field of view of
both cameras. This process helps us to establish the relationship
between the cameras for different points. Finally, the relation
between the face camera and the third camera is established
using the location of the markers. With this process, we derive all
the transformations needed to map everything into the coordinate
system of the face camera. The transformation matrix to relate
each camera is calculated using the Kabsch algorithm [41].

Since the placement of the headband slightly varies across
subjects, we need to obtain a standard reference per subject to
estimate the head pose from the AprilTags. For this purpose, we
assume that the long-term average of the driver’s head pose is
consistent across subjects. We calculate the average orientation
of the headband in the quaternion space using spherical linear
interpolation (Slerp). We set the origin of the coordinate system
as the average pose of the driver’s head by subtracting the aver-
age head position per participant and multiplying by the inverse
of the average rotation matrix to normalize the orientation. We
also subtract the average head position value from each of the
target marker’s location to apply a similar transformation to
the target gaze. Finally, the ground truth gaze vector at a given
instant is obtained by subtracting the target gaze location from
the head position at the given instant, calculating the horizontal
and vertical gaze angles from this vector.

IV. METHODOLOGY

This paper aims to create a probabilistic salient visual map
describing the visual attention of the driver. We project this map
onto the windshield creating spatial distributions for the gaze
direction. Then, we map this visual map on the road camera,
defining areas on the road where we estimate the driver is
directing her/his gaze. We can estimate confidence regions for
the driver’s visual attention by creating a probabilistic map,
which is an appealing method with more practical applications
than methods estimating a single point for the gaze direction.
This section proposes our main method as well as three alterna-
tive baselines to obtain a probabilistic distribution of the gaze
angle from the position and orientation of the driver’s head.
These methods estimate the probabilistic salient visual map for
the horizontal and vertical angles by modeling the mean and
variance of the gaze angles as a function of the position and
orientation of the head.

A. Gaussian Process Regression

Our proposed model is based on the original design imple-
mented in our preliminary work [19]. It relies on Gaussian
process regression (GPR) [42], which models the outputs as
a Gaussian process with the co-variance defined by a kernel
function. The model assumes that any subset of the output is a
joint Gaussian distribution. Using the ground truth of the training

data in the vicinity of each point, the model learns the uncertainty
in the estimation of any test data. This method provides a
promising and effective approach to learn the many-to-many
relationship between the head pose and the gaze. It learns a gaze
distribution as a function of different head poses presented in
the training data that are in the neighborhood of the target head
pose.

Let x ∈ Rd be the input of the system, where d is its di-
mension (in our case d = 6). Let Y be a Gaussian random
process representing the output. If y is a vector representing
n realizations, as a Gaussian random process, y follows a joint
Gaussian distribution with prior distribution fy,

fy = N (μ,Σ) (1)

where, y = {y1, y2, y3, . . . , yn} ⊂ Y (yi is a realization of Y ).
The parameters μ and Σ are functions of x. As shown in (2), the
mean provides the deterministic component of the model, where
ω ∈ Rd and ω0 ∈ R are learned while training the models.

μ = xTω + ω0 (2)

The probabilistic component is given by Σ, which is the
covariance matrix. The covariance of any point x calculated
jointly with the input points in the training set x′ is given by
the kernel k(x,x′). The covariance is modeled using a squared
exponential kernel ( (3)). The correlation is learned with respect
to the input data from the training set in the neighborhood of
the data of interest. This kernel imposes that the outputs will be
more correlated to the points in the training data that are closer
to the test input data as the covariance matrix will have higher
values for points that are closer.

k(x,x′) = σ2
f exp

(−‖x− x′‖2
2 l2

)
(3)

In (3), the parameter σf represents the amplitude of the
covariance. This parameter defines the autocovariance of the
data points (i.e., k(x,x) = σ2

f ). The parameter l represents the
length scale value, which defines how much the distance between
the training and estimated data affects the cross-covariance
between two data points. If l is high, k(x,x′) slowly reduces,
as the distance between the points increases (‖x− x′‖2). These
parameters decide the size of the confidence interval of our esti-
mation as the covariance matrix is a function of these parameters.
We also explore the use of automatic relevance determination
(ARD). Using ARD, the kernel learns different length scale
parameters for each input variable. The kernel function with
ARD is given in (4).

k(x,x′) = σ2
f exp

(
−1

2

d∑
i=0

‖xi − x′
i‖2

l2i

)
(4)

Using different values for l may be useful, since the input to
our models include position and orientation of the head, which
may have different scales. We learn the values for σf and l (or
li) while training the models by maximizing the log-likelihood
of the ground truth data in the train set.

To obtain the posterior distribution from the prior model, the
model is conditioned on the given training data. Let, Xtr ∈
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RL×d be the training dataset and ytr ∈ RL be the output Gaus-
sian random variables, where L is the number of frames in the
train set. Let y∗ be the random variable we are trying to estimate
for the input vector x∗. From (1), the joint distribution is given
by,[

fytr

fy∗

]
= N

([
XT

trω + ω0

xT
∗ ω + ω0

]
,

[
Σ(Xtr,Xtr) Σ(Xtr,x∗)

Σ(x∗,Xtr) Σ(x∗,x∗)

])

(5)

Using (5), the posterior distribution can be calculated with the
conditional probability when ytr = yobs:

fy∗|ytr=yobs
= N (μ̂∗, Σ̂∗) (6)

μ̂∗ = xT
∗ ω + ω0 +Σ(x∗,Xtr)[Σ(Xtr,Xtr)]

−1

× (yobs −XT
trω − ω0) (7)

Σ̂∗ = Σ(x∗,x∗) − Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1Σ(Xtr,x∗)

(8)

where yobs is the ground truth value (i.e., observed y). We use
four different settings for the deterministic function. The first
setting is a GPR model without the deterministic component
(i.e. ω = 0, ω0 = 0). The mean of the posterior distribution is
purely estimated from the kernel function ( (9)).

μ̂∗ = Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1yobs (9)

The second setting is with a constant deterministic compo-
nent. The model learns ω0 as a single constant mean for the
distribution (i.e., ω = 0). The third setting estimates both ω
and ω0 during training. We refer to this setting as linear model.
The fourth setting estimates the deterministic component of the
model with a neural network (NN). We implement this approach
by training NN (x), using back propagation. The network is
implemented with two hidden layers, following the architecture
used for our second baseline (Fig. 5(a)). Then, we estimate the
residual error, r(x) = yobs − NN (x), which is modeled with
the GPR formulation, without the deterministic component (ω=
0,ω0=0). The conditional mean for this implementation is given
by (10).

μ̂∗ = NN (x∗) + Σ(x∗,Xtr)[Σ(Xtr,Xtr)]
−1(yobs − NN (Xtr))

(10)

Using this framework, we learn two separate models for the
horizontal angle (θ) and the vertical angle (φ). An important
feature of our formulation is modeling the output as a het-
eroscedastic process, where the variance of the output salient
map varies depending on the input variables. Therefore, the size
of the probabilistic salient visual map increases for regions with
higher uncertainty, and decreases when the model is confident
in its estimation.

B. Baseline Methods

We compare the model with three methods. Two of these base-
lines are based on normal regression functions designed with the
mean square error loss. We adapted these regression models to
create a probability map as the output by assuming a Gaussian

Fig. 5. Architecture of baseline methods to estimate the probabilistic salient
visual map describing visual attention. The same architecture is used for both
horizontal and vertical angles.

distribution. For the third baseline, we explore a variation of
mixture density network (MDN) that uses the log-likelihood as
the loss function to model the conditional probability density of
the gaze given the input head pose. This section provides the
details of these baseline models.

1) Linear Regression: The first baseline is the most basic
regression model. The gaze is obtained as a linear function of the
head pose parameters (orientation and position). The dependent
variables are the six degrees of freedom of the head correspond-
ing to its position (x,y,z) and orientation angles (α, β, γ). Two
separate models are created for the gaze angle in the horizontal
and vertical directions. Equations 11 and 12 show the models,
where, θgaze and φgaze are the horizontal and vertical gaze
angles, respectively.

θgaze = a0 + a1x+ a2y + a3z + a4α+ a5β + a6γ (11)

φgaze = b0 + b1x+ b2y + b3z + b4α+ b5β + b6γ (12)

This model is similar to the one trained in Jha and Busso [18],
but instead of obtaining the gaze location, we obtain the angles
representing the gaze vectors. To create a probability distribution
as our estimation, we consider a Gaussian distribution with the
mean value provided by the regression models. The variance is
obtained from the mean square error estimated on the train data.
Notice that this model is homoscedastic, where the variance is
constant across the data.

2) Regression With Neural Network: For the second baseline,
we design a neural network to perform the regression task.
Fig. 5(a) shows the model. The neural network contains two
fully connected layers, each of them implemented with twelve
nodes. The activation used for the hidden layers is the rectified
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linear unit (ReLU) activation using a linear function at the output
layer. The neural network is optimized to minimize the mean
square error between the true gaze angle and the estimated gaze
angle from the model. Similar to our previous baseline model,
the probabilistic distribution is obtained by assuming a Gaussian
distribution for the output, where the mean is the estimated gaze,
and the variance is estimated with the mean square error in the
train data. This approach is also homoscedastic.

3) Neural Network for Density Estimation: The third base-
line is inspired by the MDN proposed by Bishop [43]. MDN
can directly learn the standard deviation of the output as a
non-linear function of the input data. MDNs are used to model
the output as a Gaussian mixture model (GMM) by optimizing
the log-likelihood function in (14).

p(y) =

M∑
k=1

πkN (y|μk, σk) (13)

Lllk(y, πk, μk, σk) = −log(p(y)) (14)

The network has 3×M nodes in the output layer, where
M is the number of components. The output represents the
component weights πk, mean μk and standard deviation σk

with k ∈ 1, . . . ,M . Since we assume that our output is a single
Gaussian distribution, we design a model with one component,
reducing the number of parameters to two. Therefore, the output
layer has two nodes that provide the mean μ and the standard de-
viationσ. Our objective is to estimate a Gaussian distribution that
maximizes the probability of the ground truth data. To achieve
this, we use as our loss function the negative log-likelihood of
the ground truth gaze with respect to the estimated mean and the
standard deviation.

Lllk(y, μ, σ) = − log

(
1√
2πσ

exp

(
(y − μ)2

2σ2

))
(15)

The variable σ is obtained as the exponential of the cor-
responding output node to avoid the standard deviation from
being negative. With this formulation, we estimate not only the
mean, but also the variance in each estimation, providing an
appropriate scaling to the uncertainty of each output estimation.
This baseline is a heteroscedastic method, where the variance
changes according to the input data.

Fig. 5(b) shows the network architecture, which has two
hidden layers implemented with 12 nodes. The network uses the
Adam optimizer [44] with a learning rate of r = 0.001, using
mini batches of size 32. The neural network is implemented in
Keras [45] with Tensorflow [46] as backend. The networks is
trained for 1,000 epochs, and the model with minimum loss in
the development set is chosen as the final model to be evaluated
in the test set.

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed solution and baselines to
estimate the probabilistic salient visual map. The models are
separately trained and evaluated for data collected in phase 1
(parked vehicle) and phase 2 (driving condition). The database

is partitioned into train, test and development sets using a leave-
one-driver-out cross-validation approach. Data from one subject
are used for the development set, data from one subject are used
for the test set, and data from the remaining fourteen subjects are
used for the train set. The development set is used to optimize the
hyperparameters and decide on the best model. The best model
is evaluated on the test set. This approach is repeated sixteen
times, where we report the results across the 16 folds. Note that
all the data are, at some point, part of the test set.

We need to analyze the estimated probabilistic salient visual
map in terms of accuracy and spatial resolution to evaluate
and compare the effectiveness of the baseline and proposed
models. Accuracy is measured as the percentage of the target
gaze directions included in a given confidence interval. If the
majority of the data do not lie within the confidence interval,
the model is not accurate. The spatial resolution determines
how large the confidence interval is. Likewise, if the spatial
resolution is too high, the estimation is not very useful even
if most data lies within the interval. To evaluate the spatial
resolution of the system, we evaluate the size of the confidence
interval created by each model. The outputs of the model are
horizontal (θ) and vertical (φ) angles. Therefore, we express the
area of the confidence region in terms of the fraction of a sphere
surrounding the driver’s head. An ideal approach will create a
confidence interval that is both accurate and with reduced spatial
resolution. To analyze the tradeoff between accuracy and spatial
resolution, we present plots with the accuracy of our model at
different spatial resolution (Figs. 6, 7, 11).

The first evaluation considers different implementations of
the GPR model with different parameters to establish the best
method for our purpose (Section V-A). Then, we compare the
best performing GPR models with the three alternative baselines
(Section V-B). Then, we demonstrate the features of the model
by projecting the confidence regions onto the windshield (Sec-
tion V-C), and road camera (Section V-D). Then, we study the
performance when we have the orientation of the driver’s head,
but limited information about the head’s position, which is a pos-
sible scenarios if regular cameras are used to estimate the head
information (Section V-E). We also evaluate the time required for
training and inference as a function of the train set size (Section
V-F), and the performance as a function of the train set size
(Section V-G).

A. GPR Model Selection

Fig. 6 shows the accuracy of our model within different
confidence interval for the different GPR models. Fig. 6(a)
reports the results for phase 1 (parked condition) and Fig. 6(b)
reports the results for phase 2 (driving condition). We zoom
these figures between the 75% and 95% confidence intervals
for better visualization. We observe that different models work
better for parked and driving conditions. We have shown that
the relationship between head movements and gaze changes
when a person is driving [18]. There is more uncertainty in
the relationship between head pose and gaze, where drivers
tend to use more eye movements to glance at a target object.
The increase in uncertainty explains the differences in patterns
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Fig. 6. Comparison of the accuracy versus temporal resolution of different
implementations of the GPR model. We zoom the plots for better visualization.
The results are separately reported for parked and driving conditions. The figure
is better viewed in colors. Accuracy is calculated within a confidence interval
(CI) given by the area.

across phases 1 and 2. During the driving condition (phase 2),
implementing the deterministic component with a linear model
leads to the best performance. For this case, the use of ARD in
the kernel function leads to improvements for all four models.
Since the relationship between head pose and gaze is more am-
biguous when driving, as noted in Jha and Busso [18], a stronger
probabilistic component helps to better describe the relationship
( (3)). Since ARD encodes a separate length scale parameter for
each variable (variable l in (3)), this model provides a more
sophisticated description of the variance of the gaze random
variable. Therefore, it is expected that the best model for the
driving condition uses the ARD framework. The deterministic
part of the model is dictated by the mean (variable μ in (2)).
The results show that adding a more sophisticated mean model
does not provide a gain in performance while increasing the
complexity in learning. Therefore, a linear mean function with
ARD function provides the best performance in the driving
condition. During the parked condition (phase 1), in contrast,
the best GPR model is when the deterministic part is imple-
mented with a neural network, and the kernel is implemented
without ARD. This result shows that adding a more powerful
deterministic function is enough to achieve good performance.
We consistently observe lower performance when using ARD,
regardless of the implementation of the deterministic function.
The gaze has a strong predictability since the variance is reduced

Fig. 7. Comparison of the accuracy versus temporal resolution of GPR and
baseline models. We zoom the plots for better visualization. The results are
separately reported for parked and driving conditions. The figure is better viewed
in colors. Accuracy is calculated within a confidence interval (CI) given by the
area.

compared to the driving condition case. Hence, the deterministic
part of the model is more important. A neural network provides
a better estimate of the mean. Given the more straightforward
relation between head pose and gaze, the kernel function without
ARD provides a better estimate of the variance.

For the rest of the evaluation, we will consider the two GPR
models that led to the best performance for phase 1 (GPR with
neural network model without ARD) and phase 2 (GPR with
linear model with ARD). The case when the ego vehicle is
static can be used for modeling gaze when the car is stopped
at intersections, or traffic signals. In these cases, the driver will
take more time to asses the environment compared to cases when
driving the car.

B. Comparison With Baselines

This section compares our proposed models with the three
baselines described in Section IV-B: linear regression (LR),
neural network regression (NN) and mixture density network
(MDN).

1) Accuracy Versus Spatial Resolution: Fig. 7 shows the
accuracy of our models at different spatial resolutions, compar-
ing with results with the curves of different baseline models.
We observe that both GPR models perform better than all
the baseline models. They are consistently above other curves
showing not only higher accuracies, but also smaller regions. The
linear regression baseline is the model with higher performance
from the baselines. The values are constantly below our two
implementations of the GPR models.
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TABLE I
AVERAGE AREA OF THE CONFIDENCE INTERVALS FOR 50%, 75% AND 95%

ACCURACY. THIS AREA IS MEASURED AS THE FRACTION OF A SPHERE

SURROUNDING THE DRIVER’S HEAD

TABLE II
AVERAGE ACCURACY OF THE CONFIDENCE INTERVALS FOR PROBABILISTIC

SALIENT VISUAL MAPS OF DIFFERENT SIZES (1%, 2% AND 4% OF THE SPHERE

SURROUNDING THE DRIVER’S HEAD)

To quantify the spatial resolution of the models, Table I
lists the area of the confidence interval at 50%, 75% and 95%
accuracies for the baseline and GPR models. We observe that the
areas of the confidence interval for the GPR models are smaller
than the areas for the baseline models. In phase 1, GPR NN has
the smallest area for the 95% confidence interval (3.76%). In
phase 2, GPR Linear has the smallest area for the 95% confidence
interval (3.77%). The ability to provide high accuracy within a
small region makes the GPR models more efficient.

To quantify the accuracy of the models, Table II lists the
accuracy observed when the fractions of a sphere surrounding
the driver’s head is 1%, 2% and 4%. This analysis quantifies the
performance of the proposed and baseline models when their
confidence intervals have consistent area. We observe that we
can get 86.2% accuracy in phase 2 within an area of 2% with
the GPR Linear model. Similarly on phase 1, we can obtain an
accuracy of 83.7% with the GPR NN model.

2) Theoretical Versus Empirical Cumulative Density Func-
tion: Since our proposed and baseline models assume that the
estimated gaze follow a Gaussian distribution, it is important to
analyze how well this Gaussian assumption holds with respect
to the empirical distribution of the ground truth data around the
estimations. For this analysis, we plot the fraction of the data
observed within the confidence region (y-axis) as a function of
the theoretical cumulative density function (CDF) of the region
(x-axis). Fig. 8 shows the results for the parked and driving con-
ditions. Ideally, we should observe the curves as close as possible
as the reference diagonal curve (black curve). We measure the
absolute area between each curve and the reference diagonal
curve using (16). The legend in Fig. 8 reports the results.

area =
1

N

∑
|cdf theoretical − cdf empirical | (16)

Fig. 8. Theoretical versus empirical cumulative distribution function for the
GPR and baseline models. This figure evaluates whether the resulting proba-
bilistic salient visual maps cover the target gaze direction as estimated by the
Gaussian assumption in the models. The numbers in the legend quantify the fit
using (16).

In the parked condition, the LR model is the closest to the
reference diagonal curve. Since the distribution of the data is
structured, a simple linear regression model with constant mean
square error is enough to properly match the theoretical distribu-
tion for the confident intervals, although with lower accuracies
and spatial resolutions than our proposed models (Tables I and
II). In the driving condition, the two GPR models are very close
to the theoretical curve. The absolute areas from the reference
diagonal curve are smaller than the corresponding absolute area
for the baseline models. Therefore, the GPR models not only
provide better tradeoff for accuracy and spatial resolution, but
also offer confidence intervals that are closer to the theoretical
confidence intervals for the most important condition (phase 2).

C. Mapping the Confidence Regions Onto the Windshield

This section projects the estimated confidence regions onto
the windshield. We have the marker position, which is used as the
ground truth for the gaze. We only use the targets markers from
#1 to #13 for this purpose (Fig. 1(c)). We model the windshield as
a plane by fitting the best plane containing these thirteen points.
Small errors are introduced because the windshield is slightly
curved so the points do not exactly lie on a plane. Therefore,
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Fig. 9. Two examples of projections of the probabilistic salient visual maps
into the windshield. The target marker is highlighted with a black diamond. The
darkened curves represent 50% confidence intervals.

when we project the original points back to the camera, they
do not exactly match the target marker location (Fig. 9). From
the gaze angles (α and β), the gaze direction is obtained by
estimating the line from the position of the head ([xhp, yhp, zhp])
towards the direction provided by the gaze vector. Equation 17
provides the projection used in the study. We estimate the region
where a line meets the windshield plane. The probability density
function at each point is calculated based on the probabilistic
salient visual map created by the models.

[x, y, z] = [xhp, yhp, zhp]

+ [sin(α), cos(α) sin(β), cos(α) cos(β)] (17)

Fig. 9 shows two examples for the confidence regions created
with the GPR model. While these are just two examples, they are
representative of the probabilistic salient visual map created by
the models. These figures also demonstrate how the estimated
angles can be mapped onto the real world coordinates. The figure
shows that the confidence regions in front of the drivers are
smaller than the confidence regions on the side of the windshield,
signaling more uncertainty. The size of the regions is learned
from the data.

D. Mapping Confidence Regions Onto the Road

We also projected the estimated confidence regions onto the
road view. As explained in Section III-A, we asked three of
the subjects to look at multiple targets on the road. For these
cases, we approximate the gaze distribution in the road by pro-
jecting the confident regions at different distances from the car,
ranging from 10 to 200 meters in increments of 10 meters (i.e.,
20 different projections). Then, we calculated the unweighted
average of the probabilities for each pixel creating a 2D visual
map projected on the road camera.

Fig. 10 gives three examples, showing the driver’s face, the
road view, and the estimated salient visual map created with
the GPR models. The target object is highlighted with a black
ellipse. We observe that the GPR models perform reasonably
well providing an estimation around the target regions attracting

Fig. 10. Three examples of projections of the probabilistic salient visual maps
onto the road. These regions are estimated at different distance, combining the
results into a single probabilistic map. The target marker is highlighted with a
black ellipse.

the attention of the driver. Notice that in this study we only
consider the position and orientation of the head.

We observe that the estimated probabilistic salient visual maps
do not always include the true gaze target. These cases are useful
to identify some limitations of our model to project the region on
the road. First, we add some distortion during the projections, as
discussed before. Second, some subjects may depend on subtle
eye movements that our models do not capture. Notice that the
eye information is not used by our models, which is used in most
of the gaze detection system designed for HCI in controlled
environment. Third, the inter-driver variability can impact the
results, as differences in height and driving behaviors can affect
the relationship between head movements and gaze. In spite of
these limitations, the results in this paper demonstrate that our
models effectively capture the visual attention of the drivers by
just modeling their head pose. We include a video with the results
as a supplemental document.

E. Gaze Angle Estimation With Limited Head Pose
Information

RGB cameras are the most common sensors that are used to
capture the driver data in the car. Since regular cameras lack
depth information, it is not possible for algorithms to reliably
estimate the head position in all three degrees of freedom. Our
GPR models require this information to estimate the probabilis-
tic salient visual maps. Therefore, we retrain our GPR models by
using only head orientation, or by augmenting head orientation
with partial head position. We consider two conditions. The



70 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 8, NO. 1, JANUARY 2023

Fig. 11. Comparison of the accuracy versus temporal resolution of GPR
models implemented with limited head pose information. We zoom the plots
for better visualization. The results are separately reported for GPR linear and
GPR NN. The figure is better viewed in colors. Accuracy is calculated within a
confidence interval (CI) given by the area.

first condition only considers the head orientation (i.e., 3D
vector). The second conditions is head orientation plus the x
and y position of the head, estimated with the AprilTag-based
headband. These models are compared with the GPR models
trained with the 6D vector, including full orientation and position
of the head.

Fig. 11 presents the results for the GPR models on the test
set in phase 2 (driving condition). The GPR linear model with
orientation and partial position information achieves results
that are very close to the results achieved by the full model
(Fig. 11(a)). The GPR NN model implemented with partial head
position even outperforms the results of the model with full
information (Fig. 11(b)). We conclude that the distance between
the driver and the camera is not critical to build an effective
model. We hypothesize that this results is due to the reduced
head movements along the z-direction observed while a driver is
operating a vehicle. The performances of both models drop when
they are exclusively trained with head orientation, indicating that
some information about the head position is needed.

F. Training and Inference Time Versus Train Set Size

This section discusses the complexity of the algorithm and
its dependency on the train set size. This analysis uses the GPR
linear model with ARD kernel using phase 2 of the corpus. We
use a single computer with a 64-bit Intel Xeon CPU and 32 GB
RAM. We study the training and inference time of our approach
when only a portion of the training data is used.

Fig. 12(a) shows the training time when we gradually increase
the training data from 10% to 100% of the training data. We
randomly select the data that we add to the training set. As
expected, there is a consistent increase in the training time when
adding more training data. However, Fig. 12(a) shows that our

Fig. 12. Analysis of the training time, inference time and performance of the
model as a function of the training set size. The analysis is implemented with
the GPR linear model with ARD kernel using phase 2 of the corpus.

model can be trained in less than one minute, as opposed to deep-
learning models that are computationally intensive. Similarly,
Fig. 12(b) shows the inference time to evaluate one sample as
we increase the size of the training set. We observe a similar trend
seen in Fig. 12(a), where the inference time increases as we add
more data for training. Since we model a joint Gaussian process
with the training data ( (5)), the complexity during inference
increases with the training data size. However, a closed form
solution is available, so the inference model is practical. We
observe that even when using all the training data, the inference
of a sample takes about 6 milliseconds. Our approach is 5.56
faster than real-time for a video stream at 30 fps.

G. Performance Versus Training Set Size

Finally, we study how the performance of the model changes
when using part of the training data. For this purpose, we cal-
culate the accuracy within 4% of the sphere around the driver’s
head (Fig. 12(c)) We observe that, as we increase the training
data, the performance of the model gets better, as expected.
We observe dramatic changes in the performance gain while
adding data to a small fraction of the training set. However,
the performance gain is minimum with additional data, when
the data is sufficiently large. This result leads us to conclude
that while adding a large amount of data with added diversity
may increase the performance, the amount of data that we have
used in the current experiment is reasonable to demonstrate the
benefits of the proposed framework.
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VI. CONCLUSION

This paper proposed a novel probabilistic model based on
GPR to define a salient visual map to estimate the driver’s
gaze location. The proposed method estimates confidence re-
gions containing the gaze direction of the driver using only
the position and orientation of her/his head. The size of the
confidence region is determined by the uncertainty of the model
in the estimated region (heteroscedastic model). To demonstrate
the potential use of the proposed method, we projected this
salient visual map onto the windshield and the road images.
The results demonstrated reasonable performance, achieving
accuracies higher that the baseline models. An appealing feature
of having a distribution describing the driver’s visual attention
is the opportunity to operate with different tradeoffs between
accuracy and spatial resolution. For example, the GPR Linear
model implemented with ARD can reach a 86.2% accuracy in
phase 2 (e.g., driving condition) within an area of 2% of the
sphere around the driver’s head.

There are open challenges to accurately estimate the six de-
grees of freedom for the driver’s head in real driving conditions.
We use AprilTags for this purpose in our analysis. Using a single
RGB camera, it can be difficult to track the head pose in a vehicle
when the rotation is higher than a given threshold (e.g., when
the face is not completely visible [13]). We also need to estimate
the distance of the driver’s head from the camera, which will
affect the gaze angle. To address this challenge, we are working
on using depth sensors to reliably estimate the orientation and
position of the head [37], [38]. One of the limitations of the
head band used in this study is that it covers parts of the face.
We are working on an alternative design that addresses this
limitation [47]. This type of data collection protocol serve as
a valuable resource to train and evaluate head pose algorithms
in real driving scenarios, advancing algorithm development in
this area.

This study opens various potential areas for research where
the predicted driver visual attention can be used as a starting
point to improve the safety on the road. The proposed technology
can play an important role in vehicle applications for security,
infotainment, and navigation. The study relies on a commercial
dash camera that can be easily installed on regular vehicles. This
setting is ideal for in-vehicle solutions in all cars, regardless of
their proprietary built-in sensors. Once the salient visual map
is created and projected onto the road scene, we can leverage
computer vision algorithms to detect target objects within the
highlighted area. For example, patterns of changes in visual
attention can be correlated to the external environment and/or
driving anomalies detected on the car [48], [49]. We can look
more closely at the region and estimate what possible objects the
driver is directing her/his gaze (other vehicles, pedestrians, or
billboards). We can also determine important objects that a driver
fails to attend, creating an appropriate warning. Furthermore,
unnecessary warnings to drivers can be avoided if we infer that
the driver is aware of specific objects/people on the road (e.g.,
a pedestrian crossing the street). The probabilistic saliency map
can be used by an ADAS to identify cases where the driver is
performing a maneuver without paying attention to other vehi-
cles. This approach can also be used for multimodal navigation

systems [2], where the predicted probabilistic saliency map is
used to understand navigation commands (e.g., queries such as
“what is that store?” while looking at a given building). The
predicted probabilistic maps can be ideal for these scenarios.
Likewise, we expect that a model adapted to a given driver
can lead to better performance, as the variance in the relation
between head pose and gaze will be reduced. As a future work,
we will explore adaptation schemes using unsupervised methods
that take unlabeled data from the target driver to adapt the
model, leading to better personalized systems. Another possible
improvement is to rely on temporal modeling by constraining
the network on previous frames. We have seen improvements in
head pose estimation by adding temporal modeling [38], so we
expect similar improvements for gaze prediction. To achieve
this goal, we need continuous gaze movements with ground
truth information, which was not collected in our data. We
are collecting new recordings with an improved protocol that
includes continuous gaze [50].
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