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ABSTRACT Time series forecasting plays a key role in many fields such as business, energy or environment.
Traditionally, statistical or machine learning models for time series forecasting are trained with the historical
values of the series to be forecast. Unfortunately, some time series are too short to suitably train a model.
Motivated by this fact, this paper explores the use of data available in a pool or collection of time series to
train a model that predicts an individual series. Concretely, we train a generalized regression neural network
with the examples drawn from the historical values of a pool of series and then use the model to forecast
individual series. In this sense several approaches are proposed, including to draw the examples from a pool
of series related to the series to be forecast or the training of several models with mutually exclusive series and
the combination of their forecasts. Experimental results in terms of forecasting accuracy using generalized
regression neural networks are promising. Furthermore, the proposed approaches allow to forecast series

that are too short to build a traditional generalized regression neural network model.

INDEX TERMS Generalized regression neural networks, model combination, time series forecasting.

I. INTRODUCTION
Machine learning models require a suitable amount of data to
be properly trained and this way produce good results; after
all, they learn from examples. Therefore, it is no wonder that
time series forecasting with machine learning excels in fields
where data abound and sampling is done at high frequency
levels, such as demand or energy forecasting [1], [2]. How-
ever, low frequency data, such as yearly time series, are also
common in real-life situations. Unfortunately, these series are
often too short to effectively train a machine learning model.
In the recent M4 forecasting competition [3] the contenders
faced the herculean task of predicting 100,000 time series.
The winner of the second prize [4] proposed a methodology
that combines the forecasts of eight different models using
a weighted average; the weights applied in the combination
are determined by means of an XGBoost model trained with
the whole data set of 100,000 series. That is, to forecast a time
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series eight models are trained with the historical values of the
series; however, the weights used to combine their forecasts
are computed using information extracted from the entire
data set.

This idea of using information drawn from a pool of series
to forecast an individual time series has already been used in
other ways; for example, in [5] the seasonal indices of a short
time series are estimated using a collection of time series of its
own category. Another interesting approach is [6], in which in
order to predict the future behavior of a time series, the most
similar series—according to several similarity measures—
from a set of rich and diverse reference series are found. The
average of the future paths of these series are used to forecast
the future values of the target series.

This paper proposes a new way of using information from a
set of series to forecast an individual series. We are motivated
by the fact that there exist time series that are too short to
train a model. Our proposal is to forecast these series using a
model trained with the historical values of other series, that
is, the examples used to train the model are drawn from the
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historical values of several series. This is a great contrast to
current forecasting methodologies in which the model used to
forecast a time series is trained exclusively with the historical
values of the series being predicted. The model applied in our
experimentation is a generalized regression neural network,
a kind of neural network that has proved its usefulness in
forecasting time series [7], [8].

The rest of this paper is structured as follows. Section II
explains how to forecast time series using generalized regres-
sion neural networks and the modeling decisions made to
apply this kind of neural network in our experimentation.
Section III describes our proposal for training a generalized
regression neural network using examples extracted from a
pool of time series. In Section IV some experimentation is
done to assess the forecast accuracy of the proposed method-
ology and some variations of the initial proposal. Finally,
Section V analyzes the results of the experimentation and
Section VI draws some conclusions.

Il. TIME SERIES FORECASTING WITH GENERALIZED
REGRESSION NEURAL NETWORKS

A generalized regression neural network (GRNN) is a varia-
tion of a radial basis neural network proposed by Specht [9].
If enough samples are available, a GRNN can approximate
any continuous function to an arbitrary accuracy. Given a
training set consisting of n examples: n training patterns (vec-
tors {x, X2, ...x,}) and their corresponding training targets
(scalars {y1, y2, .. .¥a}), the output for an input pattern x is
computed in two steps. First, the weights associated with the
training patterns are calculated:
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the weights sum to one and represent the closeness of x to the
training patterns, the closer the higher. Secondly, the training
targets are averaged according to their weights to produce the
output:
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so a weighted average of the training targets is obtained,
where the weights represent the closeness of the input to the
training patterns. The role of the smoothing factor, o, in (1)
is to control the degree of smoothing. When o is large all the
targets have a small and similar weight, so the result is close
to the mean of the targets. On the other hand, when o is small
only the targets whose patterns are close to the input have
significant weights.

Fig. 1 shows the structure of a generalized regression
neural network which is trained with n examples. As can
be seen, a generalized regression neural network consists of
three layers: the input, hidden and output layer. It should
be noted that the only parameter of a generalized regression
neural network is the smoothing factor.
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FIGURE 1. Structure of a generalized regression neural network.

TABLE 1. Training examples from series {y;, )5, ...
pattern is the four lagged values of its target.

, Ya0) when a training

Training pattern Training target

Y1,Y2,Y3,Y4 Ys
Y2,Y3,Y4,Y5 Y6
Y3, Y4, Y5, Y6 y7
Y36, Y37, Y38, Y39 Y40

To use GRNN in a time series forecasting context the
training targets are historical values of the time series and the
training patterns are lagged (i.e., previous) values of the tar-
gets. For example, given the time series s = {y1, y2, ..., Y40}
and assuming that a training pattern is formed by the four
lagged values of its target, a subset of the 36 training examples
that can be extracted from s are shown in Table 1. Fig. 2
shows an artificial quarterly time series with a strong seasonal
behavior: in a year the levels of the first two quarters are
similar and higher than the levels of the last two quarters,
which are also similar. Again, it is assumed that a training
pattern consists of the four lagged values of its target. Fig. 2
highlights the input to the GRNN, formed by the last four
historical values of the series, its closest training pattern (i.e.,
the one with the highest weight) and its associated target.
Also, this figure shows two different predictions for the next
future value of the series (the first quarter of the next year).
In one of the predictions the smoothing factor is small and
only the targets of the training patterns very close (similar)
to the input have significant weights in the weighted average
(due to the seasonal behavior these targets will likely be first
quarter values). In the other prediction the smoothing factor
is large and, therefore, all the training targets have a similar
weight, so the prediction is close to the mean of the historical
values of the series. It should be noted that, owing to the
seasonal pattern of the series, the prediction done with the
smaller smoothing factor is clearly more suitable.

Generalized regression neural networks find patterns in a
series similar to its last historical values, hoping that the sub-
sequent values of these patterns are also similar to the future
behavior of the series. The smoothing factor determines the
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FIGURE 2. Forecasting with GRNN.

degree of similarity required to a pattern to play an important
role in the prediction.

A. GENERALIZED REGRESSION NEURAL NETWORKS
METHODOLOGY

This section explains the modeling decisions made in our
experimentation to forecast times series by means of general-
ized regression neural networks. From the previous section,
it should be clear that a correct choice of the smoothing
factor is crucial for accurate forecasts. To this end, the last
h historical values of a time series, where £ is the forecasting
horizon (i.e., the number of future values to be forecast), are
used as a validation set to find a proper smoothing factor for
the series. A model is fitted with the historical values previous
to the validation set and an optimization tool is used to find
the smoothing factor that minimizes a forecasting accuracy
measure on the validation set. Once the smoothing factor is
optimized, all the historical values can be used to train the
model that predicts the future behavior of the series.

Other important decision is to choose the lagged values of
the targets used as training patterns. Since our experimen-
tation deals with short yearly time series, we have decided
to only use the three lagged values of a target as its training
pattern.

In our experimentation the next 6 years of yearly time
series are predicted and therefore some strategy to forecast
multi-step-ahead values has to be used [10]. We have chosen
the iterative (also called recursive) strategy because it is
efficient and produces good results [11]. With the iterative
approach the forecasting model only predicts the one-step-
ahead value of a series. Therefore, if the next & future values
need to be predicted, the model is used 4 times in an iterative
way. The inputs to the model are historical values of the
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FIGURE 3. Historical values and values to be forecast for one of the
shortest yearly series of the M1 competition.

series or previous predictions when historical values are not
available.

Ill. OUR PROPOSAL

Our proposal is motivated by the difficulties we found in
forecasting the yearly time series of the M1 competition [12]
using generalized regression neural networks. This forecast-
ing competition consists of, among others, 181 yearly series,
with lengths ranging from 9 to 52 historical values. For all
the yearly series their next 6 future values are to be predicted.
Fig. 3 and Fig. 4 show the historical values and the future
values to be predicted of the shortest and longest yearly series
of the M1 competition respectively.

A time series with 9 historical values cannot be predicted
with the GRNN methodology described above. Because the
forecasting horizon is 6 we use as validation set, to choose
a proper smoothing factor, the last 6 values of the series.
Therefore, the training set, used to fit the model that assesses
the forecast accuracy on the validation set, is formed by the
remaining first 3 historical values of the series. However,
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FIGURE 4. Historical values and values to be forecast for the longest
yearly series of the M1 competition.

Time series 1 000000000000000000000000000000

Set

Time series2 000000000000000000000000000000 ® training

O validation

Time series3 000000000000000000000000000000

FIGURE 5. Training and validation sets for time series 3 when the pool of
series is formed by 3 series with the same length.

with 3 values it is not possible to train a model, because no
training example can be extracted: a training example needs
4 consecutive historical values of the series (a training pattern
of 3 consecutive values and a target with the next value).

Taking into account the aforementioned problems for train-
ing GRNN models with short series, we have developed the
following strategy to forecast the yearly series of the Ml
competition using GRNN:

1) As mentioned previously, an example for training a
model consists of a target (a historical value of the
series) and a training pattern formed by the three lagged
values of the target.

2) Also, as discussed above, the iterative approach is used
to forecast multi-step-ahead values.

3) Given a time series, the validation set applied to select
the smoothing factor is formed by its last 6 values.
The GRNN model used to forecast the validation set is
trained with the historical values of the series previous
to the validation set and with the historical values of
the other 180 yearly time series of the M1 competition.
As an example, Fig. 5 shows the training and validation
set for a time series trained with a pool of three time
series.

4) Once the smoothing factor is chosen, the training exam-
ples used by the GRNN model to forecast the time
series are drawn from the values of all the 181 yearly
time series of the M1 competition.

5) The inputs to the GRNN model are extracted from the
series being forecast.

The main novelty of our strategy is that a GRNN model
is trained not only with the historical values of the series to
be forecast, but also with the historical values of a collection
of series. For example, if a GRNN model is trained with
the following two series: sl = {y1, y2, y3, y4, y5} and s2 =
{x1, x2, x3, x4, X5, X}, then its training examples are the ones
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TABLE 2. Training examples from series {y,, ¥, ¥3, ¥4, ¥s} and
{X1, X2, X3, X3, X5, Xg} when a training pattern is the three
lagged values of its target.

Training pattern ~ Training target

Y1,92,Y3 Ya
Y2,Y3, Y4 Ys
T1,T2,%3 T4
T2,T3,%4 5
X3, T4,T5 Z6

shown in Table 2. These training examples would be used to
forecast both s1 and s2.

The weights used by GRNN to average the training targets
are related to the closeness (similarity) of the input to the
training patterns, where the closeness is based on (1). Because
our proposal uses training examples from different time series
with different magnitudes it is necessary to scale the training
examples and the input so that they share the same scale and
the weights are not affected by the different magnitudes of
the series. To this end, our proposal transforms the training
examples and the inputs as described next.

Given a training example, consisting of a training pattern
(a vector p of length 3) and a training target (a scalar ¢) the
training pattern is transformed as follows:

p—>p
Op

3

where o), is the standard deviation of the training pattern p.
The training target is transformed relative to its training
pattern:

t—p
Op

@

Finally, an input vector i is transformed in the same way as
a training pattern:
i—i
— &)
Oi
where o; is the standard deviation of the input vector i. The
one-step-ahead forecast f generated for the input i is back
transformed as: fo; + i.

IV. EXPERIMENTATION

In this section the model proposed in the previous section
has been used to forecast the 181 yearly series from the
M1 competition. The forecast accuracy of our model will
be compared to several benchmarks to assess its relative
efficiency. To achieve reproducible results publicly available
implementations of the benchmarks (packages from CRAN,
the Comprehensive R Archive Network, that is, the official
repository of R packages) have been used. The benchmarks
are the following ones:

o« The ARIMA methodology [13]. We have used the
implementation of this methodology supported by the
auto.arima function from the forecast package [14].
In this implementation a non-exhaustive search of
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ARIMA models is done, using the corrected Akaike
information criterion (AICc) to select a suitable model.

o Exponential smoothing models [15]. Exponential
smoothing encompasses a set of models (SES, Holt,
Holt-Winters, etc) that decompose a time series into
level, trend and seasonal components using exponential
smoothing. To forecast with exponential smoothing the
ets function from the forecast package has been used,
this function automatically selects the best exponential
smoothing model taking into account the AICc.

o A classical GRNN model trained with the time series
to be predicted. We have used the grnn_forecasting
function from the fsfgrnn package [16]. The GRNN
model is configured in the same way as our proposal,
the only difference is that this model is not trained with
the whole data set. Also, because this model is trained
in the traditional way, with the series that it predicts,
the training examples are transformed in a different way.
Concretely, the value of a training example is subtracted
by the mean of its training pattern and a prediction is
back transformed by adding the mean of the input.

o The KNN (k-nearest neighbors) model implemented in
the tsfknn package [17]. We have used the default param-
eters of the knn_forecasting function.

o The approach developed in [6]. We have used the
R implementation of its proposal provided in the paper.
In the experimentation we have called this approach
Similarity.

The forecasting accuracy is measured according to the
Mean Absolute Scaled Error, MASE [18]. Scaled errors are
an alternative to using percentage errors when comparing
forecasting accuracy across series with different magnitudes.
For a yearly time series s = {y1, y2, ..., Yn}, in which the
forecasting horizon is #, the MASE is computed as follows:

+h
Yt e — fil

MASE = 1 ”
n—1 2,22 [ye — yi—1l

(©)

S| =

where y; and f; are the actual value and the forecast for
period ¢ respectively. MASE computes the mean absolute
forecast error relative to the mean absolute forecast error
of a simple forecasting method. For yearly time series the
naive approach, whose forecast is the last value of a series,
is normally chosen as ‘“‘simple method”. As can be seen
in (6), the mean absolute forecast error is scaled by the
mean absolute forecast error of the naive method for the one-
step-ahead predictions of the historical values of the series.
In order to measure the forecast accuracy of a model across
a set of series, the MASE of its forecasts for each series is
computed and then averaged. The lower the MASE value,
the more accurate the predictions are. In our experimentation
the expected MASE value will be higher than one, because
we forecast the six future values of a series, and the errors
of these forecasts are scaled by one-step-ahead errors of the
naive approach.
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TABLE 3. Average MASE of the different approaches across the yearly
series of the M1 competition.

Method short | medium | long all

Exponential smoothing | 3.65 4.24 275 | 3.74
ARIMA 3.11 4.24 2.67 | 3.45
Traditional GRNN 322 4.02 2.46 | 3.40
KNN 3.31 4.05 2.47 | 3.46
Similarity 2.97 3.77 247 | 3.19
Experiment 1 3.49 4.05 291 | 3.61
Experiment 2 3.09 3.98 295 | 3.38
Experiment 3 3.13 4.03 2.83 | 3.41
Experiment 4 2.92 4.17 3.09 | 3.38

TABLE 4. Median MASE of the different approaches across the yearly
series of the M1 competition.

Method short | medium | long all

Exponential smoothing | 2.48 2.52 1.77 | 2.32
ARIMA 2.00 2.55 1.61 | 2.16
Traditional GRNN 2.24 2.53 1.79 | 2.21
KNN 2.46 2.54 1.66 | 2.34
Similarity 2.19 2.55 141 | 231
Experiment 1 2.61 2.56 2.82 | 2.58
Experiment 2 2.08 2.60 2.56 | 2.40
Experiment 3 2.18 2.66 245 | 2.35
Experiment 4 2.11 3.31 1.99 | 2.45

The first five rows of Table 3 show the average MASE
of the benchmarks across the 177 yearly series of the
M1 competition. The series have been divided into three
categories according to their length: short (10 to 16 values),
medium (from 17 to 30) and large (more than 30). There are
92 short series, 62 medium series and 23 long series. The
category all represents the 177 yearly series. The original
dataset contains 181 yearly series, but we have removed
4 time series of length 9, because they are too short to be
forecast by the traditional GRNN model. The method labelled
as Experiment 1 is the approach proposed in the previous
section, it obtains a worse overall average accuracy than the
classical GRNN model across all the series, but it outperforms
exponential smoothing.

The remaining rows in Table 3 correspond to additional
experiments about training a GRNN model with examples
drawn from a pool of series. These experiments are described
next. Fig. 6 shows a boxplot for the MASE obtained by
the different models on the 177 yearly series of the Ml
competition. As can be observed almost all the models obtain
very poor results with two series. These bad results will dra-
matically affect the average MASE across the series. There-
fore, it would be interesting to use other measures of central
tendency. In this sense, Table 4 shows the median of the
MASE for the models across the 177 yearly series of the M1
competition.

A. EXPERIMENT 2

The series of the M1 competition are organized into cat-
egories, which are listed in Table 5, with the number of
yearly series in each category. In this second experiment
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FIGURE 6. Boxplot of the MASE for the different forecasting models.

TABLE 5. Categories of the yearly series of M1 competition.

Category # of series
Demographics 30
Industry 35
Macrol 30
Macro2 29
Microl 16
Micro2 29
Micro3 12

we try to discover whether information about the category
of a series can be used to improve the forecast accuracy of
our proposal. The experiment consists in training the GRNN
model forecasting a series s with the pool of series that
belong to the category of s. For example, a GRNN model
forecasting an Industry series is trained with the 35 series in
this category. As can be seen in Tables 3 and 4, this strategy
seems to produce better results than the original proposal
(Experiment 1), in which the GRNN models are trained with
all the yearly series.

B. EXPERIMENT 3

This experiment is a slight variation of the previous one.
As in Experiment 2, a GRNN model forecasting a series s
is trained with the pool of series belonging to the category
of s. However, now s is excluded from the pool. The goal
of this experiment is to discover whether a GRNN model

3280

Simiiarity Experilment 1 Experilment 2 Experilment 3 Experilment 4
Method

can be properly trained by using only external series. It must
be noted that a minimum of data is needed from the series
being predicted. We use the last & historical values of the
predicted series as validation set to choose the smoothing
factor. Also, the input to GRNN is formed by the last his-
torical values of the series. However, the training examples
used by the GRNN model assessing the validation set and
the GRNN model forecasting the series belong to external
series. The forecast accuracy obtained with this experiment
(see Tables 3 and 4) is similar to the accuracy of
Experiment 2.

It should be noted that with all the proposed approaches
the minimum number of historical values needed to forecast
a series is reduced. For example, with the modeling decisions
described in Section II-A the minimum length needed to
forecast a series with the traditional GRNN model is 10.
However, with the proposed approaches is 6—the maximum
between the length of the forecasting horizon (6) and the
length of an input pattern (3).

C. EXPERIMENT 4

The last experiment is based on model combination, that is,
in combining the forecasts of several models. Model combi-
nation has a long history in time series forecasting [19], [20]
and its usefulness has been demonstrated once again in the
recent M4 competition [3] where the top-performing methods
were combinations.
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FIGURE 7. Historical values and forecasts for series 142 with a MASE
of 0.09 (best forecast).

In this experiment a time series s belonging to category C
is forecast as follows:

1) For every time series ¢ of C a GRNN model is built as
in Experiment 1, but the model is trained exclusively
with the historical values of 7.

2) If category C has N series, the previous step produces
N models. Each model is trained with a different series
of C and it is used to generate its own forecasts.

3) The N forecasts are combined using the median to
produce the final forecast for s.

The forecast accuracy obtained with this experiment (see
Tables 3 and 4) across all the series is not bad, in spite of the
fact that only one model of the combination is trained with
the values of the series being predicted.

Fig. 7 shows the best forecast for the 177 yearly series of
the M1 competition in terms of MASE using experiment 4,
the forecasts are almost equal to actual future vales. On the
other hand, Fig. 8§ shows the worst forecast in terms of MASE,
it should be noted that the series to be forecast is a difficult
one.

V. DISCUSSION

This section analyzes the results of the experimentation con-
ducted in the previous section. Looking at Tables 3 and 4
it can be noted that for the traditional and benchmark
models—exponential smoothing, ARIMA, GRNN, KNN and
Similarity—the forecasts for long series are clearly more
accurate than for short series. This is a reasonable result
because, in general, the more data the best a model can be
trained. However, the forecast accuracy for the medium-sized
series is worse than for the short series. Probably, the set of
medium-sized series is particularly difficult to predict. On the
other hand, observing Table 4 it seems that our four proposals
do not improve with the increasing length of the series. The
reasonable explanation for this is that our models are mainly
trained by examples drawn from external series to the series
being predicted and are therefore less sensitive to the length
of the predicted series.
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FIGURE 8. Historical values and forecasts for series 76 with a MASE
of 43.24 (worst forecast).

We have conducted some statistical tests to detect whether
there are significant differences between the models. The
tests have been done for the different length categories into
which the series have been divided: short, medium and long.
According to the recommendations given in [21] a two stage
procedure is applied. First, the Iman and Davemport’s exten-
sion of the Friedman’s test is applied to check whether all the
approaches are not equivalent in terms of forecast accuracy—
the test takes into account the average rank of the different
models over the different test sets. If the null hypothesis
(i.e., the average rank of all the approaches over the test sets
are the same) is rejected, the post-hoc Nemenyi test is used to
see whether there are differences between any two models.

For the short series the Iman and Davemport’s test pro-
duces a p-value of 4.3 x 1078, with such a low value the
null hypothesis is rejected at any reasonable significance
level. One advantage of the post-hoc Nememyi test is that
its outcome can be neatly presented with a critical difference
diagram. Fig. 9 shows this diagram. According to it, the best
average rank among the models is obtained by Experiment 4.
In a critical difference diagram groups of models that are
not significantly different are connected with a horizontal
bar. For example, in Fig. 9 Experiment 4, Experiment 2,
Experiment 3, Similarity and ARIMA are connected and
are not, therefore, significantly different—at a significance
level of 0.05. However, Experiment 4 and Experiment 2 are
significantly different from GRNN. This later result is impor-
tant, because it shows that for short series GRNN can take
advantage of being trained by external series, at least, if the
training is done as in Experiments 4 and 2.

For the medium-sized series the Iman and Davemport’s test
produces a p-value of 0.11 and for the long series a p-value
of 0.06, therefore at a significance level of 0.05 the null
hypothesis is not rejected. However, although there are no sig-
nificant differences we have decided to show the result of the
Nemenyi test to see the average rank of each model. Fig. 10
and Fig. 11 show the critical diagrams for the medium-sized
and long series respectively. For long series our proposals
obtain the worst results in terms of average rank.
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FIGURE 9. Critical diagram of the Nemenyi test for short series comparing
all models against each other.
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FIGURE 11. Critical diagram of the Nemenyi test for long series
comparing all models against each other.

Taking these results into account we can conclude that
when we want to forecast the future values of a short series
using GRNN it might be effective, in terms of forecast
accuracy, to train the model with a pool of series, at least using
Experiments 4 or 2.

Our experimentation has used the yearly series of the
M1 competition, both as pool of training series and as the
target series to be predicted. In order to apply our proposal
to any series it would be interesting to have a pool of series
that are similar to the one being predicted. If this is not the
case, public data sets, such as the 100,000 series of the M4
forecasting competition [3], can be used to find a set of similar
series.

VI. CONCLUSION

This paper has presented new approaches for time series fore-
casting with generalized regression neural networks models.
The main feature of these approaches is that the training
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examples used to build the models are taken from a pool
of series. The experimentation shows that, for short series,
two of the approaches improve the forecast accuracy of the
traditional GRNN model trained exclusively with the series
being forecast. The experimental results also seem to indicate
that forecast accuracy might be improved if the series of the
pool are similar, in some way, to the series being predicted.
A striking result is that, for short series, an effective model
can be built using only external series as training set. Another
interesting outcome is that the proposed approaches can be
used as an effective alternative to forecast series that are too
short to train a traditional GRNN model.
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