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Abstract—Objective: Humans are able to localize the
source of a sound. This enables them to direct attention
to a particular speaker in a cocktail party. Psycho-acoustic
studies show that the sensory cortices of the human brain
respond to the location of sound sources differently, and
the auditory attention itself is a dynamic and temporally
based brain activity. In this work, we seek to build a compu-
tational model which uses both spatial and temporal infor-
mation manifested in EEG signals for auditory spatial atten-
tion detection (ASAD). Methods: We propose an end-to-end
spatiotemporal attention network, denoted as STAnet, to
detect auditory spatial attention from EEG. The STAnet is
designed to assign differentiated weights dynamically to
EEG channels through a spatial attention mechanism, and
to temporal patterns in EEG signals through a temporal
attention mechanism. Results: We report the ASAD exper-
iments on two publicly available datasets. The STAnet out-
performs other competitive models by a large margin under
various experimental conditions. Its attention decision for
1-second decision window outperforms that of the state-of-
the-art techniques for 10-second decision window. Exper-
imental results also demonstrate that the STAnet achieves
competitive performance on EEG signals ranging from 64 to
as few as 16 channels. Conclusion: This study provides ev-
idence suggesting that efficient low-density EEG online de-
coding is within reach. Significance: This study also marks
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an important step towards the practical implementation of
ASAD in real life applications.

Index Terms—Auditory attention, brain-computer inter-
face, electroencephalography, spatial attention, temporal
attention.

I. INTRODUCTION

HUMANS have the ability to focus the auditory attention on
one speaker in a multi-speaker environment, or “cocktail

party scenario” [1]. However, people with hearing loss will
find such situations are particularly difficult. Modern hearing
aids are developed for a better experience by applying noise
suppression, however, these devices often fail in practice for
unable to single out and enhance the attended speech stream.
The studies in neuroscience show that auditory attention can be
directly detected from neural activities [2]–[4], which is known
as auditory attention detection (AAD). Such progress motivates
us to develop engineering solutions to AAD, that in turn opens
up many possibilities for the cognitive control of hearing aids,
also called neuro-steered hearing aids [5], [6].

To develop a neurophysiologically plausible brain-computer
interface (BCI), many studies have been devoted to discovering
the relationship between neural responses and speech stimuli
for AAD. Mesgarani and Chang [2] have demonstrated that
speech spectrograms reconstructed from cortical responses to
a mixture of speakers are dominated by the salient spectro-
temporal features of the attended speaker. Along this line of
thought, a stimulus-reconstruction method is studied, where
neural responses are used to approximate the envelope of the
speech stream heard by the subject. The reconstructed envelope
is then compared with the original speech stimulus to detect the
speaker’s attention [4], [7]–[11]. Unfortunately, such correlation
between the reconstructed and the attended speech envelopes
is generally weak. This could be due to the over-simplified
linear computational model. Considering the inherent non-linear
processing of acoustic signals along the auditory pathway [12],
[13], Taillez et al. [14] firstly studied a non-linear neural network
to map the EEG signals to speech envelopes in a cocktail party
scenario, that outperforms the linear model baseline. Recently
convolutional neural network (CNN) models [15], [16] were
studied to detect the attended speakers directly when both the
EEG signals and speech stimuli are available.

The early studies of engineering solutions to AAD confronts
two challenges. 1) There is a trade-off between the accuracy and
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the AAD decision window size. The decoding accuracy drops as
the decision window narrows, i.e., temporal resolution increases,
because the low-frequency envelopes of small window contain
little information of speech [17], [18]. 2) The AAD methods
require clean speech stimuli as the reference, which are not
always available in real-world applications, such as hearing pros-
theses or robotic voice acquisition, where a system is expected to
perform in a complex acoustic environment of multiple speakers.
While speaker extraction and speech enhancement techniques
can be explored to derive such speech stimuli [5], [19], [20],
they add overhead to the AAD system, and their quality may
impact AAD accuracy, that becomes another issue [17].

Inspired by the findings that the locus of the auditory attention
is neurally encoded [21]–[23], auditory spatial attention detec-
tion (ASAD) from EEG signals has been studied recently [17],
[24]–[27], where the spatial location of the attended speaker is
decoded from brain activities alone, without the need of clean
speech stimuli as the reference. This is highly desirable for
neuro-steered hearing aids as clean speech stimuli are not always
available. Moreover, the ASAD approach is based on brain
lateralization [28], which is an instantaneous feature, as opposed
to the low-frequency speech envelope, which requires a temporal
observation window of reasonable size. We hypothesize that
the ASAD approach will perform more accurately than the
AAD approach in low-latency settings. Vandecappelle et al. [24]
developed a CNN-based ASAD model, which achieves a com-
petitive accuracy of around 80% for a decision window of 1 s.
Unfortunately, as the EEG signals are reduced from a time series
to a single value in this approach, the temporal information is
not exploited. We consider that the dynamics of the EEG sig-
nals contain valuable information for decoding auditory spatial
attention [29], that will be a focus of this paper.

Effective feature representation is a crucial step for pattern
classification due to the low signal-to-noise ratio of raw EEG
signals [30]–[33]. The EEG signals contain multivariate infor-
mation in space and time. In space, the EEG channels reflect dif-
ferent functional roles of human brain in speech processing [34],
[35], therefore the EEG signals are essentially non-linear time
series data [36]. We consider that the EEG channels provide
differentiated contributions to the encoding of spatial attention
in human brain; in time, we hope to leverage the information
encoded in the temporal progression of EEG signals. An early
study by Bednar et al. [29] shows that the spatiotemporal pattern
of the EEG features is critical for successfully decoding different
spatial locations. In this paper, we propose a neural attention
mechanism that is inspired by the findings in the spatiotemporal
analysis of human AAD, and implement an engineering solution
for the first time.

First, previous studies show that the human responses to
speech stimuli differ in different brain regions in a cocktail
party task [21]–[23], [37]–[39]. The EEG signals are recorded
from multiple sites of the scalp, therefore, some EEG channels
are more informative than others in terms of informing the
decision-making process in the brain [4], [17], [34], [35]. At the
same time, the distribution of effective channels may vary from
subject to subject [7], [28]. To extract discriminative features
from the spatial information, some employ channel selection

techniques to choose more relevant channels [40], [41]. Unlike
the channel selection techniques, in this study, we propose a
spatial attention mechanism, that derives weights dynamically
from the input EEG channels across different spatial locations
over the cortex, just like how human brains selectively attend to
input acoustic stimuli.

Second, any attentional neural mechanism that respects the
temporal structure of auditory sensory inputs must therefore be
dynamic over time, including spatial attention [22]. In view
of the fact that brain activity is a temporal process, and the
EEG signals are essentially non-linear time series data [36], we
propose a temporal attention mechanism to capture the temporal
characteristics of EEG. The temporal attention mechanism is
designed to assign differentiated weights temporally to EEG sig-
nals over a decision window to form a final representation [42].

In this paper, we propose an end-to-end spatiotemporal atten-
tion network, denoted as STAnet, to detect auditory spatial atten-
tion solely based on EEG signals. To the best of our knowledge,
this is the first study of a spatiotemporal attention mechanism for
EEG-based ASAD tasks. The main contributions of this work
can be summarized as follows. (1) We propose a spatial attention
mechanism to automatically assign differentiated modulation
weights to EEG channels, and a temporal attention mecha-
nism to learn temporal feature representation that is relevant
to ASAD. (2) We propose an end-to-end pipeline architecture
that optimizes spatial and temporal representation explicitly
and in a logical order. (3) We validate the effectiveness of the
spatiotemporal attention mechanism through extensive ablation
study, data visualization, and comprehensive experiments on two
publicly available EEG datasets.

The remainder of this paper is organized as follows. Sec-
tion II elaborates on the proposed STAnet pipeline for decoding
auditory spatial attention. In Section III, we describe: 1) the
used datasets and processing; as well as 2) contrastive models
and their application to the datasets. In Section IV, we report
on experimental results and compare our proposed approach to
competing ASAD models. In Section V, we discuss our findings
and conclude in Section VI.

II. METHODS

A traditional EEG-based ASAD pipeline consists of a feature
extraction frontend and a pattern classification backend. The
STAnet is a novel end-to-end architecture, as illustrated in
Fig. 1, that features a spatial attention and temporal attention
mechanism. It is different from a traditional pipeline in many
ways. The end-to-end architecture learns to automatically dis-
cover spatial and temporal representations needed for attention
detection from raw EEG data, therefore, without the need of
hand-crafted feature extraction. The attention mechanism learns
to dynamically pay attention to specific channels and temporal
patterns during run-time inference.

By applying a moving window to raw EEG data, we ob-
tain a sequence of decision windows, each of which has a
small duration, and is used for feature representation. Let E =
[c1, . . . , ci, . . . , cN ] ∈ RT×N be the EEG signals of a decision
window, where ci ∈ RT×1 is a time series of T samples from the
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Fig. 1. A schematic diagram of the proposed spatiotemporal attention network, i.e., STAnet, which mainly consists of three components: spatial
feature representation, temporal feature representation, and classification module. Taking EEG data as input, the network is trained to detect
auditory spatial attention by making a binary decision.

i-th EEG channel, and N is the number of the EEG channels.
The STAnet takes E as the input and makes auditory spatial
attention decision.

Attention, as a human ability, plays a fundamental role in
our everyday behavior in spatially and temporally fast-varying
environments [22]. Auditory attention, which enhances the tar-
get speech and attenuates the interfering speech in a cocktail
party, is a typical example [1], [2]. Inspired by the human
cognitive process, computational attention mechanisms are em-
ployed widely in deep learning architecture [42]–[44]. Briefly,
the attention mechanism can be interpreted as a means of dy-
namically assigning differentiated weights to the components
of a signal at run-time. These differentiated weights form a
receptive field, which can be in the form of an attention mask, or a
regression function. The differentiated weights are dynamically
generated by a neural attention mechanism, as opposed to a set
of pre-trained weights. With the neural attention mechanism,
we hope to extract salient information from EEG signals with
respect to the ASAD task.

We employ feature representation not only for dimension re-
duction, but also to explicitly capture salient spatial and temporal
information. The spatial and temporal attention mechanisms,
as shown in Fig. 1(a) and (b), learn “where to attend” and
“when to attend” to the EEG signals in a decision window. As
the temporal attention mechanism is expected to explore the
interaction among the EEG signals across channels. It is logical
to place spatial attention module in front of temporal attention
module in a pipeline architecture.

A. Spatial Feature Representation

Studies show that several cortical regions of human brain
are involved in spatial auditory processing [28], [29], [38]. The
multi-channel EEG recorded from different scalp regions reflect
the brain responses to auditory stimulus [7], [40], [41]. We are
motivated by this finding to design an attention mechanism,
that learns to assign differentiated weights to EEG channels

dynamically according to their individual contributions. Such
attention mechanism is referred to as spatial attention. It is
implemented in three steps as illustrated in Fig. 1(a),

First, we aggregate channel-wise EEG signals ci through a
convolutional layer followed by a max pooling layer. This step
is equivalent to a frequency analysis front-end that performs
feature extraction from the time-domain signals ci as described
next,

ri = Max(elu(Conv(ci))) (1)

where Conv(·) denotes the convolution operation with an expo-
nential linear unit elu(·) as the activation function [45]. Max(·)
denotes a max pooling layer. ri ∈ R1×1 is the representation of
the i-th channel ci and therefore Rs = [r1, . . . , ri, . . . , rN ] ∈
R1×N is the representation of the multi-channel EEG signals.

Second, a gating mechanism, which models the interaction
among the EEG channels, is adopted [43]. The gating mecha-
nism learns to assign differentiated weights to EEG channels
on the fly. As a trade-off between model complexity and gen-
eralizability, two fully-connected (fc) layers are employed to
parameterize the gating mechanism, and to achieve a non-linear
mapping, as follows:

Ms = elu(w2(elu(w1Rs + b1)) + b2) (2)

where w1 and w2 is the parameter of the first and the second fc
layers, respectively. b1,b2 are the bias terms of two fc layers.
Ms is the attention mask generated by the spatial attention mech-
anism. The EEG signals E is then modulated by the attention
mask Ms as follows,

E′ = Ms

⊗
E (3)

where
⊗

denotes a point-wise multiplication. During the mul-
tiplication, the attention value is broadcast along the temporal
dimension, i.e., Ms ∈ RT×N .

Finally, we employ a convolutional layer followed by a max
pooling layer, that is referred to as the Conv block illustrated
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in Fig. 1, to extract the spatial feature representation from the
masked EEG signals E′. Without spatial attention, the Conv
block was first studied for ASAD in [24]. We believe that the
same Conv block would work well for the masked EEG signals as
the masked EEG signals carry the similar properties of original
EEG signals except that the signals are weighted channel by
channel. The height of the convolutional filter is set to N , the
same as the number of EEG channels, and the width of the filter
is extended to better explore the temporal dynamics. In this way,
the masked EEG signalsE′ are encoded asE′′ = Conv(E′). We
adopt tanh function as the activation function in the convolu-
tional layer, and apply max pooling to reduce the number of
parameters. The spatial feature representation can be expressed
as Es = Max(E′′) ∈ RTs×Ns .

B. Temporal Feature Representation

Psycho-acoustic studies have provided convincing evidence
that human attention itself is a dynamic and temporally based
activity [46], [47], and the auditory system is sensitive to the
temporal patterning [38], [48]. We believe that temporal patterns
in EEG signals carry spatial attention information. As shown
in Fig. 1(b), a self-attention mechanism is adopted to explore
the attentive temporal dynamics of EEG signals. Self-attention
is an intra-attention mechanism that relates different positions
of a single sequence to generate a representation of the se-
quence [42]. It is implemented in three steps as follows.

First, the attention mechanism transforms EEG features Es

into query Q, key K, and value V using linear projections.

Q = EsWq

K = EsWk

V = EsWv (4)

Here, the projections are the weight matrices Wq ∈ RNs×dk ,
Wk ∈ RNs×dk , and Wv ∈ RNs×dv .

Then, dot product is used to calculate the relationship between
query and key. And temporal attention mask Mt is calculated
by using the softmax function.

Mt = softmax

(
QKT

√
dk

)
∈ RTs×Ts (5)

where
√
dk is the scaling factor. The inner product values are

proportional to the dimension of hidden feature space, thus need
to be normalized by the square root of hidden dimension [42].

Finally, the temporal attention mask assigns different weights
over the time axis to an EEG sequence, that leads to an attention-
weighted summation Et,

Et = MtV ∈ RTs×Ns (6)

C. End-to-End Spatiotemporal Attention Network

An end-to-end neural architecture takes a window of EEG
signals as input and makes spatial attention detection decision. It
allows the spatial and temporal attention mechanisms to learn the
respective feature representations in a way to optimize ASAD
performance.

First, we adopt a spatial attention mechanism to dynamically
assign differentiated weights to individual EEG channels. The
masked EEG signals are processed by a convolutional layer and
a max pooling layer to derive spatial feature representation.

Second, we adopt a self-attention mechanism to assign dif-
ferentiated weights to the EEG signals temporally. In this way,
we expect to generate a discriminative spatiotemporal EEG
representation Et that is optimized for the ASAD task.

Similar to state-of-the-art ASAD approaches [17], [24], we
treat the ASAD task as a classification problem. The extracted
EEG featureEt is then transformed into a probability vectorE′

t

by a fc layer with sigmoid activation function.

p = σ(wE′
t + b) (7)

where w and b is the weight and the bias of the fc layer,
respectively. p represents the predicted probability for a decision
window. σ(·) denotes the sigmoid activation function. Finally,
we apply the binary cross-entropy loss to supervise the network
training.

III. EXPERIMENTS

A. Data Specifications

We conduct the auditory attention detection experiments on
two publicly available datasets, which are denoted as KUL [49]
and DTU datasets [50]. Details of the datasets are summarized
in Table I.

1) KUL dataset: The EEG data were collected from 16
normal-hearing subjects, who were instructed to attend to one
particular speaker and ignore the other in the presence of two
simultaneous speakers. The speech stimuli consist of four Dutch
stories, narrated by three male Flemish speakers. All stimuli
were normalized to have the same root mean squared (RMS)
intensities and were perceived as equally loud. The stimuli were
either presented dichotically (one speaker per ear) or after head-
related transfer function (HRTF) filtering to simulate speech
from 90◦ to the left and 90◦ to the right of the subject. Each
subject listened to 8 trials of 6 minutes each. Throughout the
experiments, the order of presentation of both conditions was
randomized over the different subjects. The 64-channel EEG
data were collected using a BioSemi ActiveTwo device at a
sampling rate of 8,192 Hz in an electromagnetically shielded
and soundproof room. More details of the KUL dataset can be
found in [24], [49].

2) DTU dataset: The EEG data were collected from 18 normal-
hearing subjects, who selectively attended to one of the two
simultaneous speakers. The speech stimuli consist of speech by
a male and a female native speaker who simultaneously speak
in anechoic or reverberant rooms. The two concurrent speech
streams were normalized to have the same RMS value. The
speech mixtures were presented to the subjects, with the two
speech streams lateralized at respectively −60◦ and +60◦ along
the azimuth direction. Each subject listened to 60 trials in total,
and each trial contained auditory stimuli with a duration of
50 seconds. The position and the gender of the target speaker
were randomized across the trials. 64-channel EEG data were
recorded at a sample rate of 512 Hz using a BioSemi Active
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TABLE I
DETAILS OF TWO EEG DATASETS, KUL AND DTU, USED IN THE EXPERIMENTS

TABLE II
THE PROPOSED STANET AND THREE CONSTRASTIVE MODELS IN THE

EXPERIMENTS

system. Further details of the DTU dataset can be found in [50],
[51].

B. Data Processing

The EEG data of each channel are firstly re-referenced to the
average response of all electrodes. As the EEG signals analyzed
are collected at different sampling frequencies, they are all
bandpass filtered between 1 and 32 Hz by a 6th-order Chebyshev
Type II bandpass filter, and downsampled to 128 Hz sampling
rate. The frequency range is chosen based on previous non-linear
AAD studies [14]–[16], [24]. Finally, EEG data channels are nor-
malized to ensure zero mean and unit variance for each trial. As
the proposed STAnet is a data-driven solution, that is expected to
function in an end-to-end manner, no artifacts removal operation
is involved in the data processing. The simplified end-to-end
process greatly facilitates the implementation of real-time BCI
systems, such as neuro-steered hearing aids.

We analyze seven decision window sizes in this study, i.e., 0.1,
0.2, 0.5, 1, 2, 5, and 10 seconds. After preprocessing, we obtain
a total of 2,864 decision windows per subject, totaling 45,824
decision windows for 1-second case in the KUL dataset. In the
DTU dataset, the test set results in 2,880 decision windows per
subject, totaling 51,840 decision windows for 1-second case.

C. Contrastive Models

To validate the effectiveness of the spatial attention and tem-
poral attention mechanisms, we conduct experiments on four
models, that include 1) a CNN model as in [24], that is a reduced
version of STAnet (see Fig. 1) by only keeping the Conv block,
and FC layers in the pipeline in Fig. 1, and removing the spatial
attention mechanism and the temporal feature representation
module; 2) a SAnet by removing the temporal feature representa-
tion module from the STAnet; 3) a TAnet by removing the spatial
attention mechanism in spatial feature representation module
from the STAnet; and 4) the proposed STAnet. The composition
of the models are summarized in Table II.

D. Network Configuration

We evaluate the performance of the proposed and baseline
methods using 5-fold cross-validation (CV) over the collection

of decision windows. We make a decision for each decision
window and report the overall ASAD accuracy and by subject.
For each subject, the feature data and attention labels are divided
into five groups equally. Four of them are used to train the
classifiers. The remaining group is used for evaluation. This
process is repeated five times until all data are tested once. The
models are implemented with the TensorFlow framework and
trained on an NVIDIA TITAN Xp Pascal GPU.

We take 1-second decision window as an example to describe
the network configuration. As the input to the systems, 1-second
EEG signals are denoted as E ∈ R128×64 with 128 samples and
64-channel.

In the SAnet or STAnet, the spatial attention mechanism
comprises a convolution layer with the size of 128× 1 and two
fc layers (input: 64, hidden: 8, output: 64). The output of the
spatial attention mechanism is E′ ∈ R128×64, that has the same
dimension as the input EEG signals E.

In all models, we employ a convolutional layer with a kernel
of 5× 64, and a max pooling size of 4× 1, as shown in the Conv
block in Fig. 1. With or without the spatial attention mechanism,
the Conv block produces an EEG feature representation Es ∈
R32×5.

The TAnet or STAnet involves a temporal attention mecha-
nism. We set both Q and K to 32× 50, and V to be of the same
size as the input Es. Therefore, the size of the temporal mask is
Mt ∈ R32×32 and the output is Et ∈ R32×5.

We set both Q and K to 32× 50, and V the same as the input
Es. Therefore, the size of the temporal mask is Mt ∈ R32×32

and the output is Et ∈ R32×5.
For classification decision, we employ a fc layer of 160× 2.

To prevent overfitting, we apply dropout and batch normaliza-
tion. The Adaptive Moment Estimation (Adam) optimizer [52]
is employed to minimize the cross-entropy loss function with
the learning rate of 10−3. All hyperparameters are chosen
empirically with a grid search approach through a 5-fold CV
experiment.

IV. RESULTS

A. Ablation Analysis

We conduct ablation analysis using 1-second decision win-
dow as a case study. The ASAD accuracy of the four models in
Table II are reported across all subjects on KUL dataset in Fig. 2.
For 1-second decision window, CNN model attains ASAD ac-
curacy of 84.1%, with a standard deviation (SD) of 10.16%.
SAnet outperforms CNN model with an average improvement
of 3.8% (87.9%, SD: 10.10%). Similarly, TAnet outperforms
CNN model with an average improvement of 4.2% (88.3%, SD:
9.39%). The proposed STAnet outperforms all others, with an
average accuracy of 90.1% (SD: 8.95%).
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Fig. 2. Accuracy of baseline model and attention-based models for decoding auditory spatial attention among all subjects in KUL dataset with
1-second decision window. These subjects are ranked according to the accuracy of the STAnet. The horizontal dotted line shows a reference
accuracy at 80%. Statistically significant difference: ∗∗∗p < 0.001.

Statistical analyses are performed using IBM SPSS statistics
software at a significance level of 0.05. Descriptive statistics
are used for means and standard deviations. The Kolmogorov-
Smirnov test is used to confirm the normality of the distribution
of the data, prior to selection of appropriate statistical tests.
Paired t-tests are employed to compare the models to identify
which one gives a significant improvement. We observe that
SAnet attains a significantly higher average ASAD accuracy
than CNN model (p < 0.001), and that TAnet attains a sig-
nificantly higher performance than CNN model (p < 0.001).
There is no statistically significant difference of ASAD accuracy
between SAnet and TAnet (p = 0.15). Moreover, STAnet gains
a significant increase of ASAD accuracy over SAnet (2.2%, p
< 0.001) and TAnet (1.8%, p < 0.001).

The results on the DTU Dataset corroborate the findings on the
KUL Dataset. Specifically, CNN model attains ASAD accuracy
of 63.3% (SD: 5.96%). SAnet outperforms CNN model with
an average improvement of 4.3% (67.6%, SD: 8.96%), and
TAnet outperforms CNN model with an average improvement
of 5.1% (68.4%, SD: 8.98%). STAnet achieves the best ASAD
performance with an average accuracy of 71.9% (SD: 8.94%).

In sum, the spatial attention mechanism and the temporal
attention mechanism are the contributing factors to the per-
formance gains over the baseline CNN model. The fact that
STAnet outperforms all competing models clearly confirms the
advantage of the proposed spatiotemproal attention.

B. Effect of Decision Windows

We further compare the ASAD performance of the STAnet
for different detection window sizes ranging from 0.1-second to
10-second, as shown in Fig. 3.

On the KUL dataset, the STAnet achieves an average decoding
accuracy across all subjects of 90.1% (SD: 8.95%) for 1-second
decision window, 91.4% (SD: 8.22%) for 2-second decision
window, 92.6% (SD: 6.75%) for 5-second decision window,
and 93.9% (SD: 6.54%) for 10-second decision window. In
general, a larger decision window provides a better result, which
corroborates with findings in previous studies [14], [15], [24]. It
is worth noting that the STAnet is capable of decoding auditory
spatial attention with a very short decision window (<1 s).
For 0.5-second and 0.2-second decision windows, the STAnet
obtains a high ASAD accuracy of 87.2% (SD: 9.77%) and 84.3%

Fig. 3. Auditory spatial attention detection accuracy of the STAnet
for seven decision window sizes across all subjects in KUL and DTU
datasets, respectively.

(SD: 9.73%), respectively. Although the accuracy for 0.1-second
decision window is lower than that for 1-second, the STAnet
maintains a competitive ASAD accuracy (80.8%, SD: 9.87%).

On the DTU dataset, the STAnet obtains an average accuracy
of 65.7% (SD: 5.50%) for 0.1-second, 68.1% (SD: 7.08%) for
0.2-second, 70.8% (SD: 8.04%) for 0.5-second, 71.9% (SD:
8.94%) for 1-second, 73.7% (SD: 9.59%) for 2-second, 76.1%
(SD: 9.63%) for 5-second, and 75.8% (SD: 9.17%) for 10-second
decision windows, respectively. The ASAD accuracy on the
DTU dataset is significantly lower than that on the KUL dataset,
which is consistent with the observations in [18], [27]. One of the
possible reasons could be that the DTU dataset has two speech
streams arriving 60◦ to the left and 60◦ to the right of the listening
subjects [50], while the KUL dataset has the two speech streams
arriving from ± 90◦ instead [49]. Therefore, the DTU dataset
presents a more challenging task than the KUL dataset. Another
major difference between the DTU and the KUL dataset is that
the former’s auditory stimuli are presented to the listeners with
room reverberation at various levels, which might reduce the
cortical speech tracking accuracy in human brain [53], hence
decrease the differential responses between the attended and
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Fig. 4. Auditory spatial attention detection accuracy of the STAnet and
CNN model for all subjects in the DTU and KUL datasets. (a) 16-channel
EEG, (b) 32-channel EEG, and (c) 64-channel EEG.

unattended speakers [54]. However, the latter’s auditory stimuli
are presented to the listeners in a quiet acoustic environment.

We confirm that the STAnet performs reasonably well at a
temporal resolution of 1 s, comparable to the time required for
humans to switch their attention from one speaker to another. It
is also encouraging to see that the STAnet still decodes well at a
resolution of 100 milliseconds. We are not aware of other models
that perform similarly in such low latency settings. With our
results, we consider that real-time decoding of auditory attention
is within reach.

C. Low-Density EEG Signals

This work is motivated to achieve real-time EEG-based
ASAD in daily-life applications. High-density EEG signals in-
volve more channels, therefore provide fine-grained spatial sam-
pling attention detection. However, more channels also mean an
increased setup time and effort [7], [41]. It is therefore desirable
to reduce the number of channels required for an ASAD system.
We further investigate how the STAnet performs in relatively
low-density EEG systems.

Both KUL and DTU datasets are recorded with 64-channel
with the BioSemi ActiveTwo system. We obtain 32-channel
and 16 channel EEG following the electrode locations of the
international 10/20 system [55]. Fig. 4 depicts the ASAD per-
formance of the STAnet with 1-second decision windows based
on 16-channel, 32-channel, and 64-channel EEG signals over
all subjects in the KUL and DTU datasets. In general, more
channels lead to better performance.

On the KUL dataset, the average accuracy of CNN model
degrades from 64-channel (84.1%, SD: 10.16%) to 32-channel
(79.9%, SD: 10.46%), and further to 16-channel (75.4%, SD:
11.01%). We observe an accuracy drop from 64-channel to
32-channel by 4.2%, and from 64-channel to 16-channel by
8.7%. We observe a modest accuracy drop of 3.4% and 5.7% for
32-channel and 16-channel over 64-channel EEG, respectively.
However, the average accuracy for the STAnet remains compet-
itive (16-channel, 84.4%, SD: 9.94%; 32-channel, 86.7%, SD:
9.85%), which significantly outperforms the CNN model (paired
t-test: p < 0.001).

On the DTU dataset, the average accuracy of CNN model de-
creases significantly from 64-channel EEG (63.3%, SD: 5.96%)
to 32-channel (60.2%, SD: 5.84%), and further to 16-channel
(56.7%, SD: 5.18%). Relatively, the STAnet clearly reduces the
performance gap over the CNN model between the performance
of 64-channel (71.9%, SD: 8.94%) and 32-channel (69.1%, SD:
8.24%), as well as 16-channel (66.4%, SD: 7.66%).

To conclude, the STAnet is more robust than the CNN model
with low-density EEG signals. We believe that the improved ro-
bustness comes from the spatiotemproal attention mechanisms.

D. STAnet vs Linear Decoder

We further compare the proposed STAnet with other compet-
ing models in the literature. We start by comparing the STAnet
with the CCA model [9], which is considered to be one of the best
linear AAD decoders to date [18]. It is noted that the CCA model
requires the speech stimuli as the reference, that the STAnet
doesn’t require. In other words, the STAnet decodes the human
attention purely from the brain signals themselves.

We re-implement the CCA model on both DTU and KUL
datasets and report the performance for different decision win-
dows, as summarized in Table III. The CCA model obtains an
accuracy of 75.9% on the KUL dataset and 70.1% on the DTU
dataset with 10-second decision window, and 60.2% and 53.4%
on the two datasets respectively with 1-second decision window.
With decision windows of less than 1-second, the accuracy of
the CCA model further degrades, and drops below the chance
level on the DTU dataset.

It is observed in Table III that the STAnet clearly outperforms
the CCA model by a large margin (>20%) across all decision
window sizes. On the KUL dataset, the STAnet achieves a
robust performance of above 80% accuracy even for 0.1-second
decision window.

E. STAnet vs CNN Decoder

We also compare the STAnet with CNN model by Van-
decappelle et al. [24], that decodes the direction of auditory
attention and achieves impressive results. For a fair comparison,
we re-implement the CNN model with our experiment setup,
and evaluate the ASAD accuracy for various decision windows.

As shown in Table III, the CNN model offers a significantly
better accuracy than the CCA model on both KUL and DTU
datasets. At the same time, the STAnet consistently outperforms
the CNN model by average 6.1% on the KUL dataset and 8.8%
on the DTU dataset respectively in terms of accuracy over
various decision window sizes.

To summarize, the STAnet consistently outperforms the state-
of-the-art linear and non-linear models on two publicly available
datasets. These results confirm the effectiveness of the spa-
tiotemporal attention network.

V. DISCUSSIONS

Multi-channel EEG signals are collected from multiple sites
of the scalp. The signals acquired from various electrode po-
sitions are not equally informative as far as auditory attention
detection is concerned [41]. To gain insight into how the spatially
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TABLE III
AUDITORY SPATIAL ATTENTION DETECTION ACCURACY (%) COMPARISON OF DIFFERENT MODELS ON KUL DATASET [49] AND DTU DATASET [50] FOR SEVEN
DIFFERENT DECISION WINDOW LENGTHS. LINEAR MODEL DENOTES THE SETTING IN [9], WHILE CNN MODEL DENOTES THE SETTING IN [24]. NOTE THAT
THE ACCURACY OF THE PROPOSED STANET SIGNIFICANTLY OUTPERFORMS BOTH THE LINEAR MODEL (P <0.001) AND NON-LINEAR MODEL (P <0.001)

Fig. 5. Topography maps of the decoder weights associated with the EEG electrodes on KUL dataset. We aggregate spatial attention weights
for all 1-second decision windows and plot the average. (a) The decoder activation patterns for all individual subjects. (b) The decoder activation
pattern averaged over all 16 subjects. Black dots represent all 64 EEG electrodes. The attention weights are denoted by colors, with red color
corresponding to a higher weightage.

Fig. 6. Topography maps of the decoder weights associated with the EEG electrodes on DTU dataset. (a) The decoder activation patterns for all
individual subjects. (b) The decoder activation pattern averaged over all 18 subjects.

differentiated weights on channels contribute to the performance
gain, we aggregate and visualize the masking weights generated
by the spatial attention mechanism over all 1-second decision
windows for individual subjects in Fig. 5(a), and overall average
in Fig. 5(b) on the KUL dataset, and in Fig. 6(a) and Fig. 6(b)
respectively on the DTU dataset.

A. Subject-Independent Spatial Attention

It is expected that the locations indicative of neural activity
contributing to speech processing have higher weights [56].
As illustrated in Fig. 5(b) and Fig. 6(b), in the topography
with weights assigned by spatial attention mechanism, we see
higher weights at electrodes placed over the frontal and temporal
regions than elsewhere. These results are consistent with the
findings by others that activations are observed prominently in

the fronto-temporal cortex [15], [17], [24]. In addition, Fig. 5(b)
and Fig. 6(b) also suggest that attentional modulation of speech
tracking is mainly manifested in the auditory-specific temporal
regions, that corroborates previous studies [4], [7], [22], [38],
[51].

B. Subject Individuality

Fig. 5(a) and Fig. 6(a) illustrate how the differentiated weights
generated by the spatial attention mechanism are distributed
across the scalp of different individuals. Without surprise, it is
observed that the weights, that reflect an individuals attentional
focus, vary across the subjects. Additionally, it is worth noting
that the decoder activation pattern may vary across subjects as
well, therefore, the spatial patterns of brain activity related to
auditory attention differ considerably across the subjects. These
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findings support the claim that EEG signals exhibit subject-
specific patterns due to the physiological and psychological
individuality [28], [57], [58].

Considering the individuality in the modulation of auditory
attention, the pre-defined handcrafted EEG features find it hard
to have one size fit all. In contrast, the data-driven end-to-end
learning, and the spatial attention mechanism in this study learn
the ability to assign differentiated weights dynamically to EEG
channels subject by subject, that effectively addresses subject
individuality issue.

C. Data-Driven vs Handcrafted Features

Generally, most traditional auditory spatial attention decoding
techniques involve a frontend process to remove artifacts, and
to extract handcrafted features from EEG signals. In this study,
we propose a data-driven solution to ASAD in an end-to-end
manner. The raw EEG data are directly taken by the STAnet
without any manipulation. The STAnet is capable of learning
what is important for feature representation by itself as far as
ASAD is concerned. As the end-to-end process is simple and
straightforward, it facilitates the implementation in low-resource
devices, such as neuro-steered hearing aids.

We consider that the data-driven approach is simple and
effective, as can be seen in Table III where both STAnet and
CNN [24] models clearly outperforms CCA [9]. The STAnet
and CNN models employ data-driven frontend, while CCA
involves handcrafted features. Besides the network architecture,
we consider that the feature representation techniques deserve
further exploration. For instance, the EEG characteristics in
the frequency-domain may contribute to further enhancement
of the ASAD performance [22], [23], [28], [38]. The fact that
the time-domain frontend learns from the training data makes it
less generalizable than other frequency-domain frontends across
different recording conditions.

D. Effect of EEG Signal Recording Conditions

Consistent with the results of previous ASAD studies [17],
[18], [24], the ASAD accuracy varies across subjects, which
reflects the differences in recording conditions [49], [50], [59],
as well as the physiological and psychological characteristics
of the individuals [60], [61]. In general, the content of the
speech stimuli, the spatial origin of the brain responses, and
the physical layout of the listening experiments, among others,
all contribute to the variation of EEG signals. For example, as
discussed in Section VI-B, the differences between the KUL and
DTU datasets in terms of the physical layouts of the listening
experiments possibly lead to the large performance difference
in the ASAD experiments. Furthermore, we hypothesize that
the variation across subjects observed in our study is partially
due to the small size of the dataset. A sufficiently large dataset
related to the selective auditory attention task will benefit for the
non-linear ASAD decoders.

VI. CONCLUSION

In this paper, we propose the STAnet, which incorporates
two attention components into an end-to-end deep learning

architecture. Our model infers attention maps along two separate
dimensions, i.e., spatial and temporal, then the attention maps
are multiplied to EEG signals feature map for adaptive feature
refinement. This spatiotemporal encoding enables a high density
of information, hence with high ASAD performance. Results
indicate that the STAnet significantly outperformed conven-
tional linear as well as the current state-of-the-art non-linear
approaches in two publicly available datasets. As it does not
require clean speech envelopes, the STAnet has the potential to
enhance the signal processing in realistic hearing aids and other
BCIs by incorporating information about the attention of the
user.
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