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Abstract——Battery energy storage (BES) systems can effective‐
ly meet the diversified needs of power system dispatching and
assist in renewable energy integration. The reliability of energy
storage is essential to ensure the operational safety of the power
grid. However, BES systems are composed of battery cells. This
suggests that BES performance depends not only on the config‐
uration but also on the operating state over different lifetime
durations. The lack of safety and reliability is the main bottle‐
neck preventing widespread applications of BES systems. There‐
fore, a reliability assessment algorithm and a weak-link analyti‐
cal method for BES systems are proposed while considering bat‐
tery lifetime degradation. Firstly, a novel lithium-ion battery
model is proposed to identify the degradation rate of solid elec‐
trolyte interphase film formation and capacity plummeting. The
impacts of different operating conditions are considered in
stress factor models. Then, a reliability assessment algorithm
for a BES system is introduced based on a universal generating
function. An innovative weak-link analytical method based on
the reliability importance index is proposed that combines the
evaluation results of state-oriented and state-change-oriented in‐
dexes through an entropy weight method. The model, algo‐
rithm, indexes, and the usefulness are demonstrated in case
studies based on aging test data and actual bus operating data.
The results demonstrate the effects of the battery status and
working conditions on BES reliability. Weak-link analysis is al‐
so used to assist BES systems in avoiding short-board batteries
to achieve long lifetimes and efficient operation.

Index Terms——Battery energy storage, lifetime degradation,
operational reliability, capacity plummeting, weak-link analysis.
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Coefficients for solid electrolyte interphase
(SEI) model and the capacity plummeting
model

Correction factors
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Linear degradation rate
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D. Functions
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Consumed capacity

Number of SOH grades

A full/half cycle

Total number of equivalent cycles

Number of parallel branches

Number of cells in series

SOH level of the jth grade

Universal generated function

Capacity degradation in one cycle

Cycle and calendar aging rates

Symbolic multiplier

Original and modified cumulative distribu‐
tion functions

Stress factor models of time, average SOC,
average temperature, and DOD

Universal generating function

I. INTRODUCTION

WITH its distinct advantages of rapid power response,
high energy density, and flexible deployment, battery

energy storage (BES) plays an important role in applications
such as frequency regulation, peak shaving, renewable ener‐
gy fluctuation suppression, and economic dispatch [1]-[3]. In
addition, with the rapid development of new loads such as
electric vehicles (EVs) and internet data centers, recycling
has become an urgent need for numerous decommissioned
lithium-ion batteries [4]. Grid applications of decommis‐
sioned BES systems represent promising solutions [5]. How‐
ever, the cycle life of a BES composed of large battery cells
is severely reduced. Inadequate reliability is a major obstacle
to the applications of BES systems. Evaluating and improv‐
ing the reliability of BES have thus become focal issues
[6], [7].

In the case of complex systems with large battery cells,
the level of reliability of energy storage is closely related to
the battery state. Because of the complex electrochemical re‐
actions involved when batteries are used, unavoidable differ‐
ences exist between the cells, which are further amplified
once the batteries are grouped [7], [8]. The short-board ef‐
fect involves battery cells with weaker performance being
overcharged or overdischarged. Therefore, analyzing and
evaluating the reliability of energy storage systems under op‐
erating conditions represent the main obstacles to achieving
long-life and efficient operation of energy storage systems.
In addition, the effects of various factors such as battery pa‐
rameter differences, operating conditions, and the environ‐
ment must also be considered [9].

The operational reliability model of battery cells is a criti‐
cal premise in achieving an operational reliability assessment
of the BES. The state of health (SOH) has been mostly used
to measure battery reliability in recent studies [9]- [11]. The
capacity degradation models of lithium-ion batteries can be

categorized into empirical [12]-[14], electrochemical mecha‐
nism [15] - [17], and semi-empirical models [18], [19]. Of
these, the empirical models are aimed at specific working
conditions or specific use of lithium-ion batteries using a fit‐
ting function to obtain the relationship between the battery
capacity degradation and certain working conditions in the
aging tests. For instance, [11] and [12] used an exponential
function and a polynomial function, respectively, to fit the
battery degradation process. The generalizability of this type
of model is poor, which leads to the need for a long-term cy‐
clic aging test to obtain an accurate model [14]. In addition,
the electrochemical mechanism model must combine de‐
tailed battery aging mechanism analyses and the battery
working conditions, where combining the charging/discharg‐
ing process with the internal electrochemical reactions of the
battery such as the lithium-ion concentration [17] is difficult.
To address these difficulties, a semi-empirical model that ef‐
fectively combines test data with operating data has been
proposed in recent research. Reference [18] analyzed the for‐
mation mechanism of a solid electrolyte interphase (SEI)
film and established stress factor models to reflect the fa‐
tigue accumulation process resulting from charging and dis‐
charging cycles. In this model, a statistical fitting method
was used to determine the functional relationship between
battery degradation, temperature, and state of charge (SOC).
However, the aforementioned studies all utilized 80% of the
rated maximum capacity as the standard for battery decom‐
missioning. These models are thus not applicable to battery
degradation processes below 80% SOH.

In fact, few studies have been conducted on lifetime ca‐
pacity degradation models of lithium-ion batteries. Most ad‐
opted simple data fitting methods that are used in the degra‐
dation process below 80% SOH, and these model parameters
usually do not correspond to actual physical meanings. For
example, in [20], linear extrapolation was directly carried
out using limited cycle test data to estimate the secondary
life of batteries. A lifetime aging model was proposed for
battery life estimation in [21], in which the degradation pro‐
cess was expressed as a function of time and charging flow.
Reference [22] utilized multi-Gaussian functions to fit life‐
time capacity degradation. However, the battery degradation
process during the entire lifetime was not linear. In the early
stage, SEI formation required the consumption of active lithi‐
um-ions, resulting in a greater degradation rate [19]. Battery
capacity plummeting in the decommissioning stage is rarely
considered in existing research and is mainly caused by lithi‐
um evolution from the negative electrode [23], [24]. Both
characteristics should be reflected in the parameters of life‐
time degradation models.

In addition, analyzing and evaluating the BES reliability
must consider the effects of various factors such as battery
parameter differences, operating conditions, and the environ‐
ment [9]. Commonly used reliability assessment methods
such as fault tree analysis [25] and the Markov model [26],
[27] usually divide a BES system into several subsystems
such as the battery pack, balancing circuit, and converter
[26]. However, because of the complex electrochemical reac‐
tions involved in the use of batteries, unavoidable differenc‐
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es exist between the cells, which are further amplified once
the batteries are grouped [28]. The failure rates with the
aforementioned method are still the statistical average value,
which ignore the health status of the battery cells, and are
more suitable for system design on a long time scale. Fortu‐
nately, the universal generating function (UGF) method is
very effective for analyzing the reliability of multistate sys‐
tems [8]-[10], [29]. References [8] and [9] defined the reli‐
ability failure of a battery cell as occurring when its probabi‐
listic capacity is less than 80% of the rated capacity. In these
studies, the relationship between the battery degradation
model and system reliability was further established using
the UGF method. The influence of redundant backup strate‐
gies and topologies on the reliability of the BES was ana‐
lyzed. However, the ultimate goal of reliability evaluation
was to identify weak links and analyze the effects of differ‐
ent cell reliability changes on BES reliability. The research
on the precise identification of weak links as well as the cor‐
responding measurement indexes is essentially absent in the
current algorithm, which is significant for improving BES re‐
liability.

Motivated by the above background, this paper proposes a
novel reliability model and an assessment algorithm for
BES. A condition-dependent model for lithium-ion battery
lifetime degradation is established, as conventional models
are not applicable for capacity assessment of batteries below
80% SOH. The universal generation function based method
is then considered necessary for BES reliability evaluation.
New reliability indexes for weak-link analysis are also pro‐
posed in this paper. The proposed model, algorithm, and in‐
dexes are deployed in a BES system composed of differenti‐
ated batteries. These case studies indicate better fitting ef‐
fects and more accurate reliability assessment results of the
proposed model while considering the nonlinear degradation
rate affected by various operating conditions. The main con‐
tributions of this paper are as follows.

1) A semi-empirical lifetime degradation model of lithium-
ion batteries is proposed considering the formation of the
SEI and battery capacity plummeting, where the threshold of
the reliability evaluation can thus be greatly extended. This
model is not only accurate in its analyses of experimental da‐
ta but also suitable for different stress factor analyses under
actual operating conditions.

2) An improved reliability algorithm for BES is proposed
that consists of a reliability evaluation and weak-link analy‐
sis. The factors such as operating conditions, battery health,
and ambient temperature can be included in the analysis,
making it particularly suitable for operational reliability as‐
sessment of BESs with differentiated batteries.

3) State-oriented and state-change-oriented indexes are de‐
veloped to compare the influence of different battery states
on BES reliability. A reliability importance (RI) index based
on an entropy weight method is proposed to identify the
weak links of BES systems more accurately and objectively.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the modeling of lithium-ion battery life‐
time degradation. Section III discusses the reliability assess‐

ment and weak component analysis of BES. Section IV pres‐
ents the main reliability assessment algorithm. Case studies
are presented in Section V. Finally, conclusions and future
work are summarized in Section VI.

II. MODELING OF LITHIUM-ION BATTERY LIFETIME

DEGRADATION

Estimating the battery SOH before evaluating the overall
reliability of a BES system is critical. This section focuses
on the structure of a lifetime degradation model of lithium-
ion batteries and the corresponding stress factor model.

A. Lifetime Degradation Model of Lithium-ion Batteries

The degradation rate of lithium-ion batteries is typically
non-linear during their lifetimes. Aging tests show that the
degradation rate is much higher in the early and decommis‐
sioning stages than in the steady degradation state (SDS)
stages [30]. Some studies have expressed the actual capacity
degradation in one cycle as a function of the consumed ca‐
pacity and linear degradation rate dcyc [18], [31]. Note that
Lc is a normalized quantity between 0 and 1. If the battery
life is defined as the time required for the battery to provide
only 20% of the rated capacity, then Lc = 80%.

dLc

dCcycle

= d cyc
L ( Lcdcyc ) LcÎ [ 0100%] (1)

In the early and SDS stages, the existing research indi‐
cates that the steady degradation rate is proportional to the
number of the remaining active lithium-ions [32]. This
means that the lower the amount of remaining lithium-ions,
the slower the degradation rate. The degradation process ap‐
pears to be initially fast and then slow. As the battery capaci‐
ty plummets during the decommissioning stage, the number
of active lithium-ions is significantly reduced due to lithium
evolution in the negative electrode, which leads to an in‐
creased degradation rate [23]. Thus, the degradation rate can
be assumed to be inversely proportional to the number of ac‐
tive lithium-ions remaining in the battery. This relationship
can be expressed as:

d cyc
L ( Lcdcyc ) = ì

í
î

ïï

ïï
( )1 - Lc dcyc early/SDS

Lcdcyc capacity plummeting
(2)

The basic battery degradation life is obtained by integrat‐
ing the equation with respect to Lc:

Lc =
ì
í
î

ïï

ïïïï

1 - κ1e
-dL early/SDS

1 - ( )1 - κ2e
dL capacity plummeting

(3)

In addition, it should be noted that the fast aging rate at
the early stage is caused by various factors, the major one of
which is SEI formation [33]. Once a stable film is formed,
the battery is in the normal degradation stage. Experimental
results from the aforementioned paper show that αsei is be‐
tween 3% and 8%, as determined by the electrode material
and operating conditions. Let αsds be the consumed capacity
during the SDS, which means that the battery capacity starts

to plummet, whereas the consumed capacity portion is (αsei +
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αsds ). The existing research generally indicates that lithium-

ion batteries enter the decommissioning stage at approximate‐
ly 80% SOH, i.e., the capacity plummeting stage. The speci‐
fied threshold varies for different batteries.

Accordingly, the capacity degradation of the battery can
be divided into three parts: the SEI formation stage with a
degradation rate dsei, the SDS with a linearized rate dsds, and
the capacity plummeting stage with a different rate dcps in‐
versely proportional to the battery life. The battery life mod‐
el is expressed as a three-exponential function:

Lc = 1 - αseie
-dsei - αsdse

-dsds - (1 - αsei - αsds ) (1 - κedcps ) (4)

Because the degradation during SEI formation and capaci‐
ty plummeting stages is also nearly linear, we can assume
that dsei and dcps are proportional to dsds. Then, (4) and the
battery SOH can be expressed as:

ì

í

î

ïïïï

ïïïï

Lc = 1 - αseie
-βseidsds - αsdse

-dsds - ( )1 - αsei - αsds ( )1 - κeβcpsdsds

SOH = αseie
-βseidsds + αsdse

-dsds + ( )1 - αsei - αsds ( )1 - κeβcpsdsds

(5)

Parameter identification reveals that the first part, namely,
αseie

-βseidsds, dominates during SEI formation, the degradation
rate is relatively high, and the degradation function is down‐
ward convex. In the SDS, the dominant part is αsdse

-dsds,
which operates at a slower rate. In the capacity plummeting

stage, function determination represents the third part (1 -
αsei - αsds ) (1 - κeβcpsdsds ), whereas the capacity degradation ac‐

celerates in an upward convex direction.
Based on the aforementioned model, the main objective is

to obtain the linearized degradation rate dsds, which depends
on the battery operating conditions, including various factors
such as the SOC level, depth of discharge (DOD), operating
temperature, and operating duration. The degradation process
of the lithium-ion battery capacity can be decomposed into
calendar aging and cyclic aging. Calendar aging of the bat‐
tery refers to the capacity degradation that occurs over time,
and its degradation rate is affected by the average tempera‐
ture and average SOC over time. Cycle aging reflects the
degradation between charging and discharging, the rate of
which is determined by the DOD, SOC, and average temper‐
ature of each cycle [14]. The total linear degradation rate is
expressed as (6), where τ̄ and T̄ are the average SOC and
temperature of the total operating time.

dsds( tτυT ) = d t( tτ̄T̄ ) +∑
i = 1

N

ni dc( τ iυiTi ) (6)

The parameters ( )tτυT can be obtained using the rain‐
flow cycle-counting algorithm. For the cycle aging test, the
operating conditions of each cycle are nearly the same.
Thus, the cycle degradation rate can be simplified as:

dsds( tτυT ) =Nd cyc
L =N (d t( tiτ iTi ) + dc( τ iυiTi ) ) (7)

Then, (5) can be rewritten as:

SOH = αseie
-Nβseid

cyc
L + αsdse

-Nd cyc
L + (1 - αsei - αsds ) (1 - κeNβcpsd cyc

L )
(8)

We can then use the particle swarm algorithm to fit the
values of the parameters αseiβseiαsdsβcpsκ, and dc through
1stopt software.

B. Stress Factor Models

Stress factor models of lithium-ion batteries have been ex‐
tensively studied [18], [32], [34]. The calendar and cycle ag‐
ing rates can be formulated as:

ì
í
î

ïï

ïïïï

d t( )tτ̄T̄ = St( )t Sτ( )τ̄ ST( )T̄

dc( )τ iυiTi = Sτ( )τ i Sυ( )υi ST( )Ti

(9)

The stress factor models of calendar aging can be calculat‐
ed by the average value over the entire operational period,
whereas those of cycle aging are the parameters of a speci‐
fied cycle.

1) Temperature stress factor model: the temperature effect
is usually analyzed using the Arrhenius equation. A more de‐
tailed description of the derivation method can be found in
[35]. This paper utilizes the expression as:

ST (T)= e
lT (T - Tref )

Tref

273 + T (10)

Note that this model is applicable above 15 ℃ because
the relationship between the degradation rate and tempera‐
ture derived from the Arrhenius equation is not applicable at
low temperatures, which may accelerate the aging process.

2) Time stress factor model: calendar aging is affected by
the duration of operation or storage. This effect can be mod‐
eled using a simple linear function [18]:

St = ltt (11)

3) SOC stress factor model: this paper adopts an exponen‐
tial function to model the SOC stress factor [32].

Sτ = e
lτ (τ - τref ) (12)

4) DOD stress factor model: the DOD stress factor model
has been well studied in recent years and is usually different
from the electrode material of lithium-ion batteries. The non‐
linear DOD stress factor model usually includes both expo‐
nential [32] and quadratic [33] models. This paper adopts
the DOD stress factor model from [18], which is suitable for
LiMn2O4 batteries:

Sυ (υ)=
1

lυ1δ
lυ2 + lυ3

(13)

The method to obtain the coefficients of stress factor mod‐
els can be found in [18] and is not described in detail in the
present paper.

Note that the proposed model structure described in Sec‐
tion II-A can be applied to other batteries, including lithium-
ron phosphate and nickel manganese cobalt oxide (NMC)
batteries. The degradation processes of these batteries can be
divided into three stages. Once the proposed model is ap‐
plied to different materials, the stress factor models and pa‐
rameters must be modified. For example, an exponential
DOD stress factor model is often used for LFP batteries, and
a secondary model is used for NMC batteries.
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III. RELIABILITY ASSESSMENT AND WEAK COMPONENT

ANALYSIS OF BES

In general, the reliability of a BES system is not equal to
that of a battery cell. Here, we focus on how to measure the
reliability of a BES system with differentiated batteries and
evaluate the cells that might diminish the reliability.

A. Capacity Probabilistic Modeling and Reliability Evalua‐
tion

Accurately measuring the lithium-ion battery capacity dur‐
ing an actual operation is difficult. Therefore, a normal distri‐
bution is widely used to describe the probabilistic capacity
distribution of lithium-ion batteries. The SOHs calculated us‐
ing (5) can be used to determine the mean SOH, where the
variance can be regarded as a linear relationship with the
mean SOH, that is, σ = ( )1 - μ 6 [8]. According to the mean

value, the battery SOH can be further grouped into several
grades such as 100%-95%, 95%-90%, ..., 25%-20%. To en‐
sure that the sum of the probabilities at each grade is 1, the
cumulative distribution function (CDF) of the normal distri‐
bution must be adjusted as:

F' ( )x =
F ( )x -F ( )0
F ( )1 -F ( )0

xÎ [ ]01 (14)

Thus, the probability in the jth grade [ SOH low
j SOH up

j ] can

be obtained as:

pj =F' ( )SOH up
j -F' ( )SOH low

j (15)

The variance increases as the SOH decreases, and the low‐
er the SOH, the wider the probability distribution, as shown
in Fig. 1. Reliability modeling and assessment of the BES
are as follows.

Step 1: definition and calculation law of UGF.
The UGF of the battery can be expressed as follows. Note

that the operator “∑” does not represent algebraic addition

but is used only to represent a set.

UR( z ) =∑
j = 1

M

pj z
Gj (16)

A symbolic multiplier must be defined. Note that this sym‐
bol multiplier computation follows commutative and associa‐
tive methods [9].

Ω (U j1

R U
j2

R ) =∑
j1 = 1

M∑
j2 = 1

M

pj1
pj2

z
f ( )Gj1

Gj2 (17)

The function f refers to the total SOH of two batteries con‐
nected in series and is determined by the worst one in se‐
ries, whereas the total SOH of two batteries connected in
parallel is the average SOH.

f (Gj1
Gj2 ) =

ì

í

î

ïïïï

ïïïï

mean ( )Gj1
Gj2

cells in parallel

min ( )Gj1
Gj2

cells in series
(18)

Step 2: UGF calculation of BES.
BES is composed of many battery cells in series or paral‐

lel combinations. Assuming that the BES includes Np paral‐
lel branches with each branch formed by Ns cells in series,
we can calculate the UGF of a series branch by:

Userieschain( z ) =Ω (U 1
R U

2
R U Ns

R ) =∑
j = 1

M

p′j z
Gj (19)

In addition, the final UGF of the BES can be obtained by
combining the UGFs of the series branches.

UBES( z ) =Ω (U 1
serieschainU

2
serieschainU Np

serieschain ) =∑
j = 1

M

p″j z
Gj

(20)

Step 3: capacity probability and reliability of BES.
The CDF of the BES can be derived using (20):

FBES( x) = ∑
|j Gj > x

p″j 0 £ x £ 1 (21)

We can define the reliability of the BES with the required
threshold and expected SOH as [8], [9]:

ì

í

î

ï
ïï
ï

ï
ïï
ï

RBES{ }Ψ =FBES( )ω = ∑
|j Gj > x

p″j 0 £ x £ 1

EBES{ }Ψ =∑
Gj >ω

p″j × SOHGj

(22)

where ω is typically set to be 80%. Because the proposed ag‐
ing model is suitable for estimating the battery SOH below
80%, the SOH threshold can be designed to be lower to
meet the needs of different scenarios. Note that the BES also
includes the power conversion system, battery management
system, and other subsystems. This paper focuses on the bat‐
tery degradation process and the level of system reliability
after grouping. The operational reliability analysis of power
electronic equipment is provided in a previous paper [36].

B. Reliability Indexes and Weak Component Identification

Following the reliability evaluation, effectively measuring
the short-board battery in a BES system is necessary. This
paper establishes two types of measurement indexes that con‐
sider the current battery state as well as state changes over a
short period. An entropy weight method is used to form the
reliability importance (RI) index to analyze weak battery
cells comprehensively.
1) Establishing State-oriented and State-change-oriented
Index Systems for Weak-link Analysis

According to the current states of the battery cells and the
BES reliability, this paper proposes the following state-ori‐
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Fig. 1. Different SOH probability distributions as SOH decreases. (a)
CDF. (b) PDF.
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ented indexes. The first index ISOHk = SOHk reflects the SOH
of each battery cell. The second index is the reliability proba‐
bility sensitivity IRpk, which reflects the effect of the SOH
change of the kth battery cell on the change in BES reliabili‐
ty. Its essence is the partial differential of the BES reliability
index to the SOH parameter of each battery cell. The third
index further considers the current SOH level of the battery
cell and the BES reliability. This is because, for battery cells
with a high SOH, replacing them with higher-SOH batteries
to improve the BES reliability is virtually impossible. Thus,
the reliability critical sensitivity IRck is introduced as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

IRpk =
¶RBES

¶SOHk

IRck =
¶RBES

¶SOHk

SOHk

RBES

(23)

Similarly, the fourth index IEpk and fifth IEck are the SOH
probability sensitivity and SOH critical sensitivity, respec‐
tively. These indexes analyze the influence of the battery
SOH change on the BES SOH.

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

IEpk =
¶EBES

¶SOHk

IEck =
¶EBES

¶SOHk

SOHk

EBES

(24)

However, weak-link analysis with only the current cell
state cannot effectively consider reliability changes after an
operating period. In other words, although some batteries
currently have relatively high SOH levels, their reliability
might be greatly reduced during the operation. This type of
battery cell would not be set as a weak link according to the
state-oriented index but would have a greater impact on the
overall decrease in reliability. Therefore, this paper further
proposes some state-change-oriented indexes as follows.

The first index IdSOHk =DSOHk is the SOH change during
an operating period. The second index is the reliability con‐
tribution index IRconk. Its essence is to reflect the percentage
of change in BES reliability caused by the SOH change of
the kth battery cell during this operating period. And

Γ (DSOHk|Ψ ( )SOH ) refers to the battery SOH set if the kth

battery SOH is increased by DSOHk.

IRconk =
DRBES( )Γ ( )DSOHk|Ψ ( )SOH

DRBES

(25)

The third index IEconk is the degree of change of BES-ex‐
pected SOH caused by the SOH change of the kth battery
cell during this operating time.

IEcon k =
DEBES( )Γ ( )DSOHk|Ψ ( )SOH

DEBES

(26)

2) Weak Battery Cell Identification Through Entropy Method
Because the measurement standards of the aforementioned

indexes are different, the order of weak battery cells evaluat‐
ed by different indicators might conflict. Therefore, this pa‐
per adopts an entropy weight method to establish the RI in‐
dex. This index could be used to identify comprehensively

weak links that combine both state-oriented and state-change-
oriented indexes. The specified algorithm (algorithm 1) is as
follows.

IV. OVERVIEW OF OPERATIONAL RELIABILITY ASSESSMENT

ALGORITHMS

In this section, we briefly explain the structure of the oper‐
ational reliability assessment algorithm, showing how the re‐
liability of the BES is evaluated step by step. The proposed
algorithm evaluates the BES reliability considering the oper‐
ating conditions and health status of the battery cells. The al‐
gorithm overview for evaluating operational reliability of
BES is illustrated in Fig. 2.

Algorithm 1: RI index calculation by entropy weight method

Data input: state-oriented or state-change-oriented indexes of different
battery cells. Note that I m

k represents the mth index value of the kth cell
Output: reliability important indexes of different battery cells

Standardization of different indexes
If the mth index is a positive index, then
1.1: Calculate the normalized index as follows. The higher the positive in‐

dex, the better the battery such as SOH

I'km =
I m

k -min{ }I m
1 I m

k 

max{ }I m
1 I m

k  -min{ }I m
1 I m

k 
else if the mth index is negative
1.2: calculate the normalized index as follows. The lower the negative in‐

dex, the better the battery, such as ΔSOH

I'km =
max{ }I m

1 I m
k  - I m

k

max{ }I m
1 I m

k  -min{ }I m
1 I m

k 
End

Calculate the weight of each index
2.1: calculate the proportion of the kth cell in the mth index ζ m

k in this in‐
dex as well as the entropy of the mth index em

ζ m
k =

I 'km∑
k

I 'km
, em =-

1

ln ( )Ns Np

∑
k

ζ m
k ln ( )ζ m

k

2.2: calculate the Laplace distance dism = 1 - em

2.3: calculate the information entropy redundancy wm =
dism∑

m

dism

Calculate the RI index

3.1: RIk =∑
m = 1

M

wm I 'km, where the lower the value, the lower the reliability

level, which is a weak link that must be a focal issue

Output the weak battery components of BES

End

Start

Model the capacity probabilistic of battery cells

SOH estimation

SOH distribution

Calculate reliability analysis index

System reliability

Input connection topology and evaluate the BES reliability

Input the operating data

Stress factor

Model the lithium-ion battery lifetime degradation

Fig. 2. Algorithm overview for evaluating operational reliability of BES.
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Above all, the assessment basis is to establish a condition-
dependent reliability model to reflect the relationship be‐
tween the lithium-ion battery life and shelving time, DOD,
SOC, and battery temperature. Based on the evaluation of
the battery cell life, the core of the reliability assessment is
to analyze the variation in the degree of BES reliability with
a specific topology connection in a short term. Reliability in‐
dexes are then established to guide weak-link identification.
These works are meaningful for realizing reliability optimiza‐
tion and redundant backup design of BES systems.

In contrast to the test data of cycle aging, the average
SOC, DOD, number of cycles, and other parameters required
for evaluation are often irregular in actual operation. Fortu‐
nately, the rainflow cycle-counting algorithm is widely used
in calculating fatigue life and can be adapted for effectively
calculating the stress effect. The specific calculation rules of
the rainflow algorithm can be found in [37]. This paper uses
the SOC profile as the algorithm input, and the following in‐
formation can be obtained: the DOD of each cycle, average
SOC of each cycle, number of cycles (0.5 for a half cycle,
or 1 for a full cycle), start and end time of the cycle, and cy‐
cle duration. The average temperature of each cycle can be
obtained by combining the temperature profile and the start
and end time of the cycle.

V. CASE STUDIES

Initially, we need to examine the validity of the proposed
lifetime degradation model of lithium-ion battery, including
the rationality and accuracy of the proposed parameters for
evaluating the SEI formation point of and capacity plummet‐
ing point. The second objective is to illustrate the proposed re‐
liability assessment algorithm and analyze the effects of differ‐
ent changing conditions on reliability performance of the BES.

A. Verification of Lifetime Degradation Model for Lithium-
ion Batteries

Most battery degradation models are suitable only for the
remaining life analysis of batteries with capacities greater
than 80% [8], [14], [18]. Once these models are applied to
the evaluation of decommissioned batteries, the results might
be relatively optimistic when neglecting the phenomenon of
battery capacity plummeting.

This subsection describes the use of aging test data provid‐
ed by the Battery Research Group of the Center for Ad‐
vanced Life Cycle Engineering to verify the validity of the
proposed lifetime degradation model [38]. A LiCoO2 battery
is used in the experiments. For the charging stage, each bat‐
tery is charged at a constant current of 0.5 until the voltage
reaches 4.2 V, and then 4.2 V is sustained until the charging
current drops below 0.05 A. The discharging conditions of
each battery are different, and a label of “CS2_n” is as‐
signed to the nth numbered CS2 cell. The fitting results of
the proposed model are presented based on the cyclic data,
and the rationalities for the setting of the SEI formation
point αsei and the capacity plummeting point αsei + αsds are ex‐
plained. The performance of the model under different work‐
ing conditions is further demonstrated.

1) Model Verification Utilizing Aging Test Data
The batteries numbered from CS2-35 to CS2-38 are dis‐

charged at a constant current of 1 until the voltage drops to 2.7
V. Continuous complete charging and discharging cycles are
performed in this mode until the SOH drops to approximately
15%. The fitting results for battery CS2-35 are shown in Fig. 3.

The parameters of the traditional empirical [14] and semi-
empirical [18] models are identified using SOH data greater
than 80%. However, these models cannot reflect the phenom‐
enon of capacity plummeting, whereas the proposed model
can be well fitted to 20% SOH data.

In addition, this paper adopts the root mean square error
(RMSE) and R-squared value (R2) for a quantitative analy‐
sis of the fitting effect. RMSE and R2 values of different
models with different models are shown in Fig. 4. When the
fitting results of the degradation data greater than 80% SOH
are compared, the fitting accuracy of the proposed model is
close to that of the semi-empirical model in [18]. The corre‐
sponding fitting indicators RMSE and R2 are basically in an
intermediate position between the empirical and traditional
semi-empirical models. The proposed model also exhibits a
good fitting effect for the data greater than 20% SOH. The
R2 value is greater than 99%.
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Fig. 3. Fitting results for battery CS2-35.
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2) Parameter Rationality of SEI Formation Point and
Capacity Plummeting Point

As shown in Fig. 4, the semi-empirical model compared
in this paper could identify the SEI formation point (αsei =
8.39%) by the degradation data above 80% SOH, whereas
the SEI formation point and capacity plummeting point
could be identified through the proposed model, i. e., αsei =
9.98% and αsei + αsds = 16.32%. When capacity plummeting
occurs, i.e., where the degradation curve is convex, and the
threshold value is not 80% but 83.68%. However, the semi-
empirical model cannot fit a convex curve. Therefore, for a
battery with a capacity plummeting point greater than 80%
SOH, the fitting results would be worse if the degradation
data above 80% SOH are used. We could then utilize the
plummeting point in the proposed model to further define
the applicable range of the compared semi-empirical model,
as shown in Fig. 5.

The parameters of the proposed and comparison models
are listed in Table I. These models have similar identifica‐

tion results for the SEI formation point. After the proposed
plummeting point is used to modify the applicable range of
the comparison model to a suitable degree, the fitting effect
of the comparison model is also improved to a certain ex‐
tent. In addition, the SEI formation point values are closer
when the semi-empirical model and the proposed model are
used, which further verifies the rationality of the parameters
of our model.
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Fig. 5. Applicable range of compared semi-empirical model.

3) Case 3: Analysis of Parameter Sensitivity
Battery degradation is affected by various factors. In this pa‐

per, the CS2-5 battery is cycled in a low-regime partial charg‐
ing/discharging cycle (5%-70%), and the CS2-25 battery is cy‐
cled in a high-regime partial charging/discharging cycle (70%-
100%). These data could be used to analyze the relationship
between the change in the degradation profile and the average
SOC level. In addition, the CS2-7 battery is cycled at a con‐
stant current discharge, whereas the cut-off voltage is changed
at random times to simulate different DOD conditions. The ca‐
pacity degradation process under different conditions is shown
in Fig. 6. The movements of the profiles also indicate that the
proposed model could accurately reflect the effects of different
operating conditions on battery aging.

B. Application of Degradation Model

It should be noted that the aforementioned verification of
the degradation model is mainly based on the cycle aging
test data. It can be assumed that the working conditions of
each cycle are basically the same, which means that the deg‐
radation rate in the stable degradation stage is a fixed value.
This rate can be directly identified as a fitting parameter.
However, in actual operation, the degradation rate
dsds( tτυT ) is a changing value determined by the operating

conditions, which mainly includes the calendar aging rate
dt( tτ̄T̄ ) and cycle aging rate dc( τ iυiTi ).

TABLE I
PARAMETER COMPARISONS OF DIFFERENT MODELS

Model

Semi-empirical model with‐
out plummeting modified

Semi-empirical model with
plummeting modified

Proposed model

CS2-35

RMSE

0.0105

0.0099

0.0130

R2 (%)

92.18

92.76

99.36

αsei (%)

8.39

9.33

9.98

αsei + αsds

(%)

16.32

CS2-36

RMSE

0.0092

0.0051

0.0154

R2 (%)

95.08

97.09

99.44

αsei (%)

4.41

5.10

4.93

αsei + αsds

(%)

15.35

CS2-37

RMSE

0.0058

0.0059

0.0116

R2 (%)

97.90

97.58

99.44

αsei (%)

7.94

8.03

9.21

αsei + αsds

(%)

18.76
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Fig. 6. Capacity degradation process under different conditions. (a) Degra‐
dation process for different DODs. (b) Degradation process at different SOC
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This subsection describes the use of actual operating data
of an EV to further explain the proposed model. Figure 7
shows the actual operational data for SOC profile of an EV
over half a year.

The cycle distribution of SOC profile is shown in Fig. 8.
The figure shows the average SOC, DOD, and correspond‐
ing number of cycles. The effective cycle DOD is mainly
concentrated between 20% and 80%, and the corresponding
average SOC is between 50% and 80%.

The results of the rainflow method could be substituted into
the corresponding stress factor models, as described in Section
II-B. The daily degradation rate, including the total degrada‐
tion rate and the calendar and cycle aging rates, could be ob‐
tained, as shown in Fig. 9. The parameters used in the stress
and aging models can be found in Appendix A. It can be ob‐
served that the daily aging rate varies with the daily operating
conditions (different SOC curve inputs). Among these, a rate
spike occurred on the 39th day. This was because the DOD val‐
ue on this day reached 100%, causing the cycle aging rate to
far exceed the average. Continual operation in this mode re‐
veals the degradation process of the battery, as shown in Fig.
10. The traditional semi-empirical model causes a significant
prediction error after 2000 days of operation, which cannot re‐
flect the phenomenon of battery capacity plummeting. The bat‐
teries can continue to be in service for approximately 1200
days below 80% SOH. This means that decommissioned bus
batteries or UPS decommissioned batteries of the data center
still have a certain amount of space for reuse. In these applica‐
tions, the price of secondary batteries is 30%-70% cheaper
than that of new batteries, which can effectively improve the
economic benefits of the BES system.

C. BES Reliability

The probability distribution of the cell capacity could be
obtained based on the battery capacity degradation process
shown in Fig. 10. Assuming that a certain energy storage
system is composed of 28 × 22 battery cells and that the bat‐
tery consistency is at a high level, we could calculate the re‐
liability level and expected capacity of the BES. The differ‐
ence between the expected BES capacity and expected cell
capacity increases with decreasing expected cell SOH, as
shown in Fig. 11. When the battery SOH is approximately
30%, the expected BES capacity is only approximately 10%.

In addition, Fig. 12 shows the changes in reliability when
different thresholds are set. If 90% SOH is set as the evalua‐
tion reference, the system reliability would drop rapidly in
approximately 210 days. When w = 80%, the reliability
would decrease by approximately 1000 days, and the system
can still operate for approximately 450 days until the proba‐
bility of the expected capacity falling below the threshold w
is greater than 50%. However, when the threshold is set too
high or low, the slope of the reliability profile increases. This
is because when the threshold is in the SEI formation and ca‐
pacity plummeting stages, the battery degradation rate is rela‐
tively high. The shorter cycle period may have also caused a
large SOH change, resulting in a faster decline in reliability.
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This paper selects 60%, 70%, and 80% as the thresholds
to compare the reliability difference between the proposed
model and the model in [18], as shown in Fig. 13. After con‐
sidering the capacity plummeting, the reliability profiles of
the BES are also found to be different. Taking the 80%
threshold as an example, the BES reliability of the proposed
model is above 80% within 1000 days of operation. The re‐
sult of the comparison model is 1300 days, and the reliabili‐
ty evaluation result is relatively optimistic.

D. Application of Reliability Assessment and Weak
Component Analysis

The degradation parameters and initial SOHs of the bat‐
tery cells as described in Section V-C are changed to differ‐
ent values. The reliability level of the BES composed of dif‐
ferentiated batteries in the short-term operation is further ana‐
lyzed. The index system constructed as described in Section
II-B is used to identify weak links. With the initial capacities
of the battery assumed to be random values of [78%, 82%],
the parameters αsei, βsei, αsds, βcps, and κ are the random val‐
ues of the intervals [4%, 8%], [100, 150], [11%, 17%], [25,
30], and [0.005,0.01], respectively. The threshold value w is
70%. With different model parameters, the battery degrada‐
tion processes are also different under the same working con‐
ditions. Because the capacity of the battery does not change
significantly in a short term, it can be assumed that the SOC
changes of each battery in the short term are consistent (ob‐
tained from 110 to 140 days in Fig. 7). Figure 14 illustrates
the variations in the BES reliability composed of consistent
batteries and differentiated cells. After 30 days of operation,
the BES reliability composed of differentiated batteries de‐
creases more than that of the BES composed of the same
batteries. The BES probability distributions presented in Fig.
15 show that the SOH has an obvious left deviation, and the
most likely grade has changed from [71%, 72%] to [70%,
71%].

As shown in Table II, various indexes can be further used
to search for the weak links of the BES, and the batteries
with the greatest reliability impact obtained by different in‐
dexes are also different. The worst battery searched by the
index ISOH k is N(3,174), the SOH of which is 77.07%. The
battery with the largest DSOH is N(1,31), which changes by
0.9884%. The worst battery obtained using the other indexes
is N(4,196). Based on the evaluation results of the state-ori‐
ented and state-change-oriented indexes, the worst 20 battery
rankings could be obtained using the RI index. The batteries
also differ in terms of the order of weakness when evaluated
using other single indexes, as shown in Fig. 16.

For instance, the N(2, 142) battery is the ninth-worst bat‐
tery based on the RI index. However, when the reliability
contribution index IRcon, SOH change index IdSOH, reliability
sensitivity index IRp, and SOH are considered, the battery
ranks 12th, 42nd, 16th, and 3rd, respectively. As another exam‐
ple, the N(3,159) battery ranks only 112nd based on the SOH
change index and is hardly a weak link, but its ranking is 7th

based on the analysis of various sensitivities and contribu‐
tion indexes. This also indicates that the use of the RI index
proposed in this paper could more comprehensively consider
the effects of changes in battery status and operating status
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TABLE II
WORST BATTERY NUMBERS AND CORRESPONDING INDEX VALUES BY

DIFFERENT INDEXES

Worst battery

N(4,196)
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IRp (%)

0.243

IEp (%)

0.005

IRcon (%)

0.398
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and could be used to generate the evaluations of weak links
more accurately.

VI. CONCLUSION

By considering the effects of different conditions and com‐
ponent aging status, this paper proposes a reliability model‐
ing and evaluation algorithm for BES systems based on lithi‐
um-ion battery lifetime degradation. RIs and weak-link iden‐
tification methods are developed for reliability evaluation of
BESs with differentiated cells. The following conclusions
can be drawn from the case studies.

1) A semi-empirical lifetime degradation model can reflect
the degradation process of lithium-ion batteries before the
key parameters proposed by the model can fully reflect the
SEI formation point (upward convex part) and the capacity
plummeting point (downward convex part), which can be
identified based on the key parameters proposed by the mod‐
el. In addition, this model can reflect the effects of different
working conditions on the degradation rate. It is worth not‐
ing that these parameters can also be used to improve the fit‐
ting accuracy of some models that apply only to new batter‐
ies.

2) When the probability distribution of the battery capaci‐
ty is modeled using the UGF method, a reliability assess‐
ment of the BES could be realized. The threshold value can
be extended from 80% SOH to 20% SOH by considering
the conditions of the entire life degradation process. Results
of the numerical examples further demonstrate that the reli‐
ability analytical results obtained by the proposed method
are reasonable. In addition, the reliability decline rate of
BESs with different battery compositions is also greater due
to different levels of battery health and different aging rates.

3) State-oriented and state-change-oriented indexes are de‐
veloped to analyze the effects of battery cells on the overall
BES reliability. Because the emphasis of each index is differ‐
ent, the case studies show that conflicting results may occurr
in analyzing the weak links through these indexes. A compre‐
hensive evaluation RI index for reliability weak links can ful‐
ly consider the effects of various indexes, and the rankings
of weak links provide greater insights into BES design and
operation.

It should be noted that the parameters of battery lifetime
degradation can be obtained only through aging experimen‐
tal data. The method used in this paper can be effectively in‐
corporated into the economic calculation of the BES cost.
However, for a battery under real-time operation, the data-

driven online identification method of degradation parame‐
ters needs to be further studied in the future. In addition,
considering the effects of weak links, we plan to focus on
the optimal operation of BES systems by using reconfigu‐
rable battery network technology to isolate weak batteries or
to reconstruct the topologies.

APPENDIX A

The parameters of the degradation model and stress factor
models could be found in the Table AI.
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