
Received October 1, 2021, accepted October 12, 2021, date of publication October 15, 2021, date of current version October 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120542

Cross-Domain Few-Shot Micro-Expression
Recognition Incorporating Action Units
YI DAI , (Member, IEEE), AND LING FENG , (Senior Member, IEEE)
Centre for Computational Mental Healthcare, Department of Computer Science and Technology, Research Institute of Data Science, Tsinghua University, Beijing
100084, China

Corresponding authors: Yi Dai (daiy17@mails.tsinghua.edu.cn) and Ling Feng (fengling@mail.tsinghua.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61872214 and Grant 61521002.

ABSTRACT Micro-expression, different from ordinary facial expressions, is an involuntary, spontaneous,
and subtle facial movement that reveals true emotions which people intend to conceal. As it usually occurs
within a fraction of a second (less than 1/2 second) with a low action intensity, capturing micro-expressions
among facial movements in a video is difficult. Moreover, when a micro-expression recognition system
works in cold-start conditions, it has to recognize novel classes of micro-expressions in a new scenario,
suffering from the lack of sufficient labeled samples. Inconsistency in micro-expression labeling criteria
makes it difficult to use existing labeled datasets in other scenarios. To tackle the challenges, we present
a micro-expression recognizer, which on one hand leverages the knowledge of facial action units (AU) to
enhance facial representations, and on the other hand performs cross-domain few-shot learning to transfer
knowledge acquired from other domains with different data labeling protocols and feature distribution to
overcome the scarcity of labeled samples in the cold-starting scenario. In particular, we draw inspirations
from the correlation between micro-expression and facial action units (AUs), and design an action unit
module, aiming to extract subtle AU-related features from videos. We then fuse AU-related features and
general features extracted by optical-flow facial images. Through fine-tuning, we transfer knowledge from
datasets in different domains to the target domain. The experimental results on two datasets show that:
(1) the proposed recognizer can effectively learn to recognize new categories of micro-expressions in differ-
ent domains with a very few labeled samples with the UF1 score of 0.544 on CASME dataset, outperforming
the state-of-the-art methods by 0.089; (2) the performance of the recognizer is more competitive when it
distinguishes micro-expression videos of more categories; and (3) the action unit module enables to improve
the recognition performance by 0.072 and 0.047 on CASME and SMIC, respectively.

INDEX TERMS Cross-domain few-shot learning, facial action unit, micro-expression recognition,
multimodal feature fusion.

I. INTRODUCTION
Face is an ideal site to transmit information among different
parts of the body, attributed to diverse, obvious, and quick
facial muscle movements. Facial expressions refer to these
facial movements that convey emotions and intentions of
human [1]. Unlike ordinary facial expressions, facial micro-
expressions occur within a fraction of a second with a low
action intensity. Their involuntary emotional leakage usually
expose true emotions and feelings, which people tend to hide.
In some cases, even though people can deliberately pose false
and misleading facial expressions, they could hardly hide
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their micro-expressions, which reveal their real emotional
states [2]. Haggard and Isaacs [3] once played video records
of conversation between a patient and a psychotherapist at
a slow rate, spotting transient micro-expression of grimace
between patient’s smiles.

Due to the true emotions revealed by natural and involun-
tary micro-expressions, micro-expression recognition tech-
nologies have a wide scope of applications in the fields, such
as psychological and clinical diagnosis, criminal investiga-
tion, judicial judgment, etc.

In the literature, substantial efforts have been made on
micro-expression recognition. Majority of the work pay
attention to the process of feature extraction. Given a facial
image or a video, the micro-expression recognition system
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needs to generate feature representations with a specific
feature extraction method. Feature representations help the
recognition system summarize features of raw data, discard-
ing irrelevant information to the recognition task. Based on
the generated representations, the data samples can further
be classified into several micro-expression categories by the
system.

Traditional micro-expression recognition methods
(e.g., Local Binary Pattern histograms from Three Orthogo-
nal Planes (LBP-TOP) [4] and Bi-Weighted Oriented Optical
Flow (Bi-WOOF) [5]) extract hand-crafted features from
raw data, mapping micro-expression videos to a feature
space. These features are then classified by a classifier like
support vector machine (SVM). With the recent develop-
ment of various deep neural networks (e.g., Visual Geom-
etry Group (VGG) [6], AlexNet [7] and ResNet [8]), deep
neural networks are adopted in micro-expression recognition
[9]–[16]. As deep neural networks (DNN) can acquire deep
features from input samples, DNN-based micro-expression
recognition methods significantly outperform the traditional
methods. However, DNN-based techniques need large-scale
annotated datasets to train feature extractors and clas-
sifiers. Otherwise, the recognition models tend to over-
fit the samples provided, resulting in poor classification
performance.

Despite much progress in micro-expression recognition
mentioned above, few applications have been implemented
up till now. Confronted with two main challenges, it is
difficult to widely use micro-expression recognition tech-
nologies in real-life scenarios. First, as the duration of a
micro-expression is short, and its occurrence is relatively rare,
we could capture a very limited number of micro-expression
samples from a large amount of facial videos. Hence, features
learnt by micro-expression recognition systems are limited,
and it is challenging to provide a method of high recognition
accuracy. Second, in real-life scenarios, micro-expression
recognition systems are under a cold-start problem. They
have to recognize micro-expression videos of unseen classes
with a few labeled samples to learn from. As large-scale
micro-expression datasets only contain samples of basic emo-
tion categories for the sake of universality, recognition sys-
tem trained with such datasets cannot recognize task-specific
emotion categories. For example, panic, anger and anxiety
may appear in prisons, which are unseen when training a
recognition system. Meanwhile, as it is labor-intensive and
time-consuming to build a micro-expression dataset of these
new micro-expression categories from scratch, training a
recognition system with task-specific datasets is not feasible,
only few labeled samples can be available. In other tasks
under cold-start conditions, transfer learning [17] methods
are introduced, using datasets of other scenarios to aug-
ment training datasets. However, it is also challenging to use
datasets available. Since the protocols of micro-expression
data collection are not unified [18], [19], the datasets intro-
duced could be quite different from micro-expression sam-
ples the model needs to recognize (e.g., things eliciting

micro-expressions). Most important of all, the categories of
micro-expressions could be quite different in datasets intro-
duced in the application scenario. For example, the auxiliary
diagnostic system for psychotherapists needs to recognize
repression, despair, and anxiety, while extreme emotions like
anger could be prioritized for prison management systems.
To tackle the first challenge, we leverage knowledge of

facial action units (AUs) to strengthen facial representations
for micro-expression recognition. It is inspired by the signifi-
cant correlation between micro-expressions and facial action
units, as well as established research on facial action units.
AUs are a set of objective labels describing facial muscle
movements, and they are related to different facial regions.
Micro-expressions of a specific emotion category are cor-
responding to certain groups of AUs. For example, facial
expression of happiness includes cheek raiser (AU6) or lip
corner puller (AU12) [20], while sadness includes inner brow
raiser (AU1) [21]. Therefore, we can enrich features learnt
from raw data by incorporating AU-related features. Further-
more, as AUs are region-specific, AU-related features can
guide the model to place more emphasis on local regions
posing significant influence on emotion expression. Previous
studies [20]–[25] have shown that a certain group of AUs
cannot determine micro-expression category solely, i.e., two
different micro-expression may share the same group of AUs.
Thus, the feature extractor in our proposed model not only
extracts AU-related features from raw data, but also considers
general features extracted from optical-flow facial images.

For the cold-start challenge, we perform cross-domain few-
shot learning, which is getting researchers’ attention recent
years. There are areas related to cross-domain few-shot learn-
ing, which also learn unseen classes from streaming data.
Continual learning [26]–[29] requires a model to learn new
tasks sequentially and avoid forgetting former knowledge
catastrophically. Active learning enables models to interac-
tively select samples to be labeled by specialists or other
sources [30]–[32]. Different from these studies, cross-domain
few-shot learning focuses on the data scarcity problem of the
new task. Two methods (fine-tuning and metric-based few-
shot learning method) are adopted to enable the model to
acquire knowledge from datasets available in other scenarios
(source domain), and then transfer the knowledge to the
scenario where it works (target domain), recognizing novel
classes with only a few labeled samples.

A. KEY CONTRIBUTIONS
The main contributions of the study are summarized as the
following:
• We proposeMicro-expression Recognizer incorporating
Action Units (MERAU), which incorporates knowledge
of facial action units, and effectively learns to recog-
nize new categories of micro-expressions in a differ-
ent domain with a few labeled samples. We are the
first to combine AU-related features with general fea-
tures extracted from optical-flow in micro-expression
recognition.
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• To handle cold-start problems in potential applica-
tions of micro-expression recognition, we perform
cross-domain few-shot learning for micro-expression
recognition.

• We propose that incorporating AU-related features in
feature extraction can help the model better differenti-
ate samples of different categories at the representation
level.

The remainder of this paper is structured as follows.
In Section II, we summarize studies related to our work.
In Section III, our proposed micro-expression recognition
framework is introduced, along with two different learning
methods applied to this framework. Section IV describes the
details of our experiments and experimental results. We con-
clude our work and point out potential research directions in
Section V.

II. RELATED WORK
In this section, we review relevant literature on micro-
expression recognition. Additionally, studies on facial action
unit detection, cross-domain few-shot learning, and multi-
modal fusion techniques are also summarized.

A. MICRO-EXPRESSION RECOGNITION
Micro-expression recognition methods can be categorized
into statistical methods and deep learning methods by
forms of feature extraction. Statistical methods adopt hand-
crafted feature extraction to describe the characteristics of
micro-expression videos, aiming to transform original data
into statistic features. A representative statistical method,
LBP-TOP [33], is used as baseline in Facial Micro-
Expressions Grand Challenge (MEGC) 2018 [34] andMEGC
2019 [18].

In comparison, deep learning methods utilize deep neu-
ral networks to extract features from micro-expression
videos. As deep convolutional networks are powerful for
extracting discriminative features from original data, deep
learning methods outperform statistical methods in most
micro-expression recognition scenarios. So far, a lot of
deep learning methods have been developed for recognizing
micro-expressions with deep neural networks [9]–[16].

Some studies such as [9] considered all frames in a video
when extracting features, increasing the computational com-
plexity at the same time. Nevertheless, Liong et al. [5] found
out that not all frames are necessary for providing adequate
information, and prompted the use of only onset and apex
frames of a video instead.

Previous studies also considered recognizing micro-
expression with the aid of facial action units. After extract-
ing features with 3D ConvNet, Xie et al. [35] transformed
those features into a feature map for building an AU graph.
A Graph Convolutional Network (GCN) was then used to
process AU node features and provide information for micro-
expression recognition. Unlike this work which only relied
on AU-related features for micro-expression recognition, we
integrate AU-related features with general features extracted

from optical-flow images in micro-expression recognition
based on the previous studies [20]–[25], which showed that
a certain group of AUs cannot distinguish micro-expression
categories well.

Recent work has considered practicality of micro-
expression recognition systems in the real world. Li et al. [36]
handled small training dataset of micro-expression by using
neighbouring frames of apex frame, Lai et al. [37] and
Hashmi et al. [38] focused on real-time micro-expression
recognition, proposing end-to-end micro-expression recogni-
tion systems.

B. FACIAL ACTION UNIT DETECTION
Studies on facial action units detection can also be
divided into two main categories: AUs occurrence detection
[39]–[43] and AUs intensity estimation [44]–[48]. AUs occur-
rence detection intends to recognize the occurrence of each
AU, transforming AUs detection into a multi-labeled binary
classification problem. In comparison, AUs intensity estima-
tion considers not only the presence but also exact intensity
levels of AUs, i.e., from 1 to 5.

Early research on facial action unit detection used fea-
tures of the whole face with hand-crafted feature extraction
methods [49]. Since each AU is related to a certain facial
region, sparsity-induced methods were then introduced into
AU detection, reducing interference from irrelevant regions.
For instance, Zhao et al. [41] proposed a region layer. Instead
of sharing weights across the entire image, the region layer
has local convolution components for different facial regions,
thus enabling the model to capture local appearance changes.
Li et al. [42] attached E-Net and C-Net to a conventional deep
convolutional network. E-Net placesmore emphasis on active
regions related to AUs with an attention mechanism, and
C-Net crops AU areas of interest.

Due to the difficulty in AU labeling, some studies intend
to reduce dependence on manual annotation, focusing on
weak-supervised or self-supervised AUs detection to reduce
dependence on labeled samples. Weak-supervised studies do
not need correct and exact labels from human annotation.
Zeng et al. [40] proposed a weak-supervised learning method
based on confidence. Zhang et al. [47] used prior knowl-
edge that AU intensity increases monotonically between the
onset frame and apex frame during a facial action. Self-
supervised learning generates supervisory information from
unlabeled data, using its own structure. Twin-Cycle Autoen-
coder [39] disentangled AU related movements from head
motion related ones in videos. This model was trained with
facial image pairs of the same person in videos. With the
absence of manual annotation, the model learned to recognize
displacements of pixels between the source image and the
target image. Thus, the model can be optimized with the
reconstruction loss.

C. CROSS-DOMAIN FEW-SHOT LEARNING
Few-shot learning is an important subproblem of machine
learning. It aims to improve performance of models on a
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specific task with knowledge acquired from a few labeled
samples [50]. In many real-life scenarios, due to the lack
of labeled samples for training, models are likely to overfit
and perform poorly on testing sets. Therefore, researchers
have proposed a series of methods to tackle this problem.
For example, ProtoNet [51] computes the mean of samples
in each category as prototypes in the feature space. In this
way, a test sample can be classified by computing its distance
to each prototype, and a closer distance indicates higher
possibility of belonging. Siamese Network [52] embeds a
sample pair into the feature space with an identical neural
network, and applies a binary classifier to indicate whether
the pair of samples belong to the same category. Unlabeled
test samples can thus be classified by comparing them with
the labeled samples in each category.

Cross-domain learning, also known as domain adaptation,
requires models to solve problems in a target domain, only
utilizing knowledge learnt from a source domain. However,
samples in these two domains have different feature distribu-
tion. Since few-shot learning methods tend to use knowledge
from other domains as supplementary knowledge, few-shot
learning and cross-domain learning tasks are highly corre-
lated and should be considered together [53]. A number of
recent studies [54]–[57] try to address cross-domain few-
shot problems, incorporating knowledge learnt from source
domains. Chen et al. [57] addressed cross-domain few-shot
problem in generic object recognition and fine-grained
image classification. Two different fine-tuning methods
are implemented, as well as several metric-based few-shot
learning methods. Their experimental results show sur-
prisingly competitive performance of fine-tuning methods.
Inspired by their work, we introduce fine-tuning and metric-
based few-shot learning methods into micro-expression
recognition.

D. MULTIMODAL FUSION
Modalities are information presented in different forms or
collected from different sources. To explore human emo-
tions, studies have been conducted about different modal-
ities, including audio [58]–[60], electroencephalography
[61], [62], and imagery [9]–[14], [16], [33], [35]. By com-
bining multimodal information, models can obtain richer
features and have better understanding of the samples. Hence,
multimodal fusion approaches are widely used, like fusing
features extracted from texts and images [63], [64], or images
presenting different information [65]–[67].

Multimodal fusion can be classified based on the fusion
time [68]. Late fusion methods fuses multimodal features at
the decision level, providing independent models for different
modalities that do not interfere with each other [69]. Early
fusion fuses at the feature level. Li et al. [66] concatenated
three channels of a RGB image with two channels of the
optical flow image before feature extraction. In this study,
we take the early fusion strategy to integrate AU features
with the ones extracted from optical flow images as the final
embedding of the raw video in the feature space.

III. PROBLEM DEFINITION AND METHODOLOGY
A. PROBLEM DEFINITION
Given a user’s frame sequence containing an onset frame
and an apex frame, denoted as x = (sonset , sapex), our task
is to identify his/her micro-expression y in the category set
Et based on x. In the study, we consider two different cate-
gory sets, i.e., Et = {Tense,Repression,Disgust, Surprise} |
{Positive,Negative, Surprise}. Let Xt be the set of onset and
apex frame pairs.

Assume we only have a limited number of K labeled
samples for each target class among Et , while the ramaining
samples inXt are left unlabeled. If themodel is merely trained
on these samples, it can hardly obtain knowledge of micro-
expression, which will result in the poor performance when
testing. Thus we intend to acquire knowledge from labeled
samples in datasets available from other scenarios, referred to
as source domain, and the samples in the scenario we cold-
start are referred to as target domain, we cast the problem
definition to a cross-domain few-shot learning setting.

Let Es denote the set of source categories, and Et is the
set of target categories, where (Es 6= Et ) and (|Es| 6= |Et |).
Xs and Xt denote frame pairs in source domain and target
domain respectively. Labeled samples in target domain are
denoted as Dsupport = {(xs1, y

s
1), · · · , (x

s
ns, y

s
ns)}, where (ns =

K · |Et |), (xsi ∈ Xt ), and (ysi ∈ Et ) (for i = 1, · · · , ns).
This few-shot problem is also known as an |Et |-Way-K -Shot
problem. The remaining unlabeled samples in target domain
are denoted as Dtest = {(x

q
1 , y

q
1), (x

q
2 , y

q
2), · · · , (x

q
nq, y

q
nq)},

which are to be queried and detected.
We use Dtrain = {(x t1, y

t
1), (x

t
2, y

t
2), · · · , (x

t
nt , y

t
nt )} to

denote nt labeled samples in the source domain, where (nt �
ns), (x ti ∈ Xs), and (yti ∈ Es) (for i = 1, 2, · · · , nt).
Furthermore, to incorporate knowledge of AUs, we utilize

another AU-labeled dataset Dau. It shares the same set of
frame pairs Xs with Dtrain, yet has a different annotation for-
mat from the micro-expression datasets Dtrain,Dsupport , and
Dtest . Let Dau = {(xa1 , y

a
1), (x

a
2 , y

a
2), · · · , (x

a
na, y

a
na)}, where

na is the number of samples in the AU dataset, and for each
(xai , y

a
i ) ∈ Dau, yai is a 10-dimensional scalar value vector,

signifying the existence of ten typical action units (Inner
Brow Raiser, Outer Brow Raiser, Brow Lower, Lid Tightener,
NoseWrinkler, Upper Lip Raiser, Lip Corner Puller, Dimpler,
Lip Corner Depressor, Chin Raiser) in xai ∈ Xs. Here, value 1
represents the existence, and 0 otherwise.

B. OVERALL FRAMEWORK
The presented Micro-Expression Recognition framework
incorporates Action Units (MERAU) to cross-domain few-
shot micro-expression classification. As shown in Figure 1,
MERAU consists of two modality feature extractors (named
AU module and Optical-flow module) and a classifier.
Optical-flowmodule aims to acquire optical flow information
from the onset and apex frames of a video with an encoder,
and maps it to low-dimensional feature space with a pro-
jection layer. AU module extracts AU-related information
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from the apex frame of the video, and transforms it into two
different feature embeddings. The three feature embeddings
generated by Optical-flow module and AU module are then
concatenated as the final embedding of the raw video in
the feature space. MERAU implants two different ways of
learning (fine-tuning and metric-based few-shot learning) to
project the final embedding of the raw video into the label
space, detecting the micro-expression category of the facial
video given.

1) AU MODULE
We utilize Twin-Cycle Autoencoder (TCAE) [39] as the
encoder of AU module. For a frame sequence, we only
feed its apex frame sapex into this encoder. The output of
TCAE encoder xau is then fed into an AU detector P pre-
trained with an AU dataset Dau. The detector transforms the
AU-related features intoAUprediction p = [ω1, ω2, · · · , ωA]
with 1

1+e−ωi
as the possibility that sapex has the i-th action unit.

Since AU prediction feature p is obtained with additional
supervision (AU pretraining), it may have different distribu-
tion from AU-related feature xau. In order to fuse xau and p,
We use two projection layers with ReLU activation function
to project them into the same feature space, separately. Mean-
while, the projection layer for xau transforms it into low-
dimensional vectors, extracting task-related information. The
projections in the feature space are denoted by ea1 and ea2.
To incorporate knowledge of AU detection into our model,

the AU detectorP needs to be pretrained with the AU-labeled
samples in Dau. For a sample x in Dau, Pφ(x) ∈ [0, 1]A rep-
resents possibilities of occurrence of all AU labels. We thus
compute AU loss Lau as follows:

Lau = −
1
A
6A
i=1yi · log ŷi + (1− yi) · (1− log ŷi) (1)

Then we can achieve optimized parameters of P , denoted
by

φ = argminφ(Lau(Dext ;φ)) (2)

Note that φ will be frozen in the follow-up micro-
expression training and testing.

2) OPTICAL-FLOW MODULE
As the category of micro-expression is not determined by
AU-related information solely, we compute optical flow
images using the onset and apex frames, which describe
geometric deformations of facial videos, and then feed them
into an Optical-flow module. We take ResNet18 [8] as the
encoder of Optical-flow module, and use Gunnar Farneback
Algorithm [70] to generate the dense optical flow as the
input of Optical-flow module. We intend to map the high-
dimensional feature embedding xof obtained by Optical-flow
module, to the same feature space of ea1 and ea2, and fuse
three features.

Hence, we use a projection layer with ReLU activation
function to transform xof into a low-dimensional feature
embedding eof as optical-flow feature of the video.

3) CLASSIFIER
We use M to denote the combination of AU module and
Optical-flow module. For each sample input, the feature
embedding given by M is the concatenation of three feature
vectors, which can be denoted as:

e = eof ⊕ ea1 ⊕ ea2 (3)

The classifier C then projects e into the label space, pre-
dicting the micro-expression category of facial videos given.
Here, we adopt two different learning methods (i.e., fine-
tuning and metric-based few-shot learning) to perform
classification.

We use Dtrain to train the feature embedding model M.
M transforms samples into low-dimensional feature embed-
dings e, the process can be denoted by e =Mθ,φ(x), where
φ is a freezed parameter of AU detector P, and θ is a trainable
parameter of M. Based on the label space of the dataset,
classifier C transforms e into a category label, represented by
p = C(e).
We can denote the combination of feature embedding

model M and classifier C by a function fθ,φ(x) = y, use loss
function Lexp to trainM, and obtain:

θ = argminθ Lexp(Dtrain; θ;φ) (4)

Note that the detailed form of loss function Lexp depends
on the learning method we use.

a: FINE-TUNING
Fine-tuning method uses a fully-connected layer as classifier.
It has the weight ofW ∈ Rd×|Es| at the training stage, where
d denotes the dimension of feature embedding e, and Es is the
set of micro-expression categories in Dtrain. The classifier is
trained together with Optical-flow module and AU module.
While in Dsupport and Dtest , only the parameters of feature
embedding model M are kept, and the weight matrix of C is
re-initialized to W ∈ Rd×|Et |, where Et is the set of micro-
expression categories in Dsupport and Dtest .

The training and fine-tuning process are shown in Figure 2.
For a basic classifier, when we feed feature embedding e into
classifier C, the output is

ŷ = WT e (5)

Additionally, following the setting proposed by
Chen et al. [57], we implement the fine-tuning method with
a cosine-distance based classifier. The weight matrix of C
is W ∈ Rd×|Es|, which is the concatenation of |Es| vectors,
[w1,w2, · · · ,w|Es|]. When a feature embedding is fed into
the classifier, the output is:

ŷcd = [sim(e,w1), · · · , sim(e,wi), · · · , sim(e,w|Es|)] (6)

where sim is a cosine distance function. Given two vectors e
and w, the output is computed as:

sim(e,w) =
eTw
‖e‖ ‖w‖

(7)
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FIGURE 1. Micro-expression recognizer incorporating action units (MERAU).

Similar to the basic classifier, the cosine-distance based
classifier is parameterized by W ∈ Rd×|Et | at the testing
stage.

For these two classifiers, we use the same cross entropy
loss function as follows:

Lexp = −6N
i=1yilog(ŷi) (8)

FIGURE 2. The process of training and fine-tuning.

b: METRIC-BASED FEW-SHOT LEARNING
Metric-based few-shot learning uses distance metrics to dif-
ferentiate between samples in a dataset. We implement Pro-
toNet [51], a typical and effective metric-based few-shot
learning method. It computes the mean of samples in each
category as prototypes, and compares Euclidean distance
between feature embeddings of query samples and proto-
types. The core of ProtoNet method in micro-expression is to
grasp the representative prototypes of each micro-expression
category in the feature space. Despite the lack of labeled sam-
ples in target domain, themodel learns how to generatemicro-
expression feature prototypes with samples in the source

domain. In the target domain, the model directly generates
prototypes without learning.

We assume that there are |Et | categories of micro-
expressions inDtest , and each category hasK labeled samples
in Dsupport . At the training stage, instead of using all labeled
samples in training dataset Dtrain, we pick samples in only
categories Et from Dtrain, and split them into Support Set
{S1, · · · , S|Et |} and Query Set {Q1, · · · ,Q|Et |}, where Si and
Qi denote support samples and query samples of category i,
respectively.

We group these support and query samples into different
episodes. For each episode, we select K labeled samples
from support samples Si for each category i, as episode
support samples, and select T unlabeled samples from Qi as
episode query samples. Thus, an episode contains a total of
|Et | · (K + T ) samples.

FIGURE 3. The process of classification in ProtoNet [51].

As shown in Figure 3, samples are first transformed into
embeddings in the feature space by M, for each category,
embeddings of all episode support samples are averaged into
prototypes of the category, denoted by c.

The model classifies the category of each episode query
sample qj by comparing it with all prototypes:

ŷ = argminj
j∈{1,··· ,|Et |}

dist(qi, cj) (9)
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where dist(·, ·) is the function to compute Euclidean distance
between embeddings. Note that for two embeddings x and y,
dist(x, y) = ‖x− y‖2.
More details about the sample selection and parameter

optimization can be found in Algorithm 1. To optimize
parameters of feature embedding model M, we use a cross
entropy loss based on distance:

Lexp = −d(cj, pi)− log6|Et |k=1e
−d(ck,pi) (10)

where cj is the prototype of category j.

Algorithm 1 Training With ProtoNet. |Et | Is the Number of
Categories andK Is theNumber of Support Samples per Class
We Select in an Episode. The Feature Embedding Model M
Is Trained for N Episodes
Require: Support set {S1, · · · , S|Et |}
Require: Query set {Q1, · · · ,Q|Et |}
Require: Feature embedding modelM
1: Initialize trainable parameters θ of feature embedding

modelM
2: for e← 1 to N do
3: for i← 1 to |Et | do
4: Vs← sample(Si,K )
5: P← ∅
6: for support sample s ∈ Vs do
7: AppendMθ,φ(s) to P
8: end for
9: ci← P̄

10: end for
11: for i← 1 to |Et | do
12: for query sample q ∈ Qi do
13: p←Mθ,φ(q)
14: Calculating Lexp with Equation 10
15: Update θ with ∇Lexp
16: end for
17: end for
18: end for

IV. EXPERIMENTS AND DISCUSSION
In this section, we present our experimental setting, including
baseline methods, datasets we used, pre-processing methods,
and evaluation protocols. Experimental results are reported
and analyzed as well.

A. DATASETS AND PRE-PROCESSING
We conduct experiments on three micro-expression datasets,
including SMIC [71], CASME [21], and CASMEII [20].
SMIC dataset has 164 micro-expression videos collected
from 16 subjects. It contains three coarse-grained cate-
gories of emotion labels: positive, negative, and surprise.
CASME dataset has 196 samples classified into 8 fine-
grained classes. CASME II dataset is larger than CASME,
containing 255 samples of 7 categories. We screen out cat-
egories of few samples from CASME and CASMEII. The
remaining categories of the three datasets are listed in Table 1.

As CASME and CASME II have similar categories,
as well as settings of dataset construction, we train our
model on CASME II, and test it on CASME and SMIC in
order to evaluate its performance with different scales of
domain-shift.

Besides data augmentation strategies such as random crop-
ping, resizing, and rotation, we expand our training dataset
by using neighboring frames of the apex frames in micro-
expression videos based on the previous studies [36], [47],
which assert that neighboring frames have similar facial
appearance and emotion expression. Thus, neighboring
frames share the same micro-expression categories as apex
frames.

Meanwhile, to balance the training samples of different
categories, for each apex frame in videos labeled with micro-
expression category i, we calculate the number of neigh-
boring frames (augi) to be added to the training dataset as
follows:

augi = max(round(
5Ṅmin
Ni

)− 1, 0) (11)

where Ni is the number of samples in category i, and Nmin is
the minimum among all Ni.

B. IMPLEMENTATION DETAILS
1) COMPARISON METHODS
We implement two state-of-the-art methods: Quang’s Capsu-
leNet [12] for micro-expression recognition, and Liu’s micro-
expression recognizer [11]. Additionally, several benchmarks
methods are implemented, including LBP-TOP with uniform
code [33] and VGG [6].

LBP-TOP is a hand-crafted micro-expression recogni-
tion method. Liu’s work extracts features from optical-flow
images, while Quang’s CapsuleNet andVGGuse apex frames
as input images.

For a fair comparison, we apply the same data augmenta-
tion method to these baselines.

2) PRE-TRAINING
To incorporate knowledge of AUs into the model, we pre-
train our AU module before the training stage. We adopt a
pre-trained Twin-Cycle Autoencoder [39] as encoder in the
AU module, and freeze its parameters. The learning rate of
AU detector P in the AU module is set to 0.0012.

For each apex frame in CASME II dataset, there is a group
of labels, indicating AUs that appear on the face. We use
10 AUs in CASME II dataset for pre-training. The process
is shown in Figure 4.

3) CROSS-DOMAIN FEW-SHOT LEARNING
After the pre-training stage, we conduct cross-domain few-
shot learning with fine-tuning and ProtoNet. The parameters
of AU encoder and AU detector are frozen. We list the learn-
ing rates for other layers in MERAU and baseline models
in Table 2.
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TABLE 1. Label summary of the three datasets.

FIGURE 4. Pre-training of the AU module.

TABLE 2. Learning rates of MERAU and baseline models under
fine-tuning and ProtoNet.

C. EVALUATION
We evaluate the performance of our MERAU and base-
line methods on CASME under the setting of 4-Way-5-Shot
and 2-Way-5-Shot. As we adopt basic classifier and cosine-
distance based classifier for fine-tuning, our method using
these two classifiers are named MERAU and MERAU (CD),
respectively.

For 4-Way-5-Shot setting, we select all four categories
remaining in the CASME dataset. Meanwhile, for 2-Way-
5-Shot, we divide samples in CASME into two groups:
(1) Easy group and (2) Hard group. The Easy group contains
micro-expression videos labeled with Disgust and Surprise,
while the Hard group contains samples labeled with Tense
and Repression. Samples in the Hard group are relatively
more difficult to differentiate, since both Tense and Repres-
sion are negative feelings in coarse-grained classification.
We will quantitatively verify this assumption in the next
subsection. To avoid overfitting certain categories of sam-
ples, besides accuracy (ACC), unweighted F1-scores (UF1)

and unweighted average recall (UAR) are chosen as perfor-
mance metric of MERAU and baseline models, presented
in Table 3. we use TP, TN, FP and FN to denote true positives,
true negatives, false positives and false negatives, as there
are N categories of samples, UF1, UAR and ACC can be
calculated as:

UF1 = 6N
i=1

2 · TPi
2 · TPi + FPi + FNi

/N (12)

UAR = 6N
i=1

TPi
TPi + FNi

/N (13)

ACC =
6N
i=1(TPi + TNi)

6N
i=1(TPi + TNi + FPi + FNi)

(14)

In addition, to evaluate performance of MERAU with a
larger domain-shift, we test our MERAU and all baseline
methods on SMIC, which has only 3 coarse-grained cate-
gories. The results are shown in Table 4.

As illustrated, our MERAU outperforms all baseline meth-
ods confronted with both shallow domain-shift (CASME II
to CASME) and large domain-shift (CASME II to SMIC)
on all three metrics. Under the same setting (e.g., 4-way-
5-shot on CASME), performance of MERAU and base-
lines are consistent when using different metrics. Despite
the fact that micro-expression recognizer has to differenti-
ate among samples of more categories on CASME than on
SMIC, the recognition accuracies are significantly higher on
CASME. This is because larger domain-shift increases the
difficulty in transferring knowledge learnt from the source
domain to a new task on the target domain. The Positive and
Negative categories of SMIC dataset have never appeared in
CASME II, while most of the categories are shared between
CASME II and CASME. In addition, subjects and data col-
lection criteria are quite different from CASME II to SMIC.
This assumption can be verified through 2-Way-5-Shot exper-
iments we conduct, where the performance of all methods on
Easy group is significantly better.

Furthermore, to quantify domain-shifts, we generate fea-
tures of samples from source domain (CASME II) and two
different target domains (CASME and SMIC) with a pre-
trained encoder. The encoder is a Resnet18, which has no
prior knowledge about three datasets (SMIC, CASME II and
CASME), in order to avoid interference. We then compute
MaximumMean Discrepancies (MMD) [72] between source
domain and two different target domains, as follows.

MMD(F, S,T ) = sup
f ∈F

(
6
Nt
i=1x

t
i

Nt
−
6
Ns
i=1x

s
i

Ns
) (15)

Here, F is the unit ball in a reproducing kernel Hilbert
space, S and T denote source domain and target domain.
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TABLE 3. Few-shot evaluation with CASME on ACC, UF1 and UAR.

TABLE 4. Few-shot evaluation with SMIC on ACC, UF1 and UAR.

{xs1, · · · , x
s
Ns} and {x

t
1, · · · , x

t
Nt } are features of samples

from source domain S and target domain T . MMD can
effectively represent distances between distributions. As the
results show, the MMD between SMIC and CASME II is
1.1588, while it between CASME and CASME II is only
0.0756. It verifies our claim that there is a larger domain-
shift between CASME II and SMIC, than CASME II and
CASME. As some cross-domain learning studies [73]–[75]
constrained MMD or other domain-shift indicators between
two domains tominimize domain-shift, achieving remarkable
results of domain adaptation, it could further improve our sys-
tem performance to incorporate these methods in the training
process.

Comparing the performance of fine-tuning and ProtoNet,
fine-tuning is superior to ProtoNet, because metric-based

few-shot learning methods cannot fine-tune parameters of the
model on the target domain. In other words, models trained
with metric-based few-shot learning methods cannot acquire
knowledge from the target domain well.

In fine-tuning, we replace basic classifier with cosine-
distance based classifier, which improves the recognition
accuracy of MERAU on CASME dataset. However, its per-
formance on SMIC dataset is poorer. The reverse effect of
cosine-distance based classifier on SMIC is attributed to the
scale of domain-shift, since the cosine-distance based clas-
sifier is designed for reducing intra-class difference with the
sacrifice of cross-domain adaptability.

According to the confusion matrix shown in Figure 8 and
Figure 9, MERAU has better cognitive ability of recognizing
familiar classes (Disgust and Surprise), but may confuse
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samples of the Tense class with those of the Repression
class.

FIGURE 5. (a) Shows feature embeddings generated by Liu’s model, and
(b) shows feature embeddings generated by MERAU.

FIGURE 6. (a), (b) Show samples of hard group (tense and repression)
from CASME. (c), (d) show samples of easy group (disgust and surprise)
from CASME. (a) and (c) show features computed by Liu’s method,
(b) and (d) show features computed by our MERAU.

D. VISUALIZATION
In order to show the effectiveness of our proposed model,
we give a case study, demonstrating the feature spaces learnt
by Liu’s model and MERAU. After training two models with
Dtrain and fine-tuning with Dsupport , we feed all samples in
CASME to both models. Feature embeddings generated by
two models before classification are recorded. To visual-
ize these feature embeddings, we conduct Principal Compo-
nent Analysis (PCA) for dimension reduction, so that these
samples can be presented in the same 2-dimensional space
in Figure 5.

To quantify the effectiveness of the feature embeddings
generated by MERAU and the baseline Liu’s model, we split
visualized samples into Easy group and Hard group. For each
group of samples, we use SVM to acquire its best linear
boundary, and then draw it as the blue line in Figure 6.
Furthermore, we compute the classification accuracy of SVM

for each image, and show it in Table 5. As the results shown,
feature embeddings generated by MERAU have higher intra-
cluster similarity and lower inter-cluster similarity, demon-
strating that MERAU have better distinction among different
categories of samples.

TABLE 5. Classification accuracy of Liu’s method and our MERAU.

E. ABLATION STUDY
In order to verify the effectiveness of incorporating action
units, we eliminate the AU module in our framework, and
only feed optical flow features into the classifier. Consis-
tent with former experiments, we pre-train this model on
CASME II and fine-tune it on CASME and SMIC. Figure 7
shows the classification result. It turns out that the UF1 scores
of classification improve by 0.0722 and 0.0471, respectively,
after we incorporate the AU module. When we replace the
basic classifier with cosine-distance based classifier, incor-
porating knowledge of AUs has similar improvements.

FIGURE 7. Effectiveness of the AU module in MERAU.

FIGURE 8. Confusion matrix of MERAU on CASME dataset.
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FIGURE 9. Confusion matrix of MERAU on SMIC dataset.

V. CONCLUSION AND FUTURE WORK
Micro-expression recognition has a wide range of appli-
cations (e.g., psychological and clinical diagnosis, emo-
tional analysis, criminal investigation, etc.). However, when
a micro-expression recognition system works in cold-
start conditions, it has to recognize novel classes of
micro-expressions in a new scenario, suffering from the lack
of sufficient labeled samples. Meanwhile, inconsistency in
micro-expression labeling criteria makes it challenging to use
existing labeled datasets in other scenarios.

To tackle these challenges, we present a micro-expression
recognizer, which on one hand leverages the knowledge of
facial action units (AU) to enhance facial representation, and
on the other hand performs cross-domain few-shot learning to
transfer knowledge acquired from labeled samples in datasets
available from other scenarios to classify samples in the cold-
starting scenario. The experimental results show that our
recognizer has better distinction among samples of different
micro-expression categories and achieves better recognition
accuracies than state-of-art methods. On UF1 metric, our rec-
ognizer outperforms baseline methods by 0.089 on CASME
dataset, and 0.022 on SMIC dataset.

For future work, we assert that the micro-expression recog-
nition accuracy of our recognizer largely relies on the per-
formance of facial action units detection. One future work is
to incorporate cross-domain learning methods into the pre-
training process of the AU detector in our framework, as it
has to work in a different domain and predict possibilities of
different AU’s occurrences. In addition, after the cold-start
period, more labeled samples will be available, and themicro-
expression recognitionmodel has to adapt to the new samples,
also known as hot update. To avoid repeatedly learning from
the old samples or forgetting knowledge learnt, continual
learning technologies need to be further investigated.
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