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ABSTRACT In this paper, a new 5-D chaotic system with hidden attractor was presented. The stability and
equilibrium points set of the systemwere analyzed by the traditional dynamical analysis method.Meanwhile,
several special phenomena were found in the system, such as chaos degradation, state transition, multiwing
chaotic attractors, coexisting-attractors etc. verifying the application of the system in engineering, offset
boosting control method is introduced and numerical simulation of the system is implemented. In addition,
the complexity of Spectral Entropy (SE) and C0 are analyzed. Finally, the new system was simulated by the
digital signal processing (DSP) technology, and the results agree well with the numerical simulation result.
Theoretical analysis and simulation results show that the system has complex dynamical characteristics and
can be applied to secure communication and image encryption.

INDEX TERMS Hidden attractor, coexisting-attractors, state transition, chaos degradation, offset
boosting, DSP.

I. INTRODUCTION
The physical phenomenon that chaos is highly sensitive to
initial value has attracted extensive attention. Since 1963, the
famous Lorentz system [1] has been proposed, which clearly
describes chaotic fundamental states sensitive to initial value
conditions. So, in the last couple of decades, there’s been
a lot of interest from an engineering point of view in the
creation of chaos. Chaotic systems [2]–[12] are widely used
in information science, finance, biology, engineering and
other fields. Up to now, a wide variety of chaotic systems
have been studied, including hyperchaotic systems [13]–[16],
multiwing chaotic systems [17]–[19], multiscroll chaotic
systems [20]–[22], and chaotic systems with hidden
attractor [23]–[27].

Especially chaotic systems with hidden attractor have
become a hot topic in recent years. Such as Zhang et al. [28]
revealed the local dynamical characteristics by studying two
nonlinear systems with hidden attractor, and hidden attractor
has many different characteristics from self-excited attractor
due to its particularity. Thus, the particularity of the hidden
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attractor can be seen. At present, the academic definition
of hidden attractor is that a basin of attraction of which
does not contain neighborhoods of equilibria is called the
hidden attractor. It usually exists in infinitely many equilibria
chaotic system or non-equilibrium chaotic system. Mean-
while, the form of the hidden attractor can be periodic or
chaotic attractor. Because of the special dynamical behav-
ior of hidden attractor, the study of hidden attractor and
the application of these nonlinear systems in engineering
are of great physical significance and high project appli-
cability. From the perspective of application, hidden oscil-
lation will cause unnecessary losses to our production and
life, so it is very important to understand this physical phe-
nomenon to better grasp the chaotic motion and further lower
the undesired behavior of chaos. In 2010, hidden attrac-
tors were first discovered in Chua circuits [29], [30] and
hidden chaos attractors have been found in different sys-
tems. Therefore, Chen et al. [31] improved Chua circuit
using memristor and analyzed its hidden attractor by numeri-
cal and experimental methods. Besides, in classical chaotic
systems, such as Chen system [32]–[36], Lorenz system
[37]–[39] and Lü system [40]–[42], scholars have also found
the possibility of hidden attractor in these systems. Therefore,
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Lai et al. [43] improved some classical chaotic systems, and
found that coexisting-attractors and hidden attractor exist for
some parameter regions. And Hu et al. [44] established the
Sprott A system by combining two three-dimensional chaotic
systems without equilibrium, which can generate multiscroll
hidden attractor. It is found that chaotic systems with multi-
scroll hidden attractors have greater complexity in nonlinear
systems, and will have greater development prospects in
the fields of image encryption and secure communication.
In addition, multistability refers to the coexistence of two
or more attractors with the same set of parameters under
different initial values, and this is an interesting thing that usu-
ally happens in many nonlinear dynamical systems. It is well
known that in a dynamical system, this phenomenon leads
to very complex behaviors. In this paper, a new 5-D chaotic
system is formed by modifying the 4D Yu-Wang chaotic
system [45] Interestingly, the system has non-equilibrium,
and it belongs to the category of chaotic systems with hidden
attractor. Most of the existing non-equilibrium systems have
very small constant parameters and a very small range of
parameters to generate hidden chaotic attractors. So hidden
attractors are hard to spot in these systems, and this system
can easily generate hidden chaotic attractors whose constant
terms can be very large. Meanwhile, the system also has
complex dynamical phenomena, including multiwing chaotic
attractors, state transition, chaos degradation, and coexisting-
attractors [46]–[54].Moreover, another very attractive feature
of this system is the offset boosting [55]–[66], that means the
system be able controlled flexibly by introducing a feedback
state. Finally, the feasibility of the system is verified on DSP
platform. The simple circuit structure of the system provides
the possibility for the practical implementation of the circuit.
Meanwhile, the complex dynamic behavior makes it have
infinite practical application value, such as secure commu-
nication.

II. MATHEMATICAL MODEL
A. STABILITY AND EQUILIBRIUM POINTS SET
By introducing additional variable u and constant term k into
the classical 4-D chaotic system, a new system is established
as follows: 

ẋ = −ax + yz+ bw+ u
ẏ = cy− xz+ k
ż = xy− dz
ẇ = xz− ew
u̇ = gy.

(1)

For the choice of initial state are (1, 1, 1, 1, 1), setting a= 10,
b= 2, c= 10, d= 21, k= 3, e= 10, g= 1.15, The Lyapunov
exponents spectrum calculated by MATLAB is as follows

LE1 = 2.3351, LE2 = 0, LE3 = −0.0254,

LE4 = −8.5586, LE5 = −29.7577 (2)

Because the Lyapunov exponent in (2) is signed (+, 0, −,
−, −), then the dynamic system (1) presents a chaotic state

behavior. Kaplan-Yorke dimensions of the system (1) is found
to be

DKY = 4+
LE1 + LE2 + LE3 + LE4

|LE5|
= 3.79 (3)

The conclusion of divergence of system (1) can be drawn

∆ =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
+
∂ẇ
∂w
+
∂ u̇
∂u
, (4)

setting a = 10, b = 2, c = 10, d = 21, k = 3, e = 10, g =
1.15 and the initial conditions are (1, 1, 1, 1, 1); then,∆ < 0;
therefore, the system is dissipative, and it can be inferred that
the system has the possibility of chaotic attractors. Setting

ẋ = ẏ = ż = ẇ = u̇ = 0, (5)

then 

−ax + yz+ bw+ u = 0
cy− xz+ k = 0
xy− dz = 0
xz− ew = 0
gy = 0,

(6)

it is easy to get that

E =

{
None, k = 0
(n/a, 0, 0, 0, n), k 6= 0,

(7)

When k = 0, let the equilibrium points set be O, Jacobi
matrix JE of the system (1) set is

JE =


−a z y b 1
−z c −x 0 0
y x −d 0 0
z 0 x −e 0
0 g 0 0 0

 ,
and the characteristic equation for the equilibrium points O

λ5 + a1λ4 + a2λ3 + a3λ2 + a4λ+ a5 = 0, (8)

where a1 = 31, a2 = 109, a3 = −3069.85, a4 = −20093.2,
a5 = 253.
According to Eq. (4), the system is unstable if the coeffi-

cient of the characteristic equation has negative coefficient
terms. Therefore, Let n be an arbitrary constant, and any
equilibrium points withinO (n/a, 0, 0, 0, n), when parameters
are n= 10, a= 10, b= 2, c= 10, d= 21, k= 3, e= 10, and
g= 1.15, we can obtain a3 =−3069.85< 0, a4 = −20093.2
< 0, and λ1 = 9.9075, λ2 = −21.0482, λ3 = −− 11.4137,
λ4 = −8.4582, λ5 = 0.0126. This means that the system is
unstable and can create chaos.

III. NUMERICAL DIAGRAM OF THE DYNAMICAL
BEHAVIORS
A. HIDDEN CHAOTIC ATTRACTOR
A basin of attraction of which does not contain neighbor-
hoods of equilibria is called the hidden attractor. When
there is no equilibrium point or infinite equilibrium point in

VOLUME 9, 2021 167921



J. Wen et al.: Dynamical Analysis of New Chaotic System

FIGURE 1. Hidden chaotic attractor: (a) X-Y plane and (b) X-Z plane.

FIGURE 2. (a) Lyapunov exponent spectrum and (b) bifurcation diagram.

the chaotic system equation, the chaotic attractor is hidden
chaotic attractor. Set a = 10, b = 2, c = 10, d = 21, k = 3,
e = 10, and g = 1.15, and initial condition (1, 1, 1, 1, 1).
Since k 6= 0 there is no equilibrium. Therefore, the chaotic
attractor is the hidden chaotic attractor. As shown in Fig.1,
the phase diagrams of different phase planes of hidden chaotic
attractors in the system are given.

B. LYAPUNOV EXPONENTIAL SPECTRUM AND
BIFURCATION DIAGRAM OF THE SYSTEM
Three variable system parameters are determined by system
(1) as a, e and d. The parameter region of interest is specified
as a ∈ [10, 15], e ∈ [10, 30], and d ∈ [20, 35].

By combining the bifurcation diagram with Lyapunov
exponential spectrum, its states under different parameters
can be obtained. Parameters a, e and d, were taken as
variables, the initial value are (1, 1, 1, 1, 1), the step is
h = 0.01s, the remaining parameters of the equation were
fixed, and different states of the chaotic system can be
observed by changing parameters a, e and d.
Take the parameter a ∈ [10, 15], and let b = 2, c = 10,

d = 21, k = 3, e = 10, and g = 1.15. The Lyapunov
exponential spectrum and bifurcation diagram are shown in
Fig.2. For the sake of observation, the smaller LEs are omitted
below. With the change of parameter a, complex dynamical
characteristics such as chaos and period appear successively
in the system. At the same time, an interesting phenomenon
is found in the bifurcation diagram, which shows that the
multiwing chaos transforms into chaos. In Fig.3, with dif-
ferent parameter a, it represents the attractors of the system
in three different states including multiwing chaos attractors,
chaos attractors, quasi-periodic attractors. In addition, refer to
Table 1. It can clearly understand the change of system state
when parameter a changes.

FIGURE 3. Different states with b = 2, c = 10, d = 21, k = 3, e = 10, and
g = 1.15: (a) multiwing chaos for a = 10.45, (b) chaos for a = 11.5, and
(c) period for a = 12.47.

TABLE 1. Corresponding state and LEs with the initial conditions (1, 1, 1,
1, 1), the parameters b = 2, c = 10, d = 21, k = 3, e = 10, g = 1.15, and the
different parameter a.

FIGURE 4. (a) Lyapunov exponent spectrum and (b) bifurcation diagram.

FIGURE 5. Different states with a = 10, b = 2, c = 10, d = 21, k = 3, and
g = 1.15: (a) multiwing chaos for e = 16, (b) chaos for e = 25, and
(c) period for e = 28.5.

Take the parameter e ∈ [10, 30] and leave the other
parameters unchanged. It can be observed from Fig.4 when
e ∈ [10, 19.8], the system is in a chaotic state accompanied
by multiwing. And when e ∈ [28.15, 28.55], it is found that
the system changes from chaos to periodicity, indicating that
the system has complex dynamical characteristics. The phase
diagram of the system in different states is shown in Figure 5.
As shown in Table 2, when parameter e is at different values,
states of the system presented are greatly different.

Take the parameter d ∈ [20, 35], and keep the other param-
eters fixed. In Fig.6, when parameter d= 25.7, the maximum
LEs value is 2.66, indicating that the system has very complex
dynamical characteristics and has a very good application
prospect in encrypted communication. Meanwhile, in Fig. 7,
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TABLE 2. Corresponding state and LEs with the initial conditions
(1, 1, 1, 1, 1), the parameters a = 10, b = 2, c = 10, d = 21, k = 3, g =

1.15 and the different parameter e.

FIGURE 6. (a) Lyapunov exponent spectrum and (b) bifurcation diagram.

FIGURE 7. Different states with a = 10, b = 2, c = 10, k = 3, e = 10, and
g = 1.15: (a) multiwing chaos for d = 21, (b) chaos for d = 25, and
(c) period for d = 32.

TABLE 3. Corresponding state and LEs with the initial conditions
(1, 1, 1, 1, 1), the parameters a = 10, b = 2, c = 10, e = 10, k = 3, g = 1.15,
and the different parameter d.

phase diagrams in different states are shown along with dif-
ferent parameter d. According to Table 3, we can clearly
understand how the change of parameter e affects the change
of dynamical characteristics of the system.

C. CHAOS DEGRADATION AND STATE TRANSITION
The state of the system is sometimes instable, and when the
system leaves different dynamical regions, the system will
show rich dynamical characteristics. Set a = 10, b = 2,
c = 10, d = 21, k = 3, e = 28.15, and g = 1.15, set
the simulation step size as 0.01s, select the initial value as
(1, 1, 1, 1, 1). It can be observed that the dynamical system
appears the phenomenon of state transition. As shown in
Fig.8, the dynamical system has experienced the phenomenon
from chaos to periodic and then to chaos. As can be seen in
Fig.9 at t ∈ [0, 250], the system is in a chaotic state. As can be
seen in Fig.10, at t ∈ [300, 1000], the system is in a periodic
state.

Sometimes chaos degradation also occurs in this dynamical
system. As shown in Fig.11, it is obvious that the system

FIGURE 8. Time-domain waveform.

FIGURE 9. (a) Time-domain waveform and (b) phase diagram.

FIGURE 10. (a) Time-domain waveform and (b) phase diagram.

FIGURE 11. Time-domain waveform.

degenerates from chaos to period. As shown in Fig.12, at
t ∈ [0, 500], chaos appears in the system. As shown in Fig.13,
at t ∈ [600, 1000], the system is in a periodic state.

D. COEXISTING-ATTRACTORS
Coexisting-attractor is special phenomenon that occurs
mainly in some special nonlinear systems and has become hot
research feature.When parameters are constant and the initial
value is changed, the system orbit may trend to different
motion states. Suppose a= 11, b = 2, c= 10, d = 21, k = 3,
e= 10, and g= 1.15, step size is 0.01, set the initial values as
(1, 1, 1, 1, 1) and (−1, −1, −1, −1, −0.01) respectively, and
the symmetrical attractor phenomenon as shown in Fig.14 can
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FIGURE 12. (a) Time-domain waveform and (b) phase diagram.

FIGURE 13. (a) Time-domain waveform and (b) phase diagram.

FIGURE 14. (a) Attractors in x–z plane and (b) time-domain waveform.

FIGURE 15. (a) Attractors in x–z plane and (b) time-domain waveform.

be observed. Set the initial values are set as (1, 1, 1, 1, 1) and
(−2, −2, −2, −2, −0.01), the phenomenon of asymmetrical
coexisting-attractors can be observed as shown in Fig.15. In
Fig 16, the location of initial values in different color regions
can produce different types of state attractors. It shows that
the system has many kinds of coexisting attractors. The rich
changes of different colors in the figure prove that the system
has rich asymmetric multi-steady states. At the same time,
we also implemented the coexistence attractor on circuit,
as shown in Figure 17.

E. OFFSET BOOSTING SCHEME
Offset boosting is a method of moving the system’s attractors
and its basin of attractors arbitrarily without changing the

FIGURE 16. Basins of coexisting attractions.

FIGURE 17. Circuit implementation of coexisting attractors.

system solution. This means that with the introduction of
feedback states, the system can be flexibly controlled. Since
the state variable w appears only once in the system equation
as a linear term, Therefore, the boosting of variable u can be
controlled by parameter q. The improved system based on
System (2) is as follows:

ẋ = −ax + yz+ bw+ (u− q)
ẏ = cy− xz+ k
ż = xy− dz
ẇ = xz− ew
u̇ = gy,

(9)

where q is a constant. Setting a = 11, b = 2,
c = 10, d = 21, k = 3, e = 10, g = 1.15, and the 3-D
projections of attractors with different offsets q are shown
Fig.16(a). In the Fig.16(b) with the parameter q increases,
the bifurcation diagram shows a regular upward trend. The
Lyapunov exponential spectrum and bifurcation diagram
are shown in Fig.17(a) and Fig.17(b). Here, for the sake
of observation, the smaller Les are omitted in Lyapunov
exponent spectrums. When the parameter q ∈ [60, 70], it can
be found that the system state variable w increases with the
increase of offset q. Meanwhile, the Lyapunov exponential
spectrum in Fig.17 (b) remains unchanged, indicating that
the state of the system does not change with the offset q. In a
word, this method can make the attractor shift in a certain
direction flexibly by introducing the offset, which has great
engineering application value.

F. COMPLEXITY ANALYSIS
The complexity of nonlinear system systems has become a
hot topic research. The approximation of chaotic sequence
and random sequence is measured by complexity algorithm.
Fig 18 shows the complexity diagrams of different a and d

167924 VOLUME 9, 2021



J. Wen et al.: Dynamical Analysis of New Chaotic System

FIGURE 18. (a) Attractors with different offset q and (b) bifurcation
diagram with offset q.

FIGURE 19. (a) Bifurcation diagram with offset q and (b) Lyapunov
exponent spectrum with offset q.

FIGURE 20. (a) SE complexity parameters of the a d. (b) SE complexity
parameters of the a e. (c) C0 complexity parameters of the a d. (d) C0
complexity parameters of the a e.

as well as a and e to analyze the complexity of the nonlinear
system. In Fig.18 (c), when a ∈ [10, 15] and d ∈ [23, 28],
it can be seen that this area is red, meaning that the system is
in chaos. Hence, the darker the color in the figure, the higher
the complexity of the chaotic system under the corresponding
parameters, and the method of complexity analysis provides
a reliable basis for parameter selection of multivariable com-
plex chaotic graph system.

IV. DSP IMPLEMENTATION
DSP chip F28335 has high efficiency and little influence
on the environment. Therefore, it is an ideal platform for
verifying new 5-D chaotic systems. The DSP-controlled

FIGURE 21. Programming flow of DSP implementation.

FIGURE 22. Experimental platform for DSP implementation.

FIGURE 23. Chaotic attractor implemented on DSP platform: (a) X-Y
plane, (b) X-Z plane, (c) Y-Z plane, and (d) X-W plane.

D/A commutator needs to commutate the DSP-generated
sequence code simulation to better catch the oscilloscope, and
the output sequence is represented on the oscillation range.
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In terms of software design, in order tomake the equipment
only suitable for processing discrete system can process the
new 5-D chaotic system on the DSP platform, the continuous
nonlinear system needs to be discretized first. So, the con-
tinuous nonlinear system is discretized and transformed into
discrete chaotic sequence. Then C language is used to write
the reduplicative relation into DSP board. The programming
process and experimental platform are shown in Fig 19.

Setting the parameters as a = 10, b = 2, c = 10, d = 21,
k= 3, e= 10, and g= 1.15, the initial conditions are (1, 1, 1,
1, 1), the experimental platform is shown in Fig.20, which is
one-to-one corresponding to Fig.1 (a) and (d). It can be seen
from Fig.21 that the four phase diagrams obtained are exactly
the same as those in Fig.1, which proves the correctness of the
digital circuit simulation of the system.

V. CONCLUSION
In this paper, a new 5-D chaotic system is presented and its
dynamical behavior is studied numerically. It is shown that
chaotic systems with hidden attractors have very complex
dynamical. Firstly, the system has a variety of attractors,
including chaotic attractors, periodic attractors, and multi-
wing chaotic attractors. Another obvious feature is that the
system has a variety of different types of coexistence attrac-
tors. Meantime, when the parameters change, the system
appears chaos degradation and state transition, which means
that the system has very rich dynamic behavior. In order
to realize the offset boosting control, control variable q is
introduced into state variable u. The state variable u varies
linearly with offset q, and the value of LEs is found to have
little change, indicating that the u sequence can be flexibly
changed by introducing control variables. Finally, the system
is implemented on DSP platform, and experiments are carried
out onDSP platform to verify the consistency of experimental
results and numerical analysis results. References are pro-
vided in this paper for the study of hidden chaotic attractors,
the offset boosting control and circuit experiments.
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