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Spatial-Temporal ConvLSTM for Vehicle Driving Intention Prediction

He Huang, Zheni Zeng, Danya Yao, Xin Pei�, and Yi Zhang

Abstract: Driving intention prediction from a bird’s-eye view has always been an active research area. However,

existing research, on one hand, has only focused on predicting lane change intention in highway scenarios and, on

the other hand, has not modeled the influence and spatiotemporal relationship of surrounding vehicles. This study

extends the application scenarios to urban road scenarios. A spatial-temporal convolutional long short-term memory

(ConvLSTM) model is proposed to predict the vehicle’s lateral and longitudinal driving intentions simultaneously. This

network includes two modules: the first module mines the information of the target vehicle using the long short-term

memory (LSTM) network and the second module uses ConvLSTM to capture the spatial interactions and temporal

evolution of surrounding vehicles simultaneously when modeling the influence of surrounding vehicles. The model

is trained and verified on a real road dataset, and the results show that the spatial-temporal ConvLSTM model

is superior to the traditional LSTM in terms of accuracy, precision, and recall, which helps improve the prediction

accuracy at different time horizons.
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1 Introduction

Driving intention prediction plays an important role
in driving safety. In the real world, the vehicle’s
driving state, particularly its speed and position, changes
rapidly. Predicting the driving intention of a vehicle
can effectively predict its future state, which helps make
correct decisions.

In terms of predicted scenarios, most of the research
on vehicle driving intentions focused on highway
scenarios[1–3], high-speed entrance and exit ramp
scenarios[4], and urban intersection scenarios[5] using the
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Next Generation Simulation (NGSIM) dataset[6]. This
study extends to urban road scenarios to predict vehicle
driving intentions. BDD100K[7] is used as the original
dataset to extract vehicle driving data from urban road
scenarios. In terms of prediction results, most of the
research focused on the vehicle’s lane change intention,
i.e., whether to change lanes or further refine it into
one of three categories, namely, maintaining, changing
lanes to the left, and changing lanes to the right. Driving
intentions in urban road scenarios, such as acceleration
and deceleration of vehicles, are frequent and important.
We divide a vehicle’s typical intention into lateral and
longitudinal intentions. Lateral intentions include lane
changing to the left and right. Longitudinal intentions
include holding, sharp acceleration, sharp deceleration,
and stopping. We use information from a vehicle’s
historical motion and surrounding environment to predict
the lateral and longitudinal intentions simultaneously.

With the development of machine learning, early
researchers used support vector machine (SVM) for
predictive modeling[8, 9]. Vehicle motion state is used as
the input to predict whether a vehicle will change lanes.
Because the SVM model is generally used to classify
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high-dimensional vectors to two results, the results
depend on the construction of features. Thus, effective
features need to be manually constructed, which is
a difficult task. Subsequently, neural networks were
gradually applied to classification problems, which can
extract effective features internally. Dou et al. used
multilayer perceptron (MLP) to predict lane change
intentions at highway lane drops[10]. Because MLP
networks use vectors as input, capturing the sequential
relations in time series data is insufficient. To predict
the intention of the target vehicle, historical data of the
vehicle need to be used, thus requiring the model to be
able to process time series data. Liu et al. proposed
the use of the hidden Markov model, which is based on
probability graph theory, to predict driving intention[11].
Xing et al. proposed the use of a bidirectional long
short-term memory (LSTM) network to predict the
vehicle’s lane change intention[12]. Bidirectional LSTM
could take into account the dependence on long-term
relationships. Girma et al. used a deep bidirectional
LSTM with an attention mechanism model based on
a hybrid-state system framework to predict driving
intention at intersections[13]. Mozaffari et al. reviewed
the latest developments in vehicle driving intention
prediction research from three perspectives, namely,
input representations, output results, and prediction
algorithms[14]. With the further use of deep neural
networks, Dai et al. used a modified LSTM network to
deal with multidimensional time series data for trajectory
prediction[15]. Su et al. used LSTM modeling to predict
lane change intentions in highway scenarios[1]. They
considered the influence of surrounding vehicles but
concatenated the information of the target vehicle
with the information of surrounding vehicles into
high-dimensional vectors as input[1]. However, this
approach did not help model the influence of surrounding
vehicles in a clear and specific manner. The vehicles
surrounding the target vehicle are also in a state of rapid
change during driving. We analyzed the influence of
surrounding vehicles from a macroscopic perspective,
wherein the surrounding vehicles are regarded as a
whole. Vehicles in different positions within the whole
exhibit spatial interactions. At the same time, the whole
exhibits time dependence. We propose the use of the
convolutional long short-term memory (ConvLSTM)
network to model the spatial interactions of surrounding
vehicles, capture the time dependence of surrounding
vehicle motion states, and obtain a better representation

of the target vehicle and environmental information,
which can be used to predict future intentions. The
contributions of this study are as follows. (1) We
extend the application scenarios to urban road scenarios
to predict both lateral and longitudinal intentions
simultaneously. (2) The proposed model not only
considers the motion information of the target vehicle
itself but also models the influence and spatiotemporal
relationship of surrounding vehicles from a macroscopic
perspective, considering the spatiotemporal interactions
of surrounding vehicles. (3) This study elaborates the
relationship between the accuracy of prediction results
and different time horizons.

In Section 2, we introduce related research, including
the differences between detection and prediction and
between LSTM and ConvLSTM for time series prediction.
In Section 3, we introduce the extraction of data samples,
the proposed model framework, and the key parts of
the model in detail. In Sections 4 and 5, we introduce
the preparation and division of the experimental dataset,
baseline model, evaluation metrics, model implementation,
training details, comparative experiments, and results
analysis. In Section 6, we summarize the results of this
study and propose future work.

2 Related Work

2.1 Recognition and prediction

The study of vehicle driving intention has two modes.
The first mode is detection[8, 16], i.e., the vehicle has
obvious typical characteristics, e.g., the vehicle has
crossed the lane line that the model needs to identify
the intention. The second mode is prediction, i.e., the
vehicle has not yet exhibited key typical characteristics,
e.g., the vehicle has not crossed the lane line. At this
time, using only the motion information of the target
vehicle itself is insufficient to predict the future intention
of the vehicle. Thus, more information needs to be
considered. In addition to the vehicle’s information,
the prediction results are affected by road information,
such as the speed and direction of travel defined by the
lane. At the same time, the vehicle’s intention is affected
by the movement of surrounding vehicles, such as the
sudden braking of the front vehicle. Road information
requires the support of high-precision maps, which is
not yet perfect. Thus, we must focus on the relevant
motion information of surrounding vehicles to predict
the driving intention of the target vehicle in advance.
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2.2 LSTM and ConvLSTM for time series data

In early research, the recurrent neural network (RNN)
was used to process time series data[17]. However, the
RNN encountered the vanishing and exploding gradient
problems. Subsequently, the LSTM was proposed to
model sequence data processing[18]. The LSTM is based
on the gating mechanism, which solves the vanishing
and exploding gradient problems. The LSTM has been
an effective tool for modeling sequential and time series
data in recent years[19]. Sundermeyer et al. used LSTM
for language modeling[20]. Since then, more studies
have used LSTM to build models with encoder and
decoder architectures to solve the trajectory prediction
problem[21–23]. When the LSTM is applied to driving
intention prediction, the input of the model includes the
historical information of the vehicle and environmental
information of surrounding vehicles. The information
of surrounding vehicles is directly concatenated into
the target vehicle as new features of the target vehicle
information[1]. This study analyzes the influence of
surrounding vehicles from a macroscopic perspective.
The ConvLSTM network was originally used for
precipitation nowcasting[24]. Compared with LSTM,
ConvLSTM can model spatiotemporal information
simultaneously[25]. In recent years, ConvLSTM has
been widely used in spatiotemporal data modeling, such
as travel demand forecasting[26] and traffic accident
prediction[27]. Inspired by these ideas, this study
considers the dynamic change process of surrounding
vehicles from a macroscopic perspective, which involves
both highly interactive spatial interactions and dynamic
change in time. This study proposes an ensemble model,
including LSTM and ConvLSTM subnetworks, which
process the information of the target and surrounding
vehicles, respectively.

3 Data Extraction and Process

This section introduces the dataset used in this study.

First, a typical driving scenario on an urban road is
taken as an example to explain the problem of predicting
driving intention. Then, we extracted data from urban
driving scenarios and constructed data samples for
predicting driving intention.

3.1 Problem illustration

The University of California, Berkeley released a large-
scale urban scene driving dataset, i.e., BDD100K, in
2018[7], providing a wealth of driving data in various
urban road scenarios. A typical driving scenario of a
vehicle on an urban road is shown in Fig. 1.

As shown in Fig. 1, the target vehicle can move
along the longitudinal direction of the road, such
as accelerating, decelerating, and holding. The target
vehicle can also move in the lateral direction, such
as changing lanes to the left or right. We want to
predict its longitudinal and lateral driving intentions
simultaneously.

To construct a dataset for supervised driving intention
prediction, we extracted the required data from the
BDD100K dataset with a sampling frequency of 5 Hz.
The characteristics of each driving intention are shown
in Table 1.

3.2 Data extraction

In the scenario shown in Fig. 1, when predicting the
future driving intention of the target vehicle, we use
its historical motion information to make inferences,
although the motion data may not show the typical
characteristics. More information, such as the existence
of adjacent lanes and relative motion information of
surrounding vehicles, has a significant influence on
predicting the driving intention of the target vehicle.
Therefore, the extracted data contain three parts, namely,
historical motion data of the target vehicle (Table 2),
constraint information of the lane (Table 3), and
historical motion information of surrounding vehicles

Fig. 1 A typical urban road driving scenario—we are interested in the target vehicle’s driving intention.
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Table 1 Classification results of driving intention used in this study.
Driving intention Typical characteristic

Lateral intention
Changing to the left Approaching, crossing, and adjusting

Changing to the right Approaching, crossing, and adjusting

Longitudinal intention

Rapid acceleration Moving forward and Acc> 0:2g
Rapid deceleration Moving forward and Acc< �0:2g

Keeping Moving forward and �0:2g < Acc < 0:2g
Stopping Moving forward and going to stop

Table 2 Extracted features of the target vehicle.
Feature Description

Speed Target vehicle speed, m/s
Acceleration Target vehicle acceleration, m/s2

Relative distance to
the left lane

Distance between the left border of the
vehicle and the left side of the lane

Relative distance to
the right lane

Distance between the right border of the
vehicle and the right side of the lane

Driving angle with
respect to the road

Angle between the speed direction and
the direction of the lane

Table 3 Extracted features for adjacent lane information.
Feature Description

Existence of the left lane 1 if it exists, 0 if not
Existence of the right lane 1 if it exists, 0 if not

(Table 4).
The surrounding vehicles have three typical locations,

namely, front, left front, and right front. If a vehicle does
not exist at a certain location, then the corresponding
virtual vehicle is filled in this study, as has been
previously reported[1]. In this situation, the relative speed
is set to 0, and the relative distance is set to have a large
value.

3.3 Sample construction for prediction

To predict driving intention, the sample data need to be
a historical window with the length of His t, and this

Table 4 Extracted features of surrounding vehicles.
Feature Description

Left
front/
front /
right
front

Relative
distance

Longitudinal distance between the target
vehicle and surrounding vehicles

Relative
speed

Longitudinal speed between the target
vehicle and surrounding vehicles

Stop light 1 if it is on, 0 if it is off

Turn light
1 means the left turn light is on, 2 means
the right turn light is on, 0 means off

window must be taken before the driving intention starts.
The corresponding prediction horizon is Fut t. The
sample construction process involves taking the lane
changing process as an example, as shown in Fig. 2.

The sample construction process shown in Fig. 2
has two important points that need to be clarified and
explained:

(1) This study aims to analyze the performance of
driving intention prediction under different prediction
horizons. Therefore, only one sample is extracted from
the file corresponding to each driving intention, rather
than constructing multiple samples by sliding windows.
Thus, the number and proportion of various types of
samples in the complete dataset used for training and
testing are the same as those shown in Table 5.

(2) Two key parameters are used in this study
and should be described. The first key parameter is

Fig. 2 Sample construction process using the moment when the target vehicle first touches the lane divider line as the intention
start time denoted as T-start.
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Table 5 Quantity distribution of extracted driving intention
files.

Driving intention Number Percent (%)
Lane changing to the left 750 7.65

Lane changing to the right 685 6.98
Keeping straight 2874 29.31

Rapid accelerating 1554 15.85
Rapid decelerating 2399 24.46

Stopping 1544 15.75
Total 9806 100.00

the prediction horizon, which is how early a driving
intention can be predicted. The second key parameter is
the historical window size, which is how much historical
information should be used to make a prediction.

To model the spatiotemporal relationship of
surrounding vehicles, the historical motion data of each
surrounding vehicle need to be extracted according to
the process shown in Fig. 2 and organized in a grid
manner, as illustrated in Fig. 3. First, we divide the
left, middle, and right lanes and the front positions into
3�3 grids, where each column corresponds to a single
lane and the rows are separated by a distance of 5 m,
which is approximately equal to one car length. Each
surrounding vehicle has multiple features (defined as
channels here) at each time step ti . Then, the motion data
of surrounding vehicles at certain time steps are stacked
along the channel axis to form a three-dimensional
tensor. Finally, the three-dimensional tensors generated
at different time steps are stacked into four-dimensional
tensors, which are used as the input of the ConvLSTM
network.

4 Methodology

4.1 Input, output, and model architecture

4.1.1 Input
The input for driving intention prediction has two parts,

namely, the target vehicle’s motion and road constraint
information and the relative motion information of
surrounding vehicles, as described in Section 3.3. We
denote the target vehicle information as Tar info and the
surrounding vehicle information as Sur info. Therefore,

Tar info D Œxt1 ; xt2 ; : : : ; xth �
T;

xti D Œx
f1 ; xf2 ; : : : ; xfm � (1)

where th denotes the window size and fm denotes all
of the features of the target vehicle shown in Tables 2
and 3.
4.1.2 Output
The output is the prediction result of driving intention,
including the four longitudinal driving intentions and
two lateral driving intentions shown in Table 1. Given
that the results are formulated as category data, they
need to be numerically processed and one-hot encoded
as Label Y .
4.1.3 Model architecture
The model needs to process both the historical motion
information of the target vehicle and the historical
information of surrounding vehicles. To mine the
historical information of the target vehicle, the LSTM
layer is used for feature extraction. To model the
influence of surrounding vehicles, we consider the
surrounding vehicles as environmental context. This
study proposes a network model based on ConvLSTM,
which can learn to capture spatial interactions of
surrounding vehicles and their time dependence. The
ConvLSTM-based model framework is shown in Fig. 4.

The model shown in Fig. 4 is mainly composed
of two parts. The first part is the input layer, which
represents the motion information of the target vehicle
as a two-dimensional matrix. The historical motion
information of the target vehicle is processed through
an LSTM encoder with a peephole. According to the

Fig. 3 Reorganizing the data of surrounding vehicles.
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Fig. 4 ConvLSTM-based model framework—the encoder part includes the LSTM and ConvLSTM networks, decoder part
uses fully connected layers, and activation function is softmax.

grid position occupied by the surrounding vehicles, the
data of surrounding vehicles at different time form
a three-dimensional tensor, including row positions,
column positions, and channels. Three-dimensional
tensors at different time steps are stacked together in
a time sequence to form a four-dimensional tensor.
The ConvLSTM layer is used to capture the spatial
interactions of surrounding vehicles. Then, the vector
obtained using the ConvLSTM layer and compression
vector of the target vehicle are concatenated together as
a final representation of the original input data.

The second part is the output layer. The last fully
connected layer uses the softmax activation function
to output the probability of each driving intention.
Six output neurons correspond to the longitudinal and
lateral driving intentions. The neuron with the largest
probability value is used as the final prediction result.
The calculation and derivation of the key parts of the
model are described in Sections 4.2 and 4.3.

4.2 LSTM encoder with a peephole

Taking into account the differences in vehicles, four
different LSTM encoders are used in this model. The
basic LSTM unit is shown in Fig. 5.

The LSTM unit processes inputs sequentially to obtain
the cumulative representation for the input Xt . The
LSTM unit uses the forget gate, input gate, and output
gate to update its cell and hidden states.

Fig. 5 Basic LSTM unit with a peephole—peephole denotes
that the cell state is also used as an input for each gate.

The forget gate is used to control how much of the
cell state information at the previous time step can be
retained. The forget gate contains three inputs, namely,
xt , ht�1, and Ct�1. The output of the forget gate is
calculated as follows:

ft D �
�
Wf � ŒCt�1; ht�1; xt �C bf

�
(2)

where Wf is the parameter matrix, Ct�1 is the cell state
at the last time step, ht�1 is the hidden state of the
previous time step, xt is the input vector at the current
time step, bf is the bias of every neuron, and � is the
sigmoid activation function.

The input gate is used to control the addition of new
information. The equation for adding information at the
current time step is expressed as follows:

it D � .Wi � ŒCt�1; ht�1; xt �C bi / (3)

The equation for calculating the candidate cell states
is expressed as follows:

QCt D tanh .WC � Œht�1; xt �C bC / (4)

where tanh is the activation function.
After calculating the forget and input gates, the cell

state, Ct , is updated using the following equation:
Ct D ft � Ct�1 C it � QCt (5)

The output gate regulates how much of the cell’s state
can be used to update the output of the hidden state. The
output of the output gate is calculated as follows:

ot D � .Wo ŒCt ; ht�1; xt �C bo/ (6)

After completing the calculations, the unit is ready to
update the hidden state, ht , using the following equation:

ht D ot � tanh .Ct / (7)

4.3 ConvLSTM layer for modeling surrounding
vehicles

The ConvLSTM unit also uses the gating mechanism but
differs from the LSTM unit in that it uses convolution
operations. The mechanism of the ConvLSTM unit is
shown in Fig. 6.
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Fig. 6 Mechanism of the ConvLSTM unit.

Similar to the calculation of the LSTM unit described
in Section 4.2, the calculation process of the ConvLSTM
unit is as follows:
ftD�

�
Wxf ˇXt CWhf ˇht�1CWcf ıCt�1Cbf

�
(8)

it D � .Wxi ˇXt CWhi ˇ ht�1 CWci ı Ct�1 C bi /

(9)
QCt D tanh .Wxc ˇXt CWhc ˇ ht�1 C bc/ (10)

Ct D ft � Ct�1 C it � QCt (11)

ot D � .Wxo ˇXt CWho ˇ ht�1 CWco ı Ct C bo/

(12)
ht D ot ı tanh .Ct / (13)

where ˇ denotes the convolution operations and ı
denotes Hadamard product.

5 Experiment and Analysis

5.1 Division and normalization of the dataset

Based on the sample construction process described in
Section 3.3, we divided the obtained dataset into the
training and testing sets. The proportions of the sample
sizes that the training and testing sets contain are 80%
and 20%, respectively. The min-max normalization
method was used to normalize the training and testing
sets separately, so that each feature is within a fixed
range. Finally, the model was trained on the training set
and verified on the testing set.

5.2 Baseline model

We compared the performance of our method with that

of the previously published vanilla LSTM method[1] on
lane change intention prediction. The vanilla LSTM
model uses the dynamic information of surrounding
vehicles as additional input features of the target vehicle.
We extended the output of the model to the prediction of
longitudinal and lateral driving intentions.

5.3 Model implementation details and evaluation
metrics

The model proposed in this study is described in
Section 4.1. The network includes the LSTM encoder,
the ConvLSTM layer, a fully connected layer, and a
softmax output layer. The parameters of each layer are
listed in Table 6.

The proposed and baseline models are implemented
using TensorFlow[28]. The loss function is the cross-
entropy loss with six classes. The optimizer is Adam,
and its initial learning rate is 0.0001. The model is
trained in batch mode, and the batch size is 64.

We determined the accuracy, precision, recall, and
confusion matrix to evaluate the performance of the
model from multiple perspectives.

5.4 Results and analysis

5.4.1 Comparison among different historical
window sizes in the Vanilla LSTM model

To determine how much historical information should
be used to predict driving intentions, we obtained and
compared the predicted accuracy rates for different
historical time. In our dataset, the sampling frequency of
time series data is fixed at 5 Hz, i.e., the time step interval
is 0.2 s. The total historical time is equal to the product
of the interval and the number of time steps (historical
window size). We can control the length of time by
controlling the historical window size. Specifically, we
set the historical window sizes of the LSTM structure to
be 8, 10, 12, and 14, which are equivalent to the lengths
of the historical time set to be 1.6, 2.0, 2.4, and 2.8 s.
The results are presented in Fig. 7.

We compared the prediction accuracy at different
historical time. The prediction accuracy first increased
and then decreased as the historical time increased.
The baseline model has the highest accuracy with the
historical time set to 2.4 s.

Table 6 Parameters of each layer.
LSTM encoder ConvLSTM layer FC layer Softmax layer

Number of
time steps

Number of
units

Number of
time steps

Number of
rows

Number of
cols

Number of
channels

Input size Output size Input size Output size

12 20 12 3 3 5 50 10 10 6
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Fig. 7 Accuracy under different sizes and different time
advances.

To obtain a general understanding of the change trends
of curves, we compared the results of the testing set. As
the historical window size increases, the prediction
accuracy first increases and then decreases. This
finding indicates the trade-off between window size
and prediction accuracy. As expected, the longer the
historical window size is, the more information will
be obtained, and the more accurate the prediction will
be in the final results. However, when the historical
window size exceeds a certain threshold, factors that
are not relative to the current driving intention will
be introduced into the input, leading to a decrease in
prediction accuracy.

5.4.2 Comparison between proposed and baseline
models

After determining the best historical window size to
be 2.4 s, we obtained and compared the results of our
model with those of the vanilla LSTM model to show the
advantage of using ConvLSTM to model the influence
of surrounding vehicles. We compared the accuracy,
precision, and recall at different time horizons. The
results are shown in Figs. 8–10 and Table 7.

Figures 8–10 show the comparisons of the accuracy,
precision, and recall of two models, respectively. All
three metrics show that the use of ConvLSTM to model
the influence of surrounding vehicles can improve the
performance of longitudinal and lateral driving intention
predictions.

Qualitative analysis showed that the accuracy,
precision, and recall of our model is superior to that of
the vanilla LSTM model in predicting the longitudinal
and lateral driving intentions at different time horizons.

Quantitative analysis was performed, and the results

Fig. 8 Accuracy compared under different horizons.

Fig. 9 Precision compared under different horizons.

Fig. 10 Recall compared under different horizons.

are shown in Table 7. Compared with LSTM, in terms
of accuracy, our model exhibits an average increase of
3.1%, with a maximum increase of 4.9%. In terms of
precision, our model exhibits an average increase of
10.5%, with a maximum increase of 17.7%. In terms of
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Table 7 Prediction results of the baseline LSTM and
ConvLSTM-based models.

(%)
Number of

horizon
timesteps

Accuracy Precision Recall

LSTM
Conv

LSTM
LSTM

Conv
LSTM

LSTM Conv LSTM

�8 55.10 56.89 39.89 46.26 40.36 41.86
�7 55.13 57.42 39.96 45.87 41.45 43.94
�6 55.50 57.02 42.41 49.92 43.02 45.99
�5 55.98 58.77 44.43 50.97 42.21 46.61
�4 57.95 58.13 50.12 53.45 45.49 46.86
�3 58.68 60.60 53.42 56.19 46.01 48.45
�2 62.60 63.89 57.00 61.46 53.14 56.01
�1 64.53 66.83 60.66 65.57 57.49 61.96
0 65.58 67.75 65.36 67.66 56.84 62.76

recall, our model exhibits an average increase of 6.1%,
with a maximum increase of 10.4%.

5.4.3 Prediction performance of the proposed
model at different time horizons

To analyze the performance of our model in
predicting the longitudinal and lateral driving intentions
comprehensively, we further compared the confusion
matrix at 0.5 and 1 s advances, respectively, as shown in
Figs. 11 and 12, where “Keep” denotes maintaining the
current speed and direction, “Acc” denotes acceleration,
“Dec” denotes deceleration, “Stop” denotes slowing
down and stopping, “Lch” denotes changing lanes to
the left, “Rch” denotes changing lanes to the right. The
confusion matrix in the testing set shows that, as the time
advance decreases, the prediction results become more
accurate.

6 Conclusion

For driving intention prediction from a bird’s-eye view,
because the target vehicle does not exhibit typical

Fig. 11 Confusion matrix at 0.5 s advance.

Fig. 12 Confusion matrix at 1 s advance.

characteristics, more effective information is needed
to predict its driving intention. In this study, a novel
ConvLSTM-based model was proposed to model the
overall time dependence of surrounding vehicles and
the spatial interactions of surrounding vehicles at the
same time. This model can also predict the target
vehicle’s longitudinal and lateral driving intentions
simultaneously. First, we determined that the optimal
time segment required is 2.4 s and too long or too short
time segments are inconducive to prediction. Second,
in the experiment to explore the correlation between
different time advances and forecast accuracies, we
determined that, as the time advance decreases, the
forecast accuracy of our model gradually increases.
When the forecast is 1 s ahead, the forecast accuracy
is 58.8%. Finally, we verified the effectiveness of the
model proposed in this study by comparing it with the
baseline LSTM model in a real dataset. Our analysis
showed that our model improves accuracy by 3.1% on
average, precision by 10.5% on average, and recall by
6.1% on average, which helps make effective predictions
earlier. In future studies, we will investigate how to adapt
our predictive model to different road scenarios, such as
roundabouts and various intersections.
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