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ABSTRACT Path planning plays a key role in the application of mobile robots and it is an important way
to achieve intelligent mobile robots. Traditional path planning algorithms need to model environmental
obstacles in a deterministic space, which is complex and easily trapped in local minimal. The sampling-
based path planning algorithm performs collision detection on the environment and it is able to quickly
obtain a feasible path. In order to solve the problem of inefficient search of the sampling-based Rapidly
Expanding Random Tree (RRT-Connect) path planning algorithm, an improved RRT-Connect mobile robot
path planning algorithm (IRRT-Connect) is proposed in this paper. In order to continue to speed up the
search of the algorithm, a simple and efficient third node is generated in the configuration space, allowing
the algorithm to be greedily extended with a quadruple tree in the proposed algorithm. Further, the method
of adding guidance is proposed to make the algorithm have the characteristics of biasing towards the
target point when expanding, which improves the exploration efficiency of the algorithm. In order to verify
the effectiveness of the proposed algorithm, this paper compares the execution performance of the four
algorithms in six environments of different complexity. The results of the simulation experiments show that
the proposed improved algorithm outperforms the RRT, RRT-Connect and RRT∗ algorithms in terms of the
number of algorithm iterations, planning time and final path length in different environments. In addition,
the improved algorithm was ported to the ROS mobile robot for experiments with real-world scenarios.

INDEX TERMS Mobile robots, path planning, RRT-connect, target bias, dichotomous method.

I. INTRODUCTION
In recent decades, with the continuous improvement of hard-
ware equipment, mobile robots have been widely used in
various fields such as industry, medical care, agriculture,
and services [1]–[3]. Path planning is a key technology and
a major challenge for mobile robots [4]. Path planning for
robots involves searching for an optimal or sub-optimal path
from a given start point to a goal point according to certain
evaluation criteria (e.g., planning time, path length, etc.).
Planning tasks can be divided into global path planning and
local path planning depending on whether the environmental
information is known or not.

Various algorithms have been developed to solve the path
planning problem, such as Dijkstra algorithm [5], which is
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based on the idea of greed. There are also the heuristic
A∗ algorithm [6], the artificial potential field algorithm [7]
and the bionic ant colony algorithm [8] and so on. Some
research has refined these basic algorithms to apply them
to tasks that suit themselves. Zhang et al. [9] improved
the heuristic function of the A∗ algorithm and proposed a
new path smoothing strategy in order to generate a safer
path further away from obstacles. In complex environments,
the authors convert the distance and safety costs of the
algorithm into time costs. Gao et al. [10] augmented the
heuristic ant colony optimization algorithm with four strate-
gies to achieve fast path planning for mobile robots in
complex environments. Nazarahari et al. [11] combined the
path length, smoothness and safety in the path planning
problem into a multi-objective path planning problem and
proposed an improved artificial potential field algorithm
for path planning of multiple mobile robots in continuous
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environments. Orozco-Rosas et al. [12], [13] investigated a
membrane-evolutionary artificial potential field method for
solving the path planning problem of mobile robots, which
combines membrane computation with an artificial potential
field method to find suitable parameters to generate feasible
safe paths. There are also studies that speed up the conver-
gence of path planning by introducing the idea of reinforce-
ment learning [14]–[16].

The traditional path planning algorithms mentioned above
have an exponential increase in computational complexity in
complex environments and the algorithms tend to fall into
local minimal. In order to improve the efficiency and prac-
ticality of the algorithms, it is necessary to reduce their com-
pleteness requirements. Random sampling-based algorithms
are commonly used planning algorithms that have probabilis-
tic completeness and resolution completeness respectively,
thus reducing the computational complexity of the algorithm.

Among the sampling-based path planning algorithms, one
of the most widely used algorithms is the Rapidly exploring
Random Trees (RRT) algorithm [17]. The algorithm per-
forms uniform sampling in the configuration space and it is
probabilistically complete. As the RRT algorithm samples
randomly in space, the paths generated by this algorithm
are often not optimal or sub-optimal. A number of stud-
ies have improved the RRT algorithm based on its ideas.
Zhang et al. [18] introduced the regression mechanism into
the RRT algorithm in order to address the situation that
the RRT algorithm is prone to falling into local minimal
in complex environments, and adopted an adaptive node
expansion strategy to optimize the direction of new node
expansion, avoiding the blind search for robotic arm path
planning.Wei andRen [19] adopted the strategy of directional
expansion of new nodes, which is performed for a direc-
tional node, which makes the improved RRT algorithm much
more efficient and combines curvature constraints for path
smoothing.

Some studies have also combined the RRT algorithm with
other algorithms to improve the expansion strategy of ran-
domized trees. Xu and Park [20] combined the artificial
potential field algorithm with the RRT algorithm to reduce
the oscillation phenomenon in the artificial potential field
path planning method. Kiani et al. [21] proposed an adaptive
RRT algorithm that combines three metaheuristics, for Grey
Wolf Optimization, Incremental Grey Wolf Optimization,
and Expanded Grey Wolf Optimization, respectively. The
proposed algorithm eliminates the drawbacks of both the
sampling algorithm and the metaheuristic algorithm. In order
to enhance the search capability of the RRT algorithm in
unknown environments, some studies have incorporated the
idea of Q-Learning reinforcement learning for improve-
ment [22], [23].

In order to improve the search speed of spanning trees,
Jr and Lavalle [24] proposed the RRT-Connect algorithm for
bidirectional exploration, which generates two random trees
in the configuration space for expansion from the start to the
end and the end to the start, respectively, to further speed up

FIGURE 1. RRT algorithm spanning tree expansion process.

the search efficiency. Although the RRT-Connect algorithm
speeds up the expansion of spanning trees, the resulting
paths are still not optimal or sub-optimal, and some studies
have improved the search efficiency of the RRT-Connect
algorithm. Kang et al. [25] proposed a triangular inequality
based RRT-Connect algorithm using the principle of trian-
gular inequality and experimented in eight environments,
reducing the path length by 16% compared to the original
RRT-Connect algorithm. In order to obtain better paths, some
studies have changed the parent node selection by using a
cost function to select the node with the smallest cost in the
extended node neighborhood as the parent, so that the algo-
rithm achieves asymptotic optimality [26]–[28]. However,
these algorithms iterate slowly at the expense of planning
time.

Based on the above discussion, in order to speed up the
search efficiency of the sampling-based path planning algo-
rithm, this paper proposes an improved RRT-Connect based
path planning algorithm, referred to as IRRT-Connect in the
following. In general, the contributions to this paper are as
follows:

1) In order to speed up the exploration of spanning trees,
this paper generates a simple and efficient third node
in the configuration space based on the idea of dichoto-
mous points, allowing the algorithm to be extended with
four trees.

2) In order to solve the blind search feature of the tradi-
tional RRT-Connect algorithm, by increasing the guid-
ing force, the spanning tree is biased towards the direc-
tion of the target point every time when expanding new
nodes, which speeds up the search efficiency of the
algorithm.

3) The performance of multiple path planning algorithms
executed in several environments of varying complexity
is compared and the proposed algorithms are ported
to a real mobile robot to verify the feasibility of the
algorithms.

II. RELATED WOEK
This section introduces the relevant background of the thesis,
the problem definition, the relevant algorithm flow, etc.
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A. RAPIDLY EXPLORING RANDOM TREES (RRT)
ALGORITHM
The Rapidly exploring Random Trees path planning algo-
rithm was first proposed by Professor Lavalle. The algorithm
is a sampling-based path planning algorithm, which has been
widely studied and applied since its introduction due to its
simplicity and fast search capability, and its adeptness at
solving path planning problems in multi-dimensional spaces
and complex environments. RRT constructs a path search tree
by incrementally generating a random series of sample points
in Configuration Space [29] with the starting point as the
root node. Fig. 1 shows the path planning process of the RRT
algorithm. The algorithm generates random sampling points
Nrand in space, iterates through all the nodes in the search tree
and finds the nearest nodeNnearest to the sampling pointNrand
as the expansion node of the tree. Then determine whether
there is an obstacle in the line between Nrand and Nnearest ,
if there is, then discard the sample point and regenerate the
sample point; if not, generate Nnew new nodes by connecting
in the direction of Nrand with the minimum step E as the
length, and add the newly generated nodes to the random tree.
The above steps are repeated until the end point is reached
or the set maximum number of iterations is reached. Finally,
a path from the starting point to the end point is obtained by
retracing all nodes of the random tree from the end point.
Since the nodes are sampled randomly, the paths obtained by
this algorithm are also not globally optimal. It is the stochas-
tic nature of the RRT path planning algorithm that causes
the algorithm to have probabilistic completeness in complex
environments, where the probability of the algorithm finding
a feasible path converges to one given a sufficiently large
number of planning iterations.

B. RRT-CONNECT ALGORITHM
Since the RRT algorithm generates sampled nodes with the
same probability throughout the configuration space and does
not consider expansion in the direction of the target point,
spanning tree exploration is somewhat blind. To solve this
problem, a bidirectional RRT algorithm, RRT-Connect with
the idea of greedy extensions, was proposed [24]. Compared
to the RRT algorithm, RRT-Connect makes two significant
improvements: (1) It generates a random tree from the start
and end state points, and the planning is completed when
the two trees intersect, which greatly improves the search
speed of the algorithm. (2) A node-greedy expansion strat-
egy is used, where at each iteration of node generation,
the algorithm tries to use the nearest node of another tree
as the expansion direction of this tree, making the two
trees intersect quickly. Also, the algorithm will continue to
expand a node in that direction if it does not encounter
an obstacle when expanding in that direction. If an obsta-
cle is encountered, the algorithm will use a swap func-
tion that allows another random tree to be expanded, which
largely avoids the algorithm falling into a local optimum
dilemma.

FIGURE 2. RRT-Connect algorithm spanning tree expansion process.

By using several of these strategies, RRT-Connect
search speed and search efficiency have been dramatically
improved. Fig. 2 shows the RRT-Connect algorithm extension
process. The algorithm is initially two trees with the start
and end points as root nodes, and is extended greedily, effec-
tively reducing the extension of the random tree to unknown
regions. However, RRT-Connect is similar to the RRT algo-
rithm in that although a feasible path can be obtained after
several iterations, there is no guarantee that the resulting path
is optimal or sub-optimal.

C. RRT∗ ALGORITHM
The RRT-Connect algorithm greatly improves the speed of
RRT in finding feasible paths through greedy growth and
bi-directional growth strategies, but still does not consider
how to optimize the feasible solution. The RRT∗ algorithm
remedies this problem by giving the RRT algorithm the ability
to be asymptotically optimal, as the number of sampling
points increases, the paths obtained by the algorithm gradu-
ally converge towards the optimal path. The RRT∗ algorithm
takes into account the cost of each node to the starting point,
the lower the cost, the more likely it is to be selected as the
path node. The RRT∗ algorithm finds the initial path in the
same way as RRT, the difference being that the former does
not end once it has found the initial path, but continues to
generate sample points and continually updates the initial
path. As the number of sample points increases, the initial
path moves closer to the optimal path. Compared to the RRT
and RRT-Connect algorithms, the RRT∗ algorithm improves
the quality of the path but requires a large number of iterations
and a slower convergence rate, so the planning time increases
substantially.

III. IMPROVED RRT-CONNECT ALGORITHM
This section is a two-part improvement to RRT-Connect
to improve the search time and search efficiency of the
algorithm.

A. GENERATION OF THE THIRD NODE
Based on the idea that the RRT-Connect algorithm optimizes
path search speed by constructing two random trees from the
start and end points. In this paper, it is proposed to generate
a third node to further optimize the iteration speed of the
original RRT-Connect algorithm. In the configuration space,
the starting point coordinates are initialized as Xstart (x1, y1)
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FIGURE 3. The position of the generated third node is not on an. obstacle.

and the ending point coordinates as Xend (x2, y2). To quickly
obtain a simple and more desirable third node, we connect the
start and end points into a line and take the midpoint of this
line as the third node, then the coordinates of the third node
Xmid (xmid , ymid ) in the configuration space are:

xmid = (x1 + x2)/2 (1)

ymid = (y1 + y2)/2 (2)

where x1, x2, and y1, y2 are the horizontal and vertical coor-
dinates of the start and end points in configuration space,
respectively.

There are two possible scenarios for the generation of a
third node in the configuration space by the above method.
The first case is where the location of the generated third
node does not contain an obstacle, which would indicate that
only one iteration is required to find the third node, and this
case is shown in Fig. 3. After generating the third node, the
algorithm expands a total of four random trees including two
random trees from the starting point to the third node and
two random trees from the third node to the end point. The
speed of searching for the proposed path planning algorithm
is greatly improved.

The first case above, where the third node is found in one
search is ideal. In practice, it may happen that the midpoint
of the line from the start to the end is just above the obstacle.
In this paper, in order to continue to ensure the efficiency of
the iteration of the algorithm, we use the idea of dichotomy
to continue the search for a valid third node on the basis of
the third node Xmid generated above. The procedure is to first
select the midpoint of the line that connects the starting point
Xstart with the point Xmid on the obstacle. This midpoint is
then connected to point Xmid on the obstacle and the midpoint
X startmid of this line is selected. This is used as one of the
alternative valid nodes. This was done to better reflect the
advantages of using a third node. The same procedure is used
to select the point X end as the second alternative node on the
line with Xmid and X endmid The formulae for generating these
two alternative third nodes are shown in Eq. (3) and (4).

X startmid (x, y)


(x1+xmid )

2 + xmid
2

(y1+ymid )
2 + ymid

2

(3)

FIGURE 4. Get two candidate third nodes.

FIGURE 5. Flowchart for generating the third node.

X endmid (x, y)


(x2+xmid )

2 + xmid
2

(y2+ymid )
2 + ymid

2

(4)

where (x1, y1) and (x2, y2) are the coordinates of the start and
end points in configuration space respectively. Two candidate
third nodes were obtained based on this approach and the
resulting nodes are shown in Fig. 4.

The two nodes obtained are then judged and if neither node
is on the obstacle, then one will be chosen at random as the
valid third node. If one of the two nodes is on an obstacle, the
other node that is not on the obstacle is chosen as the valid
third node. If both nodes generated are on the obstacle, then
the two candidate third nodes will be obtained by continuing
the dichotomy towards the midpoint Xmid based on these
two alternative third nodes. Repeat the above steps until a
valid third node is obtained. In short, the flow chart for the
subsequent generation of the third node is shown in Fig. 5
when the third node Xmid generated at the very beginning is
on an obstacle.

B. INCREASING THE POWER OF GUIDANCE
Generating the third node by the method in the previous
subsection allows the improved RRT-Connect algorithm to
improve the search speed substantially, but still does not
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FIGURE 6. An improved process for generating new nodes.

change the problem of blind search of sampling points in the
RRT-Connect algorithm path planning. To address this phe-
nomenon, this paper proposes enhancing the search efficiency
of the algorithm by reprogramming the generation of new
nodes based on the bootstrap force.

We argue that the original new node Nnew generation of the
RRT-Connect algorithm is obtained by randomly sampling
points and a fixed step size E , such that the bias towards
the endpoint is lost. When the spanning tree is expanded, the
nearest Nnearest to the sampled point Nrand on the spanning
tree makes an angle α with the end point Xend in the hori-
zontal direction, by which the new nodes are re-planned to be
more biased towards the end point. Therefore, the rules for
generating the coordinates (x, y) of the new node Nnew in this
paper are shown in Eq. (5) and (6).

x = Nnearest (x)+ Dcos θ + kcosα + (1− k)sinα (5)

y = Nnearest (y)+ Dsin θ + ksinα + (1− k)cosα (6)

where Nnearest (x) and Nnearest (y) are the coordinates of the
distance of the sampled point from the nearest point on
the spanning tree; D is the minimum value of the distance
between a fixed step E and Nnearest and Nrand ; θ angle is the
angle enclosed by the sampling point Nrand and the nearest
point Nnearest on the tree in the horizontal axis direction; α
angle is the angle between the end point Xend and Nnearest in
the direction of the horizontal axis; k is the target deviation
factor, which ranges from 0 to 1. In this paper, taking 0.4
achieves the best results.

The process of generating a new node by increasing the
bootstrap is shown in Fig. 6. This strategy allows the random
spanning tree to consider the direction of the endpoint each
time a new node is generated, so that the overall growth direc-
tion of the spanning tree in the configuration space is always
biased towards the endpoint. Based on this improvement, the
search efficiency of the path planning algorithm has solidly
improved.

C. IMPROVED ALGORITHM IMPLEMENTATION PROCESS
In order to make the RRT-Connect path planning algorithm
search faster and more efficient, we improved the entire

planning process of RRT-Connect path planning by intro-
ducing the above-mentioned strategy of generating a third
node and replanning for new nodes. The pseudo-code of
the ImproveExtrnd function for random tree expansion to
generate new nodes is shown in Algorithm 1.

Algorithm 1 ImproveExtend (Nrand , T )
Input: Nrand , T
Output: Nnew
1. ifWithoutObstacle (Nrand ) then
2. Nnearest ← Nearest (Nrand , T );
3. else
4. Nrand ← SampleFree ();
5. Extend (Nrand , T );
6. D←Min (Distance (Nrand , Nnearest ), E)
7. Nnew(x)← Nnearest (x)+Dcos θ+kcosα+(1−k)sinα;
8. Nnew(y)← Nnearest (y)+Dsin θ+ksinα+(1−k)cosα;
9. ifWithoutObstacle (Nnew) then
10. T.add (Nnew);
11. else
12. Nrand ← SampleFree ();
13. Extend (Nrand , T );
14. return Nnew

Among them, WithoutObstacle function is used to deter-
mine whether the point in the configuration space is at the
obstacle;Nearest function aims to find the node that is closest
to the sampling point Nrand distance in the spanning tree;
SampleFree function generates random points in the configu-
ration space as sampling points; Distance function is used to
determine the Euclidean distance between two nodes of the
generation.

The growth direction of the random tree is made purposeful
by the method of expanding the new node in the spanning
tree of Algorithm 1. Unlike the RRT-Connect algorithm, the
improved algorithm in this paper generates a third node in the
configuration space, so that the path of the entire algorithm
is obtained by expanding it by four trees. The total path
planning process of the improved algorithm is shown in the
Algorithm 2 ImproveRRT-Connect pseudo-code.
The improved algorithm first obtains a third node

through the function SearchThirdNode, which is imple-
mented through Eq. (1) (2) or (3) (4). Then, four random
spanning trees are initialized and the believed initialization
nodes are added. T1 and T2 are two random trees that are
oriented between the starting point and the third node, and
T3 and T4 are two random trees that are oriented between
the third node and the end point. During expansion, the Con-
nectWithoutObstacle function is used to determine if there is
an obstacle between the node in the spanning tree and the
newly generated node, and if so, to regenerate the new node.
In this algorithm, the same greedy expansion strategy is used,
i.e., if no obstacle is encountered when expanding in a certain
direction, the expansion continues in that direction until an
obstacle location is encountered or two trees are connected,
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Algorithm 2 ImproveRRT-Connect (Xstart , Xend )
Input: Xstart , Xend
Output: Path
1. Xmid ← SearchThirdNode();
2. T1.init (Xstart ), T2.init (Xmid ), T3.init (Xmid ), T4.init

(Xend );
3. for i← 1 to N do
4. Nrand1← SampleFree () Nrand2← SampleFree ();
5. Nnearest1 ← Nearest (Nrand , T1) Nnearest2 ← Nearest

(Nrand , T4);
6. Nnew1 ← ImproveExtend (Nrand , T1) Nnew2 ←

ImproveExtend (Nrand , T4)
7. if ConnectWithoutObstacle (Nnew1, Nnearest1), Con-

nectWithoutObstacle (Nnew2, Nnearest2), then
8. T1← Nnew1
9. T4← Nnew2

10. Nnew3← ImproveExtend (Nnew1, T2)
11. Nnew4← ImproveExtend (Nnew2, T3)
12. T2← Nnew3
13. T3← Nnew4
14. for Nnew1 6= Nnew3, Nnew2 6= Nnew4
15. do Nnew3-temp← ImproveExtend (Nnew3, T2)
16. if ConnectWithoutObstacle (Nnew3-temp, Nnew3)
17. Nnew3 = Nnew3-temp
18. do Nnew4-temp← ImproveExtend (Nnew4, T3)
19. if ConnectWithoutObstacle (Nnew4-temp, Nnew3)
20. Nnew4 = Nnew4-temp
21. else break;
22. if Nnew1 = Nnew3, Nnew2 = Nnew4
23. Return path (T1, T2) + path (T3, T4);
24. else Swap (T1, T2), Swap (T1, T2);
25. return null;

as shown in lines 15 to 20 of the pseudo-code. To enhance the
efficiency of the algorithm exploration, when two trees are
expanded in opposite directions, if one of the tree obstacles
meets the obstacle, a swap expansion is performed using the
Swap function to expand the other tree, making the algorithm
quickly out of the obstacle. The planning process fails when
the set maximum number of iterations N is exceeded before
a feasible path is found.

IV. EXPERIMENTAL SIMULATION AND ANALYSIS
In order to demonstrate the effectiveness and superiority
of the improved algorithm, this paper compares, this paper
compares the execution efficiency of the algorithms of RRT,
RRT-Connect, RRT∗ and the improved RRT-Connect algo-
rithm in simple and complex environments. The algorithm
language used for the simulation is Python 3.7, the hard-
ware platform is the Window 10 operating system, AMD
Ryzen 4800U 1.8GHz CPU, and 16GB of RAM. For com-
parison purposes, we have named the improved algorithm
IRRT-Connect.

A. SIMULATION EXPERIMENTS IN SIMPLE
ENVIRONMENT
During the experiments, the corresponding parameters of the
three algorithms were kept the same, with a uniform fixed
step size E of 0.8. In all three environments, the experimental
simulation maps ranged from (0, 50) m in the horizontal coor-
dinates and (0, 30) m in the vertical coordinates. Fig. 7 shows
the performance of the three algorithms under Environment 1.
The starting point coordinates are set to (2, 2) in configuration
space and the end point coordinates to (49, 24). Due to the
stochastic nature of random sampling-based path planning
algorithms, we conducted 50 experiments with each algo-
rithm and the graphs show the relatively good results for each
algorithm in this setting. The original RRT algorithm shown
in Fig. 7 took 0.062 seconds to execute in this environment,
with 405 iterations, resulting in a final path length of 65.39m.
The original RRT-Connect algorithm shown in the figure has
an execution time of 0.011 seconds, 83 iterations and a path
length of 59.68 meters in the modified environment. The
last graph shows the performance of the improved algorithm
IRRT-Connect in the environment. The overall path planning
time is 0.007 seconds, the number of iterations is only 15,
and the path length is reduced to 54.84 meters. Table 1 shows
the various average performance metrics obtained for the
three algorithms after 50 experiments under environment 1.
By adding a rational third node, the algorithm reduces the
number of iterations by 51%, the planning time by 36% and
the path length by 7% compared to the RRT-Connect algo-
rithm before the improvement. Looking at Fig. 7 and com-
bining the experimental data, it can be seen that the improved
algorithm has a significantly lower number of iterations and
a smoother path in environment 1.

In order to verify the generality of the algorithms in dif-
ferent environments, the performance of the algorithms in
different environments and at different coordinate points is
tried in this paper. The performance of the three algorithms
in environment 2 is shown in Fig. 8. In this environment,
the coordinates of the start and target points are (2, 26) and
(47, 5) and the algorithm finds a valid path from top left to
bottom right. To illustrate the effectiveness of the third node
proposed in this paper, an obstacle is intentionally used in
Environment 2 to be placed at the midpoint of the line con-
necting the start coordinates to the end coordinates, such that
the first iteration of the algorithm proposed in this paper fails
to find a valid third node according to equation (1) (2), forcing
the algorithm to continue iterating to continue finding a valid
third node according to equation (3) (4). As in Environment 1,
we also conducted 50 experiments in Environment 2 and the
average results obtained for the three algorithms are shown in
Table 2.

As can be seen from the data in Table 2, the improved
algorithm reduces the average planning time and the average
number of iterations by 36.8% and 66.8% respectively com-
pared to RRT-Connect, and the path length obtained on this
basis is also reduced by approximately 4.84m. The average
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FIGURE 7. Performance of the three algorithms in Environment 1 conditions.

FIGURE 8. Performance of the three algorithms in Environment 2 conditions.

TABLE 1. Average results of 50 experiments with the three algorithms under environment 1.

TABLE 2. Average results of 50 experiments with the three algorithms under environment 2.

data in Table 2 and the path planning results of the three
algorithms in environment 2 in Fig. 8 show that the improved
algorithm in this paper finally generates a valid third node,
and the resulting path are better than the other two algorithms.

In order to verify the effectiveness of the algorithm when
executed in a complex environment, Environment 3 was
therefore created by combining the distribution and type of
obstacles of both Environment 1 and Environment 2. In this
environment, set the start and end coordinates to (2, 2) and
(49, 24).

The experimental results in this environment are shown
in Fig. 9. The RRT-Connect algorithm does not do a good
job of smoothly transitioning along obstacles when they are
encountered, and the generated paths are more convoluted
after the greedy expansion of the tree swap after the span-
ning tree encounters an obstacle. Although both the RRT-
Connect algorithm and the improved algorithm in this paper
use a greedy expansion strategy, we also introduce an expan-
sion strategy of adding new nodes with increased bootstrap,
making the expansion direction more biased towards the
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TABLE 3. Average results of 50 experiments with the three algorithms under environment 3.

FIGURE 9. Performance of the three algorithms in Environment 3 conditions.

target point and directional. As a result, the paths obtained
are straighter and a valid path can be found quickly after
encountering an obstacle. The average results of the three
algorithms for 50 iterations under environment 3 are shown
in Table 3. The data shows that the improved algorithm
proposed in this paper is able to obtain a better path in
less time with fewer iterations compared to the other two
algorithms.

In order to verify the stability of the algorithms, the exper-
imental results averaged over 10, 20, 30, 40 and 50 times
for each of the three algorithms in three different environ-
ments. Three performance metrics, including the number of
iterations, planning time, and seek length, are compared to
reflect the efficiency and quality of the algorithm’s execution.
As shown in Fig. 10(a)(b), the number of iterations versus
pathfinding time for the three algorithms in the three envi-
ronments. By generating an efficient third node, the number
of iterations of the algorithm is significantly reduced for both
simple and complex environmental conditions, which also
allows the improved algorithm to search faster. This improve-
ment is necessary to cope with the planning of road strength
in a complex environment. Fig. 10(c) shows a comparison
of the path finding lengths of the three algorithms in the
three environments. The improved algorithm finds a shorter
path length than the other two algorithms, both after a small
number of experiments (10 times) and a large number of
experiments (50 times). It is possible that this is due to the fact
that we have reprogrammed the spanning tree in expanding
the new node method so that each iteration generates a new
node in the direction of the target, increasing the search speed
of the algorithm. Combined with Fig. 10 it can be illustrated
that the improved path planning algorithm searches faster and
explores better in multiple environments.

B. SIMULATION EXPERIMENTS IN COMPLEX
ENVIRONMENTS
In order to compare the execution performance of the
improved algorithm in complex environments, three more
complex environments including a dense obstacle environ-
ment, a U-shaped environment and a narrow lane envi-
ronment were created for experiments. In this experiment,
the map environment was expanded by enlarging a raster
with a map size of 50 × 30 in the simple environment to
120 × 100 for the experiment. Furthermore, to demonstrate
the superiority of the proposed algorithm in finding paths,
the asymptotically optimal RRT∗ algorithm is introduced
under the condition of a complex environment. The algorithm
improves parent node selection by using a cost function to
select the node with the smallest cost in the domain of the
expanded node as the parent, while the nodes in the existing
tree are reconnected after each iteration, thus ensuring the
computational complexity and asymptotically optimal solu-
tion. Environment 4 is a complex environment under a large
map containingmore dense circular obstacles and rectangular
obstacles. In this environment, the start and end coordinates
are set to (2, 2) and (110, 98) respectively, and the generated
paths and results of the four algorithms are shown in Fig. 11.
The results of this run are written after the serial number of
each algorithm, where t represents time, d represents the path
length and i represents the number of iterations. The results
in the figure show that although the RRT-Connect algorithm
uses a greedy search strategy and has a partially straighter
route, there are still cases where blind exploration causes the
path to twist and turn. For the RRT∗ algorithm, the maximum
number of iterations set in this paper is 10,000. After 10,000
iterations, the algorithm has a good improvement over the
RRT and RRT-Connect path lengths, but the execution time

VOLUME 9, 2021 145995



J. Chen et al.: Improved RRT-Connect Based Path Planning Algorithm for Mobile Robots

FIGURE 10. Performance of the three algorithms under three environmental conditions.

reaches 251.5 seconds because the algorithm needs to grad-
ually optimize the paths. Fig. 11(d) shows the results of the
improved algorithm proposed in this paper executed under
environment 4. Due to the dense obstacles, a valid third node
was not generated for the first time, and a valid third node was
generated after another search. The improved algorithm has a
straighter path in this environment, resulting in a path length
of only 164.85m, and takes less time and fewer iterations.

Environment 5 is another complex environment, a
U-shaped environment. In the U-space state, the algorithm
spanning tree has only one exit and is therefore more chal-
lenging. In this environment, the coordinates of the starting
point are set to be in U-space at (58, 40), and the coordinates
of the ending point are on the other side of the U-shaped
region at (58, 85). The results of the execution of the four
algorithms are shown in Fig 12. Because the random search
tree needs to escape the U-shaped region from the only exit,
the number of iterations for all four algorithms in this set-
ting has been increased relative to the previous setting. For
the IRRT-Connect algorithm proposed in this paper, since
the third node generation will still fall within the U-shaped
region, we eliminate the generation of the third node in the
sub environment and only run the algorithm with increased
bootstrap power. The results of the algorithm execution in
Fig 12(d) show that the improved algorithm escapes from the

FIGURE 11. Performance of the four algorithms in Environment 4
conditions.

U-shaped region and then approaches the end point with a
smoother trend. The reason for this may be that the algorithm
makes the algorithm search more purposeful by adding boot-
strap force to the newly generated nodes based on the greedy
search strategy. In the sub-context, there is a substantial
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FIGURE 12. Performance of the four algorithms in Environment 5
conditions.

FIGURE 13. Performance of the four algorithms in Environment 6
conditions.

improvement in path length and search time compared to the
asymptotically optimal RRT∗ algorithm.
Environment 6 is a narrow lane environment that examines

the algorithm’s ability to search in a narrow environment.
In this environment, the starting and ending coordinates are
set to (20, 90) and (100, 5) respectively, and the algorithm
needs to pass through the only narrow path from top to bottom
to reach the target point, and the experimental results are
shown in Fig 13. Similar to the previous environments, the
RRT algorithm requires a high number of iterations to find a
feasible path and suffers from a severe case of blind search
over narrow lanes. The RRT∗ algorithm achieved a path
length of 178 meters after 92.95 seconds in this environment.
The algorithm proposed in this paper reduces the number
of iterations and shortens the path planning time compared
to the well-performing RRT∗ algorithm in a narrow channel
environment, although the difference in path length is not

FIGURE 14. The mobile robot used in this paper.

significant, which facilitates a fast and efficient path planning
in a real environment.

To better evaluate the performance of the algorithms, sim-
ilar to the experiments in the simple environment, 50 experi-
ments were conducted in this paper in three more complex
environments. The experiments compared the performance
metrics of the four algorithms in the three complex environ-
ments in terms of the number of iterations, planning time and
planning distance, and the experimental results are shown in
Table 4. Based on the statistical results, it can be seen that
the improved algorithm proposed in this paper achieves good
convergence compared to the other three algorithms under
the conditions of complex environments, both in terms of the
number of iterations and planning time, which are reduced to
a low level. The RRT∗ algorithm is set for 10,000 iterations
at a time, and as the number of sample points increases, the
algorithm gradually moves closer to the asymptotic optimum.
In particular, in the case of environment 6, the difference in
path length between the RRT∗ algorithm and the algorithm
proposed in this paper is not significant. However, the pro-
posed algorithm uses a much smaller number of iterations
and time elapsed, which may be explained by the fact that the
proposed algorithm makes the spanning tree converge faster
by the strategy of increasing the bootstrap and using the third
node to speed up the algorithm search.

C. IMPLEMENTATION ON ROS MOBILE ROBOTS
In order to test the ability of the algorithm proposed in this
paper for path planning in real-world application scenarios,
the algorithm was ported to the Ros mobile robotics platform
based on Ubuntu 18.04. The robot used in the experiments is
a four-wheeled cart with a Silan A2 LIDAR for modeling the
environment and an Nvidia Xavier NX as the main control
with the ROS operating system and an STM32 for ground
control and signal transmission, the mobile robot is shown in
Fig 14.

The robot localization and mapping process relies on
simultaneous localization and mapping (SLAM) algorithms
to model the environment [30]. At present, the mainstream
mapping algorithm is based on the LIDAR sensor algorithm,
which includes several steps: sensor information reading,
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TABLE 4. Statistical results of 50 experiments with four algorithms in complex environments.

FIGURE 15. Modelling diagrams in real environments.

FIGURE 16. Execution results of the trolley in a real environment.

front-end data fusion, back-end positional and map opti-
mization, loopback detection and mapping. This paper uses
the filter-based particle filter Gmapping algorithm [31]. The
Gmapping algorithm separates the localization and mapping
processes, with localization being carried out first and then
mapping. The results of the environmental modelling of the
laboratory are shown in Fig 15, where the white areas are
explored locations, the black dotted blocks are obstacle loca-
tions and the grey blocks are unsearched areas.

In the ROS operating system, the improved algorithm
needs to be written to themove_basemodule in the ROS nav-
igation framework and subsequently route planning is per-
formed. The inputs to the navigation system include LiDAR
information, odometer information, map information and
robot position information. Based on the laboratory modeling
map completed using the Gmapping algorithm in the previous
vignette, the start and end points were selected on the map
and the algorithm planned the completed path as shown in
Fig 16. As can be seen from the figure, the algorithm gen-
erates a shorter feasible path through the environment and is
able to smoothly transition past obstacles when encountered,

effectively overcoming the algorithm’s tendency to fall into
local optima under large maps, resulting in smoother robot
motion and validating the effectiveness of the proposed algo-
rithm working on actual robots.

V. CONCLUSION
Path planning for mobile robots in complex environments
is one of the key problems to be solved in the research
field. With its simplicity and fast search capability, the
sampling-based path planning algorithm is adept at solving
planning problems in multidimensional spaces and complex
environments. This paper is based on the RRT-Connect algo-
rithm. Firstly, in order to further accelerate the efficiency of
the algorithm in space exploration, the algorithm is expanded
in the form of a quadtree by generating a third node. Then,
in order to solve the blind search problem of RRT-Connect,
the generation of new nodes is reprogrammed by increasing
the bootstrap, so that the new nodes are expanded in favor
of the target point each time, which speeds up the search
efficiency of the improved algorithm.

In order to verify the effectiveness and generality of the
proposed algorithm, six environment maps with different
complexities were constructed and averaged for performance
metrics after 50 experiments. For the simpler environment 1,
the improved algorithm reduces the number of iterations by
91% and 51%, the pathfinding time by 88% and 36%, and
the resulting path length by 13% and 7% compared to the
RRT and RRT-Connect algorithms. At the same time, three
more complex environments have been created, namely a
densely distributed obstacle environment, a U-shaped envi-
ronment and a narrow lane environment. The performance
of four algorithms executed in a complex environment was
statistically compared. The experimental results show that
the improved algorithm can show excellent performance
in several aspects in a complex environment, which may
be attributed to the increased bias of the improved algo-
rithm, which improves the exploration efficiency and proves
the generality of the algorithm. Finally, the proposed path
planning algorithm is ported to the ROS robot to verify the
effectiveness of the algorithm in a real-world environment.
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The path planning algorithm studied in this paper was car-
ried out in a two-dimensional space after modeling the envi-
ronment, and none of the obstacle points set were considered
in terms of height. However, in real scenarios, there may be
parts of the area where the roads are uneven and obstacles are
irregular and three-dimensional in their spatial state, so real-
time path planning in a three-dimensional environment is a
further direction for future research.
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