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Abstract—Deep learning technology has shown excellent perfor-
mances and successful applications in optical information process-
ing. However, the long-time training, large amount of manually
labeled data and generalization capability hinder the application
of deep neural network (DNN) under supervised learning. The deep
image prior (DIP) opinion promotes the development of untrained
neural network, which can learn from one image. Here we propose
a DIP-based strategy to nest the DNN into a physical model for
finding the optimal solution in a univariate optimization problem.
The untrained physics-enhanced network (UPN) is proposed to
predict the diffraction distance via only one diffraction pattern of
a known phase object. Simulation and experimental results show
that the UPN can be used to predict the distance precisely and
consistently with different targets, diffraction distances as well
as phase ranges, while it only takes a little time for training. In
addition, the trained UPN can generalize to the other targets as
long as the actual diffraction process keeps the same. Compared
with the autofocusing metrics of holographic reconstruction and
traversal method, the UPN has advantages in speed and accuracy,
and it also has good noise resistance, which are all meaningful for
the autofocusing of holographic reconstruction and imaging.

Index Terms—Deep image prior, prediction of diffraction
distance, physical model, untrained physics-enhanced network.

I. INTRODUCTION

R ECENTLY, deep learning technology has attracted a lot of
attention because of its excellent performances in digital

holography [1], [2], super-resolution imaging [3], scattering
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medium imaging [4], denoising [5], wavefront sensing [6],
autofocusing [7], multi-wavelength interference [8] and image
restoration [9], [10], etc. However, the deep neural network
(DNN) almost needs long-time training with a dataset yet, which
contains a large number of inputs and labels [11], [12]. In many
applications, such as measuring unknown phases, recovering
clear images and identifying objects, acquiring large amounts of
data requires high costs, and labeling these data is a combination
of difficulties and costs. In addition, the supervised learning way
also brings new requirements in driving parameter optimization.
The accurate corresponding label is not only the key to the actual
performance of network, but also the hardest part to obtain in
numerous optical inverse problems. At the same time, due to the
noise, environmental disturbance and other factors, it is difficult
to get a fine generalization effect on the actual physical process
with pre-trained DNN model under the limited size of dataset, let
alone transfer the DNN trained in simulation to the application
in practice [13].

In fact, a large training dataset is the critic for generalization
capability, rather than extracting feature ability. The designed
structure of DNN provides the ability of capturing low-level
image prior information in deep image prior (DIP) [14]. It’s
possible for DNN to learn from one image without any pre-
trained models. Inspired by the DIP opinion, the untrained neural
network is proposed for learning from one image under the
physical constraint [15], and has been successfully applied to
phase imaging, holographic reconstruction, diffraction tomog-
raphy, computational ghost imaging and photography [16]–[19].
With the help of physical forward model, the untrained network
can complete the optimization with one image or a few images
in a short time, but has no generalization capability for object
diversity, due to the information relevance between the object
and output of network. It seems that the problems of long-time
training, large amount of data, and accurate labels are all solved
effectively at the expense of generalization capability. However,
the precise physical forward model is the key to add more
physical constraints in an untrained network, and may have
discrepancy with the actual process easily due to the imprecision
of some parameters or processes, leading to a rapid decline in
effectiveness.

A typical DNN-based approach requires numerous param-
eters to fit the forward physical model or inverse solution
relationship through a large amount of data [4], [6]. That is
clumsy and time-consuming because some phenomena could
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be precisely simulated and analyzed in optics, while the DNN
must refit these processes at the risk of mismatching the physical
reality. The untrained network enables tighter integration of
the network model with physical constraints, but an accurate
physical model is not easily available. In fact, many optical
processes can be approximated in computational optical imag-
ing, but the difficulty of accurate model almost lies in some
hard-to-measure parameters. Can these parameters be incorpo-
rated into the optimization space of neural network for direct
solution? In this paper, a DIP-based idea is put forward: nest-
ing the network into a physical model, where the network is
used to fit some hard-to-model processes or difficult-to-measure
parameters.

Autofocusing for holography and imaging is a significant
research problem, and has significant results achieved by com-
bining with deep neural network in recent years [20], [21].
However, traditional autofocusing criteria, such as Contrast,
L1-norm Gradient, Laplacian of Gaussian, Tenenbaum Gradient
and Variance [22], [23], are all susceptible to misjudgment due
to the noise and complex samples. The deep learning-based
autofocusing methods, whether predicting reconstruction dis-
tances [24], [25], or generating focused images directly [26], are
still suffering from the above drawbacks associated with super-
vised learning. In fact, the prediction of reconstruction distance
is equal to that of diffraction distance in monochromatic coherent
light. For the preliminary verification of DIP-based idea, here
we choose the prediction of diffraction distance problem as the
example, and propose an untrained physics-enhanced network
(UPN) to predict distance via only one diffraction pattern of
the known phase. At first, the diffraction and network model
are introduced to form UPN. In simulation and experiment, the
UPN can predict the diffraction distance precisely with different
objects, diffraction distances, and phase ranges. The training of
UPN takes a small amount of time (<30 s for 256 × 256 pixels)
due to the significant reduction in numbers of network parame-
ters and training data. In addition, the trained UPN can generalize
to the other objects if the actual diffraction process keeps the
same. Compared with the autofocusing metrics of holographic
reconstruction and traversal method, the UPN has advantages
in speed and accuracy. In discussion, the optimization under
noises in simulation and experiment are compared for verifying
the noise resistance. Furthermore, the strategy may be easily
extended to other imaging problems.

II. THEORY AND METHOD

A. Diffraction Model

Diffraction is a common optical phenomenon, and predicting
the diffraction distance is significant for holographic recon-
struction and imaging [20], [21], [24]–[26]. According to the
angular spectrum theory, the diffraction process can be simulated
accurately and calculated quickly in mathematics. Therefore,
the computational diffraction model can be combined with the
neural network model to add a strict physical constraint in
UPN, and the pipeline of UPN is shown in Fig. 1(b). Here we
use the diffraction of phase object as an example, and UPN
is also applied to the amplitude target. From Fig. 1(b), the

Fig. 1. Schematic illustration of DNN and UPN in prediction of diffraction
distance. (a) Diffraction pattern I is taken into DNN under the supervision of
corresponding distance d = Z. Another diffraction pattern is used for testing
the generalization capability of trained DNN. (b) A measured diffraction pattern
I of the phase object ϕ is obtained through d = Z diffraction with 35 dB
uniform noise. The network Rw(·) is taken to produce the distance Z∗ from
a fixed array T. Then the known phase ϕ is numerically propagated to get the
generated pattern I∗ through H(ϕ; d = Z∗). The mean square error (MSE)
between I and I∗ is taken as loss value to adjust parameters w. After training,
the distance Z∗ is generated from the fixed array T, no matter what the
object is.

measured diffraction pattern I of phase object is obtained with
the diffraction to a distance Z and ∼35 dB uniform noise. The
network model is taken to produce the predicted distance Z∗

from a fixed array T. Then the known phase ϕ is numerically
propagated to get generated pattern I∗ through the calculation
diffraction model. The mean square error (MSE) between I and
I∗ is calculated as the loss function to adjust weights and biases
of network model. The UPN can learn to predict the diffraction
distance quickly only using the phase and corresponding diffrac-
tion pattern, without the needs for long-time training and large
amounts of labeled data. It is obvious that the network model is
not connected to either the phase object or the diffraction pattern.
As long as the actual diffraction process keeps the same, the
UPN always gives the accurate prediction no matter how objects
change.

Specifically, for a phase object ϕ(x, y), according to the
Fresnel diffraction theory, the complex amplitude under the
illumination of a coherent plane wave can be written as

U0(x, y; d = 0) = exp[iϕ(x, y)], (1)

Gd(fx, fy) = G0(fx, fy) ·A(fx, fy)

= G0(fx, fy) · exp
[
ikZ

√
1− λ2f2

x − λ2f2
y

]
.

(2)

Where,U0 andUd are the complex amplitude at the distance d =
0 and d = Z from the object plane, G0 and Gd are the Fourier
transform ofU0 andUd,A is the transfer function, and fx and fy
are the spatial frequencies in the x and y directions, respectively.
Then, the diffraction pattern at distance Z is expressed as

I(d = Z) = |Ud(x, y; d = Z)|2 = H(ϕ;Z), (3)
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where H(ϕ;Z) represents that the intensity diffraction pattern,
I is the result of phase ϕ and distance Z through the mapping
function H(·).

B. Untrained Physics-Enhanced Network

Through the inverse process H−1(·) with constant phase, the
distance prediction can be expressed as

Z = H−1[I(d = Z)]. (4)

From Fig. 1(a), the typical DNN-based method takes the diffrac-
tion patterns Ii and the distances di (i = 1, 2, ..., N ) as the
inputs and labels, and then minimize the loss values between the
network outputs and labels [27], [28]. The training and testing
process can be formulated as

Rw∗ = argminw||Rw(Ii)− di||2, (5)

Z∗ = Rw∗(I), (6)

where w and w∗ are the network weights before and after train-
ing, Rw∗ is the optimal mapping function from the diffraction
pattern to corresponding distance, Z∗ is the predicted distance
of network. In Fig. 1(a), the diffraction pattern Ii is taken as the
input of network Rw(·), and the weights are optimized under
the supervision of corresponding distance di to fit the relation-
ship H−1(·). However, the training always needs even tens of
thousands image pairs as the dataset and takes several hours for
optimization. It will inevitably lead to a decrease in the predicted
effect, when only the diffraction pattern of one object is used to
train DNN and that of another object is used for testing. And the
range of distances within dataset limits the actual performance
of DNN greatly, since the highly questionable generalization
capability of supervised learning currently. As for UPN, the
formula is changed as

Z∗ = argmind||H(ϕ; d = Rw(T))− I(d = Z)||2, (7)

where T is just a fixed array, not directly related to the object
and diffraction pattern.

From Fig. 1(b), we use the simulated process H(ϕ; d =
Rw(T)) to get the generated I∗, and calculate the MSE between
I and I∗ to optimize the parameters. This will force the generated
I∗ to converge to the diffraction pattern I through an iterative
process, and at this time Z∗ will converge to Z. That means
that UPN can predict the distance with only one phase and
corresponding diffraction pattern, instead of collecting lots of
image pairs as the dataset. In fact, the network model optimizes
the parameters according to the loss values and generates Z∗

from T, independent of the specific distribution of diffraction
pattern. As a result, the corresponding generated pattern I∗

must conform to the physical constraints, and the UPN trained
by target A can transfer to other targets as long as the actual
diffraction process keeps the same. If the diffraction distance
changes, the UPN needs to be retrained with a little time, due to
the small amount of the data and parameters.

We design the network as only four blocks (fully connected
layer + batch normalization layer + sigmoid) to output the
predicted distance Z∗ from T. The Array T is reshaped to
1000, 100, 10 numbers and output 1 number as Z∗ through

the network Rw(·). Here the prediction of distance is only
a univariate optimization problem, so the network is really
simple. The deeper network with more outputs can be used on
multivariate optimization problems. The UPN is implemented
based on the TensorFlow-1.9.0 platform using Python 3.6.13.
The phase image ϕ and diffraction pattern I were reshaped to
256 × 256 pixels. The optimization usually needs 4000 steps to
find a good solution within 30 s. The Adam optimizer with a
learning rate of 0.1 is adopted to optimize the parameters. With
the combination of large learning rate optimization and weight
reinitialization, the optimization can be understood as a similar
random search for the optimal solution interval at this time.
Once the loss function is reduced significantly, the learning rate
will gradually decrease to obtain a more accurate solution. All
processed are dealt on a computer with an Intel Core i7-10700 K
CPU, 32 GB of RAM, and an NVIDIA 1080Ti GPU.

As a result, the UPN has several advantages compared with
the typical DNN: 1) One image pair is enough for training. This
greatly reduces the cost and difficulty of data acquisition. 2) A
small amount of training data and the simple network structure
make the training time and computational cost lower signifi-
cantly. 3) The network model is constrained by the diffraction
model. As a part of UPN, the network model just contributes a
key parameter to result. That makes the result of UPN adhere to
the constraints of physical model strictly. 4) The trained UPN
can generalize to any targets as long as the diffraction process
remains the same, due to the fact that the network model is not
directly connected to the target information. In order to fully
verify the above advantages, simulated and experimental data
are brought to analysis as follows.

III. RESULTS AND DISCUSSIONS

A. Simulation for the Diversity and Stability of Objects,
Distances and Phases

We choose 20 images as the phase targets to verify the actual
performance of UPN in simulation. The results of target A, B,
C and D are shown in Fig. 2 for the comparisons with various
targets, diffraction distances and phase ranges, assuming that the
diffraction distance is limited to [0, 100] mm. The target A and
B with a phase of 2π propagate to 15.600 mm and 42.800 mm
in Fig. 2(a), and the target C and D with a phase of 4π propagate
to 67.200 mm and 89.100 mm in Fig. 2(c), respectively. After
the fast training with one phase and corresponding diffraction
pattern I , the UPN can give the predicted distance Z∗ and then
generated I∗. The generated patterns I∗ are nearly identical to
the diffraction patterns I , and the absolute errors between Z
and Z∗ are all less than 0.1 mm on four targets. We repeat
the prediction of Fig. 2(a) 50 times in Fig. 2(b) to avoid the
accidental results, and the average values are shown in Table I.
The predicted distances of UPN are generally stable, and the
mean absolute errors (MAE) of target A and B are only 0.003 mm
and 0.012 mm, respectively. As for the influence of phase range,
we repeat the prediction of Fig. 2(c) 30 times with different
maximum phases in Fig. 2(d). The distribution of predicted
distances is relatively concentrated and stable, and their MAE of
target C and D in Table I is 0.048 mm and 0.014 mm, respectively.
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Fig. 2. Prediction of diffraction distance via UPN in simulation. (a) Results
of Target A and B with 2π rad phase and their diffraction patterns at 15.600 mm
and 42.800 mm, respectively. (b) Repeating the prediction 50 times of (a). (c)
Results of Target C and D with 4π rad phase and their diffraction patterns at
67.200 mm and 89.100 mm, respectively. (d) Repeating the prediction 30 times
of (c) with the changing phase ranges.

TABLE I
AVERAGE VALUES OF PREDICTION IN FIG. 2

Fig. 3. Repeating the prediction 100 times in different diffraction ranges.
The phase targets, phase ranges and diffraction distances (Z) are all randomly
selected.

So it seems that the UPN can predict the diffraction distance
accurately with various targets, diffraction distances and phase
ranges.

To further demonstrate the stability of predictions, we con-
sider four diffraction ranges: [0, 1], [0, 10], [0, 100] and [0, 500]
mm. All targets are chosen randomly to generate diffraction
patterns with random phases in [0, 4π] and random diffraction
distances in above four ranges. The actual distribution and
specific average values of 100 times prediction are all shown
in Fig. 3 and Table II. The predictions are relatively accurate
and stable in all diffraction ranges except [0, 500] mm. The
MAE and average time increase as the diffraction range becomes
larger, while the outlier values also become more outrageous. We
define the absolute error within 1% of the diffraction range as the

TABLE II
AVERAGE VALUES OF 100 TIMES PREDICTION IN FIG. 3

accurate value, and the accuracy rates of four ranges are listed in
Table II. The accuracy rates are also falling with the increasing
of diffraction range, which is constant with the changes in
MAE. As the diffraction distance increases, the high-frequency
information in the diffraction pattern has been gradually lost,
leading to the difficulty for the network model to learn from
Fig. 2(a) and (c). About the time cost, UPN always completes
the one prediction within 30 s from Tables I and II.

B. Experiment for the Prediction of Diffraction Distances

The experimental setup is shown in Fig. 4(a). The light can be
regarded as a plane wave after beam expansion and collimation,
and then it is incident on the spatial light modulator (SLM, CAS
MICROSTAR FSLM-2k55-P) after modulation by a polarizer.
The wavelength is 532 nm, and the SLM produces a phase
modulation of [0, 2π] by loading the phase targets. The reflected
light enters the camera for imaging through a non-polarizing
beam splitter (NPBS). The diffraction distance Z is from the
SLM target surface to the camera target surface, which is difficult
to obtain precisely in experimental. We choose target E and
F to propagate to the same distance (∼50 mm), and thus get
the phases and diffraction patterns I for UPN. Subsequently,
we record the corresponding holograms by adding the reflector
and polarizer in the dashed box of Fig. 4(a) to form the refer-
ence beam, which can interfere with the diffraction beam. The
autofocusing metrics of holographic reconstruction, including
the Contrast, L1-norm Gradient (LG), Laplacian of Gaussian
(LOG), Tenenbaum Gradient (TG) and Variance, are all used to
perform the automatic determination of distance [27-29], and the
generated patterns obtained at the corresponding distances are
taken for comparison with UPN in Fig. 4(b). The UPN predicts
the distances as 46.136 mm and 46.431 mm from targets E and
F, while the predicted distances by autofocusing metrics have
a huge difference. As the most stable one of metrics, the LOG
metrics predict 48.442 mm and 47.236 mm, and the absolute
error is 1.206 mm according to the same diffraction process
with different targets. However, the absolute error of UPN is just
0.295 mm, which is much lower than those of metrics, and still
consistent with the results of simulation. All generated patterns
are all taken for comparison with the diffraction pattern I by root
mean square error (RMSE), peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) in Table III. The generated
pattern at the distance predicted by UPN is the most similar to
the diffraction pattern by these image indexes, which means that
UPN predicts the most accurate diffraction distance. In general,
the autofocusing metrics are susceptible to the irregular samples
and noises, while the UPN is more stable. The UPN with the
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Fig. 4. (a) Experimental setup. NPBS: non-polarizing beam splitter. SLM:
spatial light modulator. P: polarizer. M: mirror. (b) Prediction of diffraction dis-
tance via UPN in experiment. Target E and F both captured at the same diffraction
distance. All autofocusing metrics are used for searching the diffraction distance
from the corresponding hologram.

TABLE III
IMAGE INDEXES BETWEEN GENERATED PATTERNS AND DIFFRACTION

PATTERNS IN FIG. 4

1024 × 1024 pixels target takes ∼100 s for searching within
[0, 100] mm in experiment, while all autofocusing metrics takes
120 s at least for searching from 40 mm to 60 mm with 200
steps. Eventually, the UPN can produce the stable and precise
prediction with the least time in experiment.

Fig. 5. Curve of MSE with 0–100 mm diffraction. Three phase targets with
2π rad phase, and the MSE between diffraction pattern I and generated I∗
is calculated. (a) and (b) Target C and B with 256 × 256 pixels propagate to
67.200 mm and 42.800 mm without additional noises in simulation, respectively.
(c) Target E with 1024 × 1024 pixels propagates to 46 mm in experiment.
(d)–(f) Target C with 256 × 256 pixels propagates to 67.200 mm with 40 dB,
30 dB, 20 dB and 10 dB Uniform, Gaussian and Poisson noises in simulation,
respectively.

C. Discussions About Optimization Under Noises

Now we focus on the optimization process of network mod-
els in simulation and experiment, and the curves of MSE are
shown in Fig. 5. Three phase targets with 2π rad are taken
for comparison, and the MSE between diffraction pattern I
and generated I∗ is calculated. The curves of targets B and C
have distinct minimum values at the corresponding diffraction
distances without noises in simulation, while that of target
E is vague in experiment. Under the influence of noises and
experimental errors, the MSE of target E is difficult to converge
to as low as that in the simulation, which may lead to more
difficulties in optimizing the network model. However, it can
be seen from the enlargement curve that the lowest point still
exists and is very close to the prediction in Fig. 4(b), indicating
that UPN is able to find the most suitable distance accurately
in experiment. When the traversal range is [0, 100] mm with
0.1 mm intervals, the traversal searching of targets B, C and
E take 227.833 s, 228.845 s and 765.080 s, while UPN takes
28.849 s, 25.525 s and 103.752 s, respectively. It is obvious
that the UPN has advantages over the traversal method for the
univariate optimization problems.

As for the influence of the noise type and level, Fig. 5(e)–(f)
are taken for comparison. The Uniform, Gaussian and Poisson
noises with 40 dB, 30 dB, 20 dB and 10 dB signal-to-noise ratio
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(SNR) are added into the Target C in Fig. 5(a). From Fig. 5(e)–(f),
all curves still have obvious lowest points, indicating that the
optimal solution exists. In contrast, the lowest point with 10 dB
Gaussian noise is not obvious in magnified view, and the curve
trend is also different from others. As a result, the UPN has
∼ 2 mm prediction error under Gaussian noise while <0.14 mm
under others with 10 dB SNR. With 40 dB, 30 dB and 20 dB
SNR, the UPN keeps the errors within 0.07 mm under three
types noises. It can be seen that the UPN has good resistance for
optimizing to the optimal solution under noises.

Although the UPN has high accuracy, generalization capabil-
ity to other objects and noise resistance, it still has some existing
problems for further researching. The DIP-based idea is verified
in a univariate optimization problem, so the phase of object
is taken as a known parameter, which causes the problems of
application in autofocusing. The multivariate optimization and
the application in autofocusing with unknown objects are taken
into consideration in process.

IV. CONCLUSION

In this paper, we have presented a DIP-based idea to nest
DNN with the physical model, and chosen a univariate opti-
mization problem to verify the feasibility. The untrained physics-
enhanced network (UPN), which containing the network model
and the diffraction model, is proposed to predict the diffraction
distance via only one diffraction pattern of a known phase. The
simulation and experiment show that the UPN can be used to pre-
dict the distance precisely and consistently with various targets,
diffraction distances and phase ranges. And it has advantages
over the autofocusing metrics of holographic reconstruction
and traversal method in speed and accuracy. The influence
of noises is discussed by comparing the optimization process
and prediction errors. However, the prediction of diffraction
distance is just a simple univariate optimization problem, and
our DIP-based idea needs further verified. In future work, we
will extend to multivariate optimization problems to integrate
DNN with physical processes more closely, and make full use
of the advantages of DNN in practice.
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