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Abstract—Medical imaging modalities have been showing 

great potentials for faster and efficient disease transmission 

control and containment. In the paper, we propose a cost-

effective COVID-19 and pneumonia detection framework 

using CT scans acquired from several hospitals. To this end, 

we incorporate a novel data processing framework that utilizes 

3D and 2D CT scans to diversify the trainable inputs in a 

resource-limited setting. Moreover, we empirically 

demonstrate the significance of several data processing 

schemes for our COVID-19 and pneumonia detection network. 

Experiment results show that our proposed pneumonia 

detection network is comparable to other pneumonia detection 

tasks integrated with imaging modalities, with 93% mean AUC 

and 85.22% mean accuracy scores on generalized datasets. 

Additionally, our proposed data processing framework can be 

easily adapted to other applications of CT modality, especially 

for cost-effective and resource-limited scenarios, such as breast 

cancer detection, pulmonary nodules diagnosis, etc. 

Keywords—COVID-19 screening, pneumonia detection, data 

processing, chest computerized tomography 

I. INTRODUCTION 

Coronavirus disease (COVID-19) continues spreading in 
most countries since its emergence in November 2019, 
affecting 114M people globally at present, with 2.54M 
deaths (to date March 2, 2021). COVID-19 vaccination has 
been carried out worldwide since December 2020, with 
effectiveness varies from 50.38% to 95%. While the 
vaccination is the ideal solution to control the transmission of 
the virus, there is real evidence that COVID-19 variants can 
elude the effectiveness of COVID-19 vaccines [1]. COVID-
19 vaccination will be a long journey as new variants 
continue to emerge. Therefore, there is a desperate need for 
faster COVID-19 screening alternatives to improve the 
virus’s transmission control. 

Medical imaging modalities have been encouraged as a 
potential alternative to the golden standard current real-time 
polymerase chain reaction (RT-PCR) test, which suffers long 
turnaround time and high false-negative rate [2] – [7]. 
However, large-scale implementation of COVID-19 
screening using imaging modalities remains challenging due 
to three reasons: 1) high invariance radiography 
representation of ground-glass opacity (GGO) among the 
viral pneumonia family [4], [5]; 2) limited resources such as 
data of newly emerged COVID-19 variants ; and 3) 
practicality of implementation [2]. The advancement of 
Machine Learning (ML) in recent years has made it possible 

for tasks which is difficult or impractical to be implemented 
previously, especially 3D convolutional neural network for 
medical applications [5], [8]. Unfortunately, training a 
3DCNN model is  much complex and exhausting compared 
to a 2DCNN model. Moreover, 3D training samples with 
good feature descriptions are exceptionally scarce. 
Generally, publicly available datasets often suffered from 
different kind of noises, particularly the non-informative 
chest CT (NI-CT) slices located at the upper and lower 
chunk of the 3D CT stacks, which can consequently lead to 
poor quality model learning [5]. In addition, low contrast, 
high brightness, and obfuscated CT slices are also among the 
common CT data-space issues for deep learning applications. 

Multiple-source data acquisition can benefit the model 
development and assessment by offering a wider range of 
diverse real-world data [4], [5]. However, it can complicate 
the data processing procedures due to the present of varying 
data characteristics that might require additional solutions 
from different data processing tools/algorithms.  

This paper presents a cost-effective data processing 
framework for COVID-19 and pneumonia detection to 
effectively distinguish COVID-19 and other pneumonia-
infected lungs from healthy lungs. Community-acquired 
pneumonia (CAP) samples and clinical confirmed COVID-
19 samples are considered as a single class label in this study 
due to the invariant radiographic features of GGO that are 
shared between COVID-19 and CAP CT samples.  At the 
present time, more discriminative multi-class classification 
task requires further scientific investigation due to the 
complicated radiography characteristics of COVID-19 and 
the continuous emergence of new COVID-19 variants.  

Three contributions are attributed in this study. Primarily, 
a wide range of COVID-19, CAP, and healthy chest CT 
scans are collected, including a mixture of 3D and 2D data 
types and other varying data characteristics. A data 
processing framework is proposed to utilize a mixture of 3D 
and 2D for neural network model development. Finally, the 
effectiveness of different data processing schemes is 
demonstrated using quantitative assessment and class 
activation responses of the models in the COVID-19 and 
pneumonia detection task. 

II. RESOURCES

CT scans of 2419 patients were collected with 1428 
COVID-19 cases, 412 community-acquired pneumonia 
(CAP), and 579 normal lung controls. These CT scans were 
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(a)    (b)     (c) 

 
 (d)   (e)      (f) 

 
 (g)   (h)      (i) 

 
 (j)   (k)      (l) 

Fig. 1. (a) High-contrast CT, (b) NI-CT slice, (c) small lung regions CT, 

(d)-(e) CT slices without and with signs of GGO from the same patient. 

(f) low-contrast CT, (g)-(h) adjascent CT slices which share virtually 
similar spatial representation, (i) segmented image, (j) image with 

histogram equalization, (k) CLAHE, (l) supervised gamma adjustment. 

contributed by several hospitals, including Union Hospital, 
Liyuan Hospital in China, Iran Nigen Medical Centre,  and 
several unnamed hospitals in Moscow and China [9] – [11]. 
The CT data are presented as 3D/2D dimensions, 
NIfTI/DICOM format, low/high image contrast, 
Hounsfield/non-Hounsfield unit, and varying image sizes. 

III. METHODOLOGY 

The complex nature of COVID-19 and pneumonia 
radiological features can be described based on the formation 
of GGO and consolidations, which are inconsistent in sizes 
and locations within the lung regions. Therefore, the 
probability of a positive true label CT 2D axial slice with 
absence of pneumonia findings can be high when 3D CT 
data are decomposed in a 2D system. This scenario is more 
commonly happened among the early-course infected lung, 
in which the pneumonia infiltration is barely manifested and 
hardly visible.  Hence, such a data-space condition is defined 
as ambiguously labeled samples (AL-CT) in this study. It is 
hypothesized that the utility of AL-CT slices for model 

training can complicate the learning process and 
consequently lead to poor performances as the AL-CT slices 
share similar spatial representation with the normal lung CT 
slices.  

A. Data Retrieval  

The proposed data processing framework provides an 
end-to-end solution that handles varying data-space issues.  
In particular, it contains a chain of multiple independent sub-
modules that sample the 3D or 2D inputs into a trainable 
dataset, including 1) NI-CT slices dropout, 2) AL-CT slices 
dropout, and 3) semi-randomized data generation. 

1) NI-CT Slices Dropout   
NI-CT slices can be easily identified with visual 

observation. However, the manual separation of NI-CT slices 
can be exhaustive when the dataset is large. Therefore, a 
pretrained model is used to separate the NI-CT slices from 
the train and test sets based on the sigmoid probability output 
of the model: 

                                         P = [pni, pi]                                         (1)   

where pni, pi represents the sigmoid probabilities 
corresponding to NI-CT and non-NI-CT respectively. NI-CT 
slices dropout is performed if pni  > pi for all the 2D CT 
slices.  

2) AL-CT Slices Dropout 
The Al-CT slices dropout modules utilizes a binary 

classifier model that is trained from manually selected 
normal lung, COVID-19, and CAP infected lung CT images 
with obvious signs of pneumonia conditions. Subsequently, 
all positive label CT images are evaluated using the binary 
classifier for AL-CT detection based on a sigmoid 
probability pa.  High sigmoid probability value pa means a 
higher likelihood that a CT slice contains signs of pneumonia 
infiltrations. The dropout decision is based on a threshold 
value denoted as α. Based on the empirical sigmoid output 
probability distribution, it is observed that the sigmoid 
probability for most correctly predicted normal lung CT 
resides around 0.1. Therefore, α is set to 0.1 with zero as the 
minimum (no sign of pneumonia findings) and one (very 
likely to contain pneumonia findings) in the experiment 
setting. The AL-CT dropout decision can be formulated as 
follow:  
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3) Semi-randomized Data Generator Algorithm  
The cost-effective property of the proposed framework is 

defined as a model training environment with comparatively 
smaller training datasets and neural network model setting 
compared to existing works [3], [4], [5]. In order to facilitate 
an end-to-end data generation, an algorithm is proposed to 
sample CT slices directly from a huge collection of datasets 
and generate a trainable dataset for model development. CT 
slices from multi-source datasets are randomly selected for a 
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Algorithm: Semi-randomized data generator  
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 p = 3D CT of a patient, (x, y) = feature & label pair, ND = 

number of 2D CT slices of dataset D,  NP = number of 

patients, Nq = number of 2D slices in a 3D CT/patient,  Nt  

= number of desired trainable samples.  

1: if 3D input: 

 randomly select patient p based on Ns,3D (desired 

 number of patients to be selected) 

 while (patients): 

2:      standardize dimensions to Nx512x512 pixels  

3:      dropout NI-CT slices 

4:       randomly select CT slices based on  

      Ns,3D (desired CT slices from each patient) 

5:       compute SSIM  

6: return CT slices  

7: if 2D input: 

8: standardize data dimension to 512x512 pixels 

10: dropout NI-CT slice  

11:  randomly select CT slices based on  Ns,2D ,  Ns,3D  

 = desired CT slices from a 2D dataset 

12: compute SSIM 

13: return CT slices  

 

 

 

 

 

 
(a)    (b)     (c) 

 

Fig. 2. CT image, histogram of unscaled image (2nd row), histogram  

after normalization (3rd row), centralization (4th row) and standardization 

(5th row), CT slices are collected from  dataset 1 (col (a)), 2 (col (b)) and 

3 (col (c)), Note that the background pixels of the images are excluded. 

 

balanced data sampling distribution. Since the number of CT 
slices acquired from every case (patient) is different, the total 
number of CT slices retrievable from each dataset is capped 
to prevent bias data selection towards a particular dataset or 
patient. The algorithm is considered as semi-randomized due 
to the exertion of some degree of control over the data 
selection.  

In addition, the proposed algorithm computes the image 
structural similarity index (SSIM) to identify and separate 
the adjacent 2D CT slices that are very similar to one another 
(with SSIM score close to 1). Training with substantial 
amount of duplicated or closely similar training samples can 
be fallacious because duplicated samples do not contain 
additional information that benefits the performance of the 
model and may consequently suffers overfitting as well as  
performance degradation, especially in a limited 
experimental resource setting [12].  

B. Lung Segmentation 

A simple lung segmentation method is adopted to remove 
irrelevant information from the lung regions. Different from 
the deep learning segmentation approaches that require large 
models and exhaustive training, this method combines 
several morphological operations and region growing to 
segment the entire lung regions from the CT background. 
First, a threshold β is set to identify the foreground (lung 
regions) and the background (non-lung regions). Pixel higher 
than β will be assigned with a temporary label Ltemp. The 
label assignment proceeds to the neighboring pixels using the 

full connected region growing operation until it covers the 
entire image. Next, the pixel less than β is identified and 
marked as background label Lb. Finally, Ltemp and Lb are 
reassigned to 1s and 0s to create a binary mask for lung 
segmentation.  

C. Image Enhancement and Scaling 

Three image enhancement schemes are proposed for 
image spatial representation improvement, including 
histogram equalization (HE), contrast limited adaptive 
histogram equalization (CLAHE), and supervised gamma 
adjustment (S.GAMMA). HE is the simplest image 
enhancement technique to improve the image contrast by 
uniformly redistributing the pixels along the histogram 
range. CLAHE is generally a better alternative for image 
enhancement because the redistribution of lightness values 
happens in a distinctive local region of the image, which 
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TABLE I.  PERFORMANCE OF COVID-19 AND PNEUMONIA NETWORK TRAINED WITH DIFFERENT DATA PROCESSING SCHEMES 

 

   Train-Validation Set     Test Set 

  ACC.       SEN.              SPE.      AUC.              ACC.        SEN.             SPE.     AUC. 
Baseline  82.70±0.96   87.92±3.69   71.99±5.48   92.04±1.11    73.28±3.78   87.52±2.06   48.24±7.52   78.11±3.86 
Baseline-SEG 77.75±1.89   89.79±2.46   57.19±7.79   85.37±1.48    56.19±1.74   27.05±3.12   91.00±0.92   65.90±3.51 
Baseline-DRP 83.63±1.93   83.28±4.92   83.86±2.87   91.74±1.54    75.61±2 .64  77.89±2.41   73.10±3.04   81.78±2.01 
Scale-NOR 82.41±0.99   93.83±2.11   69.09±3.72   93.38±0.65    83.88±1.81   93.05±1.09   73.16±2.26   91.15±1.16 
Scale-CTR 79.13±2.34   75.23±5.45   85.26±3.15   87.75±2.81    79.70±2.53   77.19±3.53   82.54±2.69   85.14±2.10 
Scale-STD 86.06±0.43   85.70±4.22   86.38±4.18   92.99±0.91    83.93±2.00   86.85±1.68   80.44±2.46   91.15±1.55 
HE  75.46±0.49   63.06±2.42   90.47±1.75   87.43±0.82    77.81±2.82   76.50±3.10   79.56±3.32   86.37±2.07 
CLAHE 81.40±1.63   83.54±5.58   78.81±5.62   91.70±0.76    84.86±2.47   88.37±2.19   80.80±2.66   91.33±1.08 
S.GAMMA 85.66±1.51   89.47±2.32   81.26±4.07   93.42±0.50    85.22±1.88   81.98±2.42   88.98±1.50   92.70±1.11 

emphasizing  the contrast improvement on the edges from 
different parts of the image based on an optimized clipped 
limit to avoid over-enhancement [13]. Images with different 
lightness and contrast characteristics based on the gamma 
adjustment transformation graph [14]. For instance, a higher 
gamma value is used for CT slices with high brightness, low 
contrast, and a smaller gamma value suitable for images with 
low brightness. 

Image scaling is used to redistribute the pixel values in a 
fixed pixel range for more efficient model learning [15]. 
Three most practiced image scaling methods in ML/DL 
applications are considered in this study: normalization, 
centralization, and standardization. Normalization is the 
simplest scaling method to rescale all the images into a range 
of zero to one [3]. Centralization moves the mean pixel 
distribution close to zero without considering the range of the 
pixel distribution. Standardization is an extension of 
centralization by redistributing the pixels to have standard 
deviation of one. Figure 2 illustrated CT slices' pixel 
distributions with different scales.  

D. Pneumonia Dectection  

The pneumonia detection network is referenced from the  
VGG16 architecture [16], which composed of a feature 
extractor with three VGG blocks, a classifier with three fully 
connected layers, and a sigmoid probability function for the 
last fully connected layer. The small-scaled model consists of 
only 40K parameters, which is significantly smaller 
compared to other  existing works: 114M [4], 63.3M [17], 
15.9M [5]. Single-channel input CT slices are used for a 
sequential convolutional operation with ReLU activation and 
local max-pooling layers in each VGG block and finally 
output a single channel feature vector using global max-
pooling as input for the classifier.  

Since it is not the intention of this study to identify the 
most suitable network architecture for a pneumonia detection 
application, any DCNN with other architectures is likely to 
be compatible with the proposed data processing framework 
with different experimental settings such as larger training 
set and better computation machines. 

E. Training and Validation 

The proposed data processing framework generates 
trainable images with a fix size of 227 x 227 pixels for 

computational-efficiency. All the images are augmented 
using random rotation to minimize overfitting [4]. Based on 
the reference of the parameter optimization by W. Ning et al., 
the adative momentum optimizer is used with an initial 
learning rate of 0.001 and exponential decay rate at 0.9 to 
improve loss function optimization and model generalization 
capability [10].  

For a better assessment of the detection model's 
generalization capability, five different test sets are explicitly 
separated from the train set without overlapping. The train 
set contains 80% training samples and the remaining 20% as 
validation samples. Standardized measurements such as 
accuracy, sensitivity, specificity, and the area under the 
receiver operator curve (AUC) for quantitative assessment 
are considered in this study.  

IV. RESULTS AND DISCUSSION  

 The performance of the baseline model trained from the 
unprocessed raw samples is compared with models trained 
from datasets that are processed with the different data 
processing schemes in Table I. Additionally, GradCAM 
assessment are computed to provide important insights on 
the models'  decision-making behavior and better understand 
of these responses based on the data processing schemes.  

A. Importance of  Lung Segmentation 

 The baseline-SEG model is trained on lung segmented 
CT images. While the baseline model performed better than 
the baseline-SEG model based on the performance matrices 
and ROC curves in figure 3, it is difficult the justify the 
drastic difference between the two models, particularly, the 
sensitivity of the Baseline-SEG is at 27.05%, 60.47% lower 
than the Baseline model. However, the GradCAM 
demonstrated that the response of Baseline-SEG is intuitively 
more reasonable despite its poor performance on both Train-
Validation and Test Sets. This is because raw images contain 
a large portion of unrelated information, mainly consist of 
the bone structures, which are not relevant to any pneumonia 
or COVID-19 lung infiltration [5], [17], [18]. The GradCAM 
in Figures 4 (g) and (h) shows that the model's decision-
making response includes a huge part of the bone structures, 
which is not considered a dominant feature of COVID-19 or 
CAP in the detection task. 
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Fig. 3. ROC of COVID-19 and pneumonia network trained with 

different data processing schemes on a test sets. 

B. Learning after AL-CT Dropout  

Similar to baseline-SEG model, the baseline-DRP model 
is trained on lung segmented CT images, but with inclusive 
of AL-CT slices dropout mechanism. Empirical results show 
that the Baseline-DRP has a drastic improvement in 
sensitivity at 77.89% compared to the Baseline-SEG model 
at 27.05%, while the specificity is slightly dropped on the 
generalized test sets. This contributed to an overall better-
performed model at test accuracy of 75.61%, approximately 
20% improvement from the baseline model without AL-CT 
dropout, shown in the ROC curves. Figure 4 (i) illustrates 
that the GradCAM response of the baseline-DRP shows a 
larger area of close attention on the area white pigments than 
the GradCAM before the AL-CT dropout. This justifies that 
the  AL-CT dropout can effectively disambiguate the 
confusing feature similarity between the negative label and 
ambiguous label samples and contributed to a more 
discriminative feature learning between positive and negative 
label samples. For all the subsequent experiments, the AL-
CT dropout mechanism is equipped as one of the pre-
requisite data processing procedures together with lung 
segmentation.  

C. Learning with Scaled Datasets   

 The impact of the image scaling is more significantly 
illustrated on the generalized dataset compared to the test-
validation performance by the models. For instance, the  
normalization Scale-NOR model on the test sets shows 
superior performance in terms of accuracy score (83.88%) 
compared to the unscaled Baseline-DRP model (75.61%) and 
centralization Scale-CTR model (79.70%), and at the same 
time on par with standardization Scale-STD model (83.93%). 
Figure 4 (b) demonstrates the impact of scaling on the 
model’s attention responses, in which the attention coverage 
is more precisely annotated on the pneumonia infiltrations. 
Thus, this proves that a more reliable model can be trained 
from a scaled image with a more homogeneous pixel 
distribution between training samples from different sources. 
In essence, image scaling by normalization is considered as 
the most effective scaling method in the experimental 
settings for simplicity and good performance. 

D. Effectivenss of  Image Ehancement Schemes  

Overall, supervised gamma adjustment has the highest 
contribution on both train-validation sets and test sets, which 
yielded the overall highest model pneumonia detection 
model performances in the experiments at test accuracy of 
85.22% with 11.94%, 29.03%, and 9.61% improvements 
from the Baseline, Baseline-SEG, and Baseline-DRP models, 
respectively. This result is comparable to other existing 
pneumonia detections with more complex experimental 
settings [3], [4]. It is also noticed that the difference in model 
performances between the supervised gamma adjustment and 
the standard CLAHE is not significant on generalized 
datasets, this suggests that image enhancements have a 
relatively smaller contribution compared to other data-
processing procedures in the experimental settings of this 
study. Nevertheless, the ROC in figure 3 shows significant 
differences between the models trained with enhanced 
dataset and the baseline models. This highlighted the 
importance of the proposed data processing procedures for 
pneumonia detection networks. 

On the contrary, HE suffers significantly poor 
performances and the GradCAM assessment indicates the 
common over-enhancement drawback of the standard HE, as 
shown in figure 4 (c). It is observed that the non-pneumonia 
lesion on the left side of the lung is falsely perceived by the 
model, which can be considered a sign of image distortion 
due to over-enhancement [13]. The  CLAHE has a relatively 
higher sensitivity, which is concordant to its GradCAM 
response shown in figure 4 (d) with weak attention on the 
pneumonia infiltrations. On the other hand, the S.GAMMA 
model achieves high specificity with  a relatively lower 
sensitivity compared to CLAHE, which is illustrated by the 
more accurate GradCAM responses compared to other 
models. 

V. CONCLUSION 

This paper presents a cost-effective detection model to 
efficiently distinguish CAP and COVID-19 using CT 
imaging to reduce the risk of COVID-19 being transmitted to 
the healthy community. Important insights of the end-to-end 
data processing pipeline for CT-based COVID-19 and 
pneumonia detection are revealed. Primarily, the significance 
of lung segmentation is justified based on improved class 
activation annotation of the model trained from lung 
segmented datasets. In addition, the data-space problem of 
NI-CT and AL-CT are clearly identified and addressed using 
a strategic data dropout approach without sacrificing the 
diversity of the  data. To this end, empirical results 
demonstrate significant performance improvement due to the 
disambiguation of the similar spatial representations that are 
shared between the normal and COVID-19 infected lung CT 
images. Moreover, image scaling and enhancement are 
deduced as crucial pre-requisite data processing for image-
based deep learning applications, especially when involving 
different  data resources. As such, the proposed data 
processing framework facilitated a cost-effective with 
promising performance COVID-19 and pneumonia detection 
without utilizing any computationally expensive approaches 
such as 3D image modelling or very deep neural networks. 
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      (a) CT slice sample         (b) before and after scaling         (c) HE             (d) CLAHE    (e) Γ-Adjust 

       
             (f)         (g)         (h)                     (i) before and after AL-CT dropout 

                                                                                                                                                         
Fig. 4. (a) a COVID-19 infected CT slice, (b) GradCAM before and after global datasets scaling, (c) – (e) GradCAM of the models trained from 

datasets enhanced with global histogram equaliztion, CLAHE and supervised gamma adjustement, (f) low attention GradCAM response of a health 

lung, (g) – (h) GradCAM of unsegmented COVID-19 and CAP, (i) a COVID-19 CT slice and GradCAM before and after the porposed AL-CT dropout. 

It is worth mentioning that the data processing 
framework can be extended easily to different medical 
ML/DL applications, especially in attempts of utilizing 3D 
data in a 2D-based solution.  That is, it can be referenced as 
data pre-processing procedures for relatable applications to 
improve data diversity and quality for more efficient neural 
network development in a cost-effective setting. 
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