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STransFuse: Fusing Swin Transformer and
Convolutional Neural Network for Remote Sensing

Image Semantic Segmentation
Liang Gao , Hui Liu, Minhang Yang, Long Chen , Yaling Wan, Zhengqing Xiao, and Yurong Qian

Abstract—The applied research in remote sensing images has
been pushed by convolutional neural network (CNN). Because
of the fixed size of the perceptual field, CNN is unable to model
global semantic relevance. Modeling global semantic information
is possible with the self-attentive Transformer-based model. How-
ever, the method of patch computation used by Transformer for
self-attentive computation ignores the spatial information inside
each patch. To address these issues, we offer the STransFuse model
as a new semantic segmentation method for remote sensing images.
It is a model that combines the benefits of Transformer with CNN
to improve the segmentation quality of various remote sensing
images. We employ a staged model to extract coarse-grained and
fine-grained feature representations at various semantic scales, un-
like earlier techniques based on Transformer model fusion. In order
to take full advantage of the features acquired at different stages,
we designed an adaptive fusion module. This module adaptively
fuses the semantic information between features at different scales
employing a self-attentive mechanism. The overall accuracy (OA)
of our proposed model on the Vaihingen dataset is 1.36% higher
than the baseline, and 1.27% improvement in OA over baseline on
the Potsdam dataset. When compared to other advanced models,
the STransFuse model performs admirably.

Index Terms—Remote sensing, self-attention, semantic
segmentation, Transformer.
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I. INTRODUCTION

A PIXEL-LEVEL classification challenge, semantic seg-
mentation of remote sensing images, is an essential

problem for remote sensing research. High-quality and high-
resolution remote sensing images are now readily available be-
cause of advancements in remote sensing and sensor technology.
However, remotely sensed images contain complex ground in-
formation with interclass and intraclass variation, which makes
the research of remotely sensed images challenging.

In recent years, with the development of deep learning, remote
sensing image research has also made great progress. In the field
of computer vision, CNN-based enhanced models [1], [2] have
demonstrated exceptional performance. Fully convolutional net-
works (FCNs) [3], developed on the basis of CNN, achieve
pixel-level classification and further promote the application
of deep learning models in the field of image segmentation.
However, the scales of features contained in remotely sensed
images vary greatly, and ground objects of the same class may
have different shapes and sizes, and ground objects of different
classes may have similar characteristics. Models using only
spectral information are not sufficient to effectively distinguish
ground objects [4], and multiscale contextual information is
needed to assist in identification [5]. Therefore, how to effec-
tively obtain the contextual information of images is a problem
worth researching.

Due to the fixed receptive fields of convolutional kernels,
FCNs are unable to collect visual contextual information well.
To solve the problem of the lack of sensory fields, researchers
use pooling methods. Through a deeper network, the model
collects high-level feature maps rich in semantic information
and decreases the feature maps’ resolution to obtain a global rep-
resentation of the feature information. However, in the process
of continuous subsampling, the model loses some information.
Several researchers [6]–[8] have tried to solve the above problem
using the fusion of multiscale contextual information. Chen
et al. [7] improved the atrous spatial pyramid pooling (ASPP)
module to capture multiscale contextual information by com-
bining atrous convolution. Unet [9] with an encoder–decoder
structure acquires feature map information at different levels by
skip-linking in order to enhance the representation of feature
map information. Pyramid scene parsing network (PSPNet) [8]
aggregates the ability to extract global contextual information
based on different regions through a pyramid pooling module.
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Although the integration of multiscale contextual information
aids in the collection of ground objects at many scales, it
ignores ground object relationships [10]. Each ground object
has different relationships with other ground objects, and these
relationships can be used for better contextual modeling.

Besides, some researchers [11], [12] tried to use self-
attention [13] to solve the problem of the lack of model-receptive
fields. Fu et al. [11] designed compact position attention mod-
ule and compact channel attention module based on the self-
attentive mechanism to model semantic relevance from spatial
and channel dimensions, respectively. The Transformer method
based on sequence-to-sequence prediction [14]–[18] has shown
outstanding performance in the field of computer vision. Trans-
former discards convolutional operations in its structure and
adopts a structure of pure attention mechanism. Transformer, un-
like CNN, is capable of acquiring global contextual knowledge
through self-attention. There are experiments [14] that demon-
strate that in the case of large-scale pretraining experiments,
Transformer is able to reach state-of-the-art in image tasks
such as image classification, image recognition, and semantic
segmentation.

In this article, we explore the application potential of Trans-
former for semantic segmentation in the context of remote sens-
ing. Interestingly, when we transfer some Transformer models
that achieve outstanding results on public datasets to remote
sensing image datasets, we find that these network models do
not produce satisfactory results. This is because during the input
of patches to the Transformer network, patches are compressed
into a sequence of 1-D and the structural information in patches
is lost. In the encoder stage of the Transformer network, the
detailed information cannot be recovered effectively by upsam-
pling, which eventually leads to poor segmentation of the model.
Inspired by the Unet network [9], we fused the feature maps of
different stages, which were used to obtain semantic contextual
information and spatial contextual information of the images.

To this end, we propose a model for semantic segmentation
of remote sensing images, STransFuse. STransFuse uses the
architecture of Swin Transformer [19] combined with CNN.
The Swin Transformer branch acquires features in the form
of shift windows to build self-attentiveness. The CNN branch
acquires spatial contextual information. The success achieved
by Transformer relies on the training of a large amount of data.
However, the limited image datasets acquired in the field of
remote sensing greatly limit the application of Transformer in
the field of remote sensing. Inspired by the paper [14], we used
Resnet34 with pretrained weights as the network backbone of
the CNN branch, combined with Swin Transformer, to obtain the
rich feature information of remote sensing images. At the same
time, the designed structure of the staged fusion model allows
the model to acquire rich features, and the perceptual field of
the model increases as the layers of the STransFuse model are
deepened and used to acquire contextual information, and our
main contributions are as follows.

1) A framework for Swin Transformer and CNN parallelism
was designed with STransFuse model. First, STransFuse
brings the global semantic information of feature maps
into the model through Transformer network and uses

CNN to extract the spatial contextual information of
low-level feature maps. Second, STransFuse avoids the
difficulties of gradient disappearance and feature map
information loss by not requiring the creation of very deep
networks. Then, it is experimentally demonstrated that the
adopted two-branch structure makes the model efficient in
terms of performance and computational speed. Finally,
the designed phased fusion structure allows the high-level
feature map to contain richer feature information.

2) A feature map fusion module is designed to improve the
model feature representation by adaptively fusing feature
maps with self-attentive structures.

3) The proposed STransFuse model achieves a comparatively
good result on the Vaihingen and Potsdam datasets.

The rest of this article is organized as follows. The related
work on semantic segmentation of remote sensing images is
discussed in Section II and some Transformer researches is also
reviewed in this Section. In Section III, the specifics of the
STransFuse framework as well as the adaptive fusion module
(AFM) design are explored. The datasets used in the stud-
ies, as well as the experimental parameters, are described in
Section IV. Section V presents complete ablation studies and
experimental comparison between the STransFuse model and
some state-of-the-art models to validate the proposed module.
Finally, Section VI concludes this article.

II. RELATED WORKS

A. Semantic Segmentation of Remote Sensing Images

Remote sensing images are widely used in many application
fields, including crop yield estimation [20], military reconnais-
sance, and natural disaster monitoring [21]. The accuracy of
these applications is largely determined by the segmentation
accuracy of remote sensing images. Traditional remote sensing
image semantic segmentation relies on the texture information
and spectral information of images, which require a lot of man-
power and material resources. The introduction of deep learn-
ing into remote sensing image segmentation has increased the
accuracy, resulting in a significant increase in image segmenta-
tion efficiency. For remote sensing images, deep learning-based
semantic segmentation algorithms [22]–[25] have sprouted up.
AFNet [26] employed the scale-feature attention module and
scale-layer attention module to better tackle the difference be-
tween intraclass and interclass in remote sensing images. Pan
et al. [27] introduced a conditional generative adversarial net-
work that actively generates new sample images while extracting
advanced spatial information from previous training images. To
overcome the problem of cloud segmentation in remote sensing
images, Yao et al. [28] presented a multiscale feature extrac-
tion and content-aware recombination network. Mou et al. [29]
designed the spatial relation module and the channel relation
module, through which the relationship between any two spatial
locations or feature maps is learned and inferred. The contextual
information collected by these models, however, is insufficient
since the spatial dependence of ground objects in high-resolution
remotely sensed images also plays a significant role. As a result,
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the segmentation of certain finely structured objects (e.g., car)
remains poor.

B. Contextual Information

To increase the accuracy of image semantic segmentation, it
is critical to understand how to properly extract the image’s con-
textual information. FCNs [3] first widened the receptive field by
pooling to capture the image’s context information, but multiple
downsampling processes resulted in the feature map losing
certain details. Some researchers have attempted to alleviate the
problem of a lack of sensory field by fusing multiscale contextual
information. Unet [9] created a network framework with an
encoder–decoder structure that allows detailed information from
low-level feature maps to be merged into high-level feature
maps by skipping network layers. The research [30] offered an
axial-attention model to enlarge the perceptual area and alleviate
the problem of remote contextual information being lost due to
convolution. Although the multiscale context fusion approach
aids in the acquisition of contextual information, it ignores the
pixels’ relationship. The self-noticing-based Transformer is able
to model global semantic relevance, and some researchers have
tried to use Transformer’s approach to obtain contextual infor-
mation of images. Feature Pyramid Transformer [16] contains a
fully active feature interaction across both space and scales, by
designing a pyramid-like structure to expand the perceptual field.

The contextual information in remote sensing images de-
scribes the relationship between objects. Contextual information
of remote sensing images is difficult to obtain because of the
high resolution of remote sensing images and the unbalanced
proportion of the ground object contained in the images. Re-
mote sensing images are generally difficult to process directly,
and often require preprocessing (cropping, normalization) of
the images. Some methods based on self-attention mechanisms
generate excessive waste of computer resources in getting the
context relationship when the processed images patch only
contains one class of a ground object. When the common model
executes the convolution operation, the proportion of large-scale
ground objects in the patch can be substantially higher than
that of small-scale ground objects, causing small-scale ground
objects to be heavily influenced by large-scale ground objects.
According to the characteristics that remote sensing images have
intraclass differences and interclass differences, balancing the
accuracy and efficiency of remote sensing image processing has
become a hot spot in the current research of remote sensing
images. Our research focuses on increasing the model’s feature
extraction capabilities and the integrated use of feature maps
from multiple phases of the model due to the complexity of
remote sensing images. The STransFuse model was created
based on these findings.

C. Transformer

The Transformer was originally used in the realm of natural
language processing (NLP) [13]. It is a deep neural network
model that extracts intrinsic properties via the self-attention
approach. The good experimental performance Transformer
achieved in the field of NLP suggested that it may be applied

to the field of image processing. The first Transformer model
based on pure self-attention for image recognition, Vision Trans-
former (ViT) [14], has achieved outstanding results in image
processing, but the model requires a large number of datasets
for training, and the results obtained by applying the model
directly to small or medium-sized datasets were not promising.
A great number of researchers [31]–[36] tried many ways to
make the Transformer more successful in the field of computer
vision, inspired by the construction of the visual Transformer
model. Semantic SEgmentation Transformer (SETR) [37] is a
model for semantic segmentation that used Transformer as an
encoder. A sophisticated segmentation model can be created
by combining the pure Transformer encoder with some simple
decoders. DEtection Transformer (DETR) [15] is a Transformer
that was developed by Facebook AI researchers and applied
to a visual model. It is the first target detection framework
to successfully incorporate Transformer as a pipeline’s core
building block. In the areas of target identification and panorama
segmentation, the DETR model performed well. However, these
visual transformers usually treat the image as a series of patches,
ignoring the intrinsic structural information within each patch.
The Transformer-in-Transformer (TNT) model [38] makes use
of an inner Transformer block to extract the images patch’s
internal structure information, allowing the model to extract both
global and local properties. The model performed well on the
ImagesNet benchmark dataset and in various downstream tasks.
The experimental results, however, are unsatisfactory when the
model is applied to the field of remote sensing. It is because
the dataset of remote sensing images is small, and the ground
objects of remote sensing images are quite different from those
of ordinary images. As inspired by the ViT model [14], we
combined the pretrained Resnet34 as the CNN backbone with
the Swin Transformer model to create a two-branch network
model that can perform well on remote sensing images.

III. PROPOSED METHODS

A. Overview

We present the STransFuse model as a new semantic segmen-
tation method for effectively obtaining global semantic context
information and spatial context information in remote sensing
images. We use Swin Transformer and CNN to handle the
images, fuse the feature maps at different stages, and finally
restore the feature maps to their original size. In Section III-B,
we will introduce the overall structure of STransFuse. Then, the
details of Swin Transformer are given in Section III-C. Finally,
the AFM is described in Section III-D.

B. STransFuse Overall Architecture

In order to improve the accuracy of model segmentation,
semantic and spatial contextual information in images is essen-
tial. CNN is limited by the fixed size of convolutional kernels
and cannot model global semantic information. Transformer can
obtain global semantic information by self-attentive computa-
tion, but self-attentive computation needs to stretch the patches
into 1-D tokens, and the spatial information inside the patches
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Fig. 1. (a) The overall structure of STransfuse model. (b) The detail of Swin Transformer blocks.

is lost. In order to solve these problems, we designed models
with two encoders to extract features. We used Resnet34 with
training weights as the encoder for the CNN branch. The feature
representation capability of the model is improved by fusing the
features extracted from the Transformer branch and the Resnet34
branch.

As shown in Fig. 1(a), the image x ∈ RH×W×C is input
into the Swin Transformer network and the Resnet34 network,
respectively, where H represents the height of the image, W
represents the width of the image, and C represents the number
of channels in the image.

The feature maps extracted by the model at different stages are
of different sizes, corresponding to different semantic scales of
feature granularity. In order to enable the feature maps to contain
rich semantic information as well as feature detail information,
we use a staged fusion strategy.

There are four stages in Swin Transformer network to get
xs1, xs2, xs3, xs4 feature maps, respectively, and each stage
contains patch merging and Swin Transformer. Patch merg-
ing works in a similar way to CNN’s pooling layer in that it
downsamples the image. Patch merging splits the image into
nonoverlapping patches by sliding the window on the input
image. Each patch is considered as a “token.” We initially fixed
the patch size to 4×4. Then, the eigenvalues in the feature map
are projected to the C dimension through a linear embedding
layer. Finally, Swin Transformer block is applied to these patch
tokens. The resolution of the output feature map is H

4 × W
4 .

The above steps are collectively referred to as “Stage 1.” In the
following “Stage 2,” patch merging concatenates the features
of each group of 2 × 2 neighboring patches, as illustrated in
Fig. 2. Patch merging applies linear embedding layer to change
the output dimension to 2C, and applies Swin Transformer for
feature transformation. In “Stage2,” the resolution of the output
feature map is maintained at H

8 × W
8 . “Stage 3” and “Stage 4”

are similar to “Stage 2,” and the output feature map resolutions
are H

16 × W
16 and H

32 × W
32 , respectively.

Fig. 2. Swin Transformer builds hierarchical feature maps by merging image
patches in deeper layers.

The images are input to the Resnet34 network to get the
feature maps, which are output by layer2 to layer4 as feature
maps xc2, xc3, and xc4 respectively, and the sizes of these
feature maps are H

8 × W
8 , H

16 × W
16 , and H

32 × W
32 , respectively.

The feature maps generated by Resnet34 are merged with those
generated by different stages of Swin Transformer to make use
of Swin Transformer’s capacity in collecting global semantic
contextual information of features. Finally, the fused feature map
is upsampled twice by a factor of two, and the feature map is
restored to the size of the input image.

C. Swin Transformer Block

The image’s contextual information is critical for improving
semantic segmentation accuracy, and long-range semantic in-
formation can be employed as a discrimination aid, allowing
the model to rely on more than just the image’s spectral infor-
mation. Therefore, we introduced the Transformer network as a
subnetwork in the model for feature extraction. There have been
many studies demonstrating that self-attention in Transformer
can model global semantic information [11], [39], [40].

The self-attention used in the standard Transformer block is
calculated by relating one of the tokens to all other tokens. This
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calculation makes the computation workload of the network
grow quadratically with respect to the resolution size of the
image, and for some intensive prediction tasks (e.g., seman-
tic segmentation), the model will require high-end computing
devices. The Swin Transformer will perform the self-attentive
computation in a local window. The images are segmented
by nonoverlapping windows. Each window contains M × M
patches. It is worth noting that to ensure that the images (h × w)
are divisible by the window (M × M), we use a padding method
and mask the padding values when computing attention. In this
case, the computational complexity of multihead self attention
(MSA) is shown in (1), and the computational complexity of
window MSA (W-MSA) is shown in (2).

ΩMSA = 4hwC2 + 2(hw)2C (1)

ΩW-MSA = 4hwC2 + 2M2hwC (2)

where C denotes the dimension, and h and w are the height
and width of the image, respectively. In (1), the computational
complexity of MSA is quadratic to the production of h and
w. In (2), when M is a fixed size (set to 7 by default), the
computational complexity of W-MSA is linearly related to the
production of h and w.

Swin Transformer is the replacement of MSA in the Trans-
former module with W-MSA. As shown in Fig. 1(b), Swin
Transformer inputs the feature map processed by Patching Merg-
ing into the Swin Transformer block. Then, the feature map
enters the W-MSA module through the LayerNorm layer, and
there is a residual connection between each module and another
LayerNorm layer.

In summary, the process of calculating the feature map in the
W-MSA module is shown below:

x̂l = W-MSA(LN(xl−1)) + xl−1. (3)

The feature map then passes through a linear batch layer and
a fully connected layer with the following equations:

xl = MLP(LN(x̂l)) + x̂l (4)

where x̂l denotes the output characteristics of the W-MSA
module of l block, and xl represents the output characteristics of
the MLP module after l block. LN denotes layer normalization
and MLP denotes multilayer perceptron.

Because of the sliding-window segmentation operation per-
formed by W-MSA, the cropped patches do not overlap and
there is a lack of effective information interaction between the
windows. A shifted window MSA (SW-MSA) network exists to
further increase the model’s performance. SW-MSA performs
window shifting compared to W-MSA. The idea of SW-MSA is
to move the image cyclically up and cyclically left by half the
window size. The area on the image beyond the window will be
moved to the lower and right side of the window, respectively.
Then, by slicing the window according to W-MSA on top of
the shift, we will get a different window-slicing method than
W-MSA. The formula for SW-MSA is shown below:

x̂l+1 = SW-MSA(LN(xl)) + xl (5)

xl+1 = MLP(LN(x̂l+1)) + x̂l+1 (6)

Fig. 3. Detail display of AFM.

where x̂l+1 denote the output characteristics of the SW-MSA
module of l+1 block, and xl+1 denote the MLP module of l+1
block.

D. AFM Block

To efficiently fuse the encoded features from CNN and Swin
Transformer, we designed an AFM based on the self-attentive
mechanism. The feature weight matrix is obtained by self-
attentive calculation to selectively enhance spatial details or
suppress other regions, thus enhancing the differentiation ability
of dense prediction. The structure of AFM is shown in Fig. 3. We
will perform the fusion of features with the following equation:

xcs,i= ReLU(Conv(Interpolate(concat(xf,i+1, xc,i+1))))
(7)

xBN,i = ReLU(BN(Conv(Concat(xcs,i, xs,i)))) (8)

xq = Conv(xBN,i) (9)

where xf,i represents the feature matrix of the output of the ith
stage of the AFM, xc,i represents the feature matrix of the output
of the ith layer of the CNN, xs,i represents the feature matrix of
the output of stage i of Swin Transformer, xBN,i represents the
ith AFM block fusion feature map, and xq is the query in the
self-attentive calculation.

The feature fusion is computationally intensive due to the use
of feature maps from three branches. To alleviate this problem,
we add the AdaptiveAvgPool2d method to the AFM, enabling
the AFM to construct a relationship between each pixel and some
convergence centers. By this collection of feature vectors from
a subset of pixels in the input tensor, the AFM is made com-
putationally acceptable. The formula for calculating semantic
relevance in AFM is shown below:

xk = Linear(Concat(AdaptiveAvgPool2d(xBN,i))) (10)

xv = Linear(Concat(AdaptiveAvgPool2d(xBN,i))) (11)

xf,i = (xq ⊗ xk)⊗ xv ⊕ xBN,i (12)

where xk represents the key in self-attention calculation, xv

represents the value in self-attention calculation, xq

⊗
xk gets

the self-attention weight matrix, (xq

⊗
xk)

⊗
xv obtains the

weighted feature matrix, and add the weighted feature matrix
and the fusion feature matrix to obtain xf,i. The feature value
of each position in xf,i is the weighted sum of the features
of all positions and the original features. Thus, AFM is able
to selectively aggregate contextual information based on the
attentional feature map in the global view, improving the model’s
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ability to discriminate between dense pixels. The information
of each pixel will be passed to the pixel associated with its
semantics, which improves the semantic consistency.

IV. DATASET DESCRIPTION AND DESIGN OF EXPERIMENTS

The ISPRS Vaihingen and Potsdam datasets are utilized for
testing to validate the effectiveness of the suggested method. We
began with a brief description of the datasets and an introduction
of the experiment’s specifics in this section.

A. Dataset

1) Vaihingen: There are 33 patches in the Vaihingen
dataset [41]. Each patch is made up of genuine orthoimages
that were recovered from a larger mosaic. The ground sampling
distance (GSD) is 9 cm, and each image has a resolution of
roughly 2500×2500 pixels. The image contains three wave-
bands, namely near-infrared (NIR), red (R), and green (G). We
did not use normalized digital surface model (nDSM) data, and
DSM data. We used the ground truth whose boundaries of objects
have not been eroded by 3-pixel radius for testing. According
to the official division principle, 16 patches were used as the
training set (image id: 1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 26,
28, 30, 32, 34, 37), and the other 17 as the test set (image id:
2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38).
For the large image, we cut it into 256×256 slices. In the data
augment strategy, we adopted random horizontal and vertical
flip operations.

2) Potsdam: The Potsdam-2D [42] semantic annotation col-
lection consists of 38 patches, each with a GSD of 5 cm and
a resolution of 6000×6000 pixels. We used RGB images as
the dataset instead of nDSM or DSM data. We followed the
official division principle and used 13 (because the provided
label dataset is missing 03_13) of them as the test set (including
the image ids of 02_13, 02_14, 03_14, 04_13, 04_14, 04_15,
05_13, 05_14, 05_15, 06_13, 06_14, 06_15, 07_13), and the
other 24 as the training set (with image ids of 2_10, 2_11, 2_12,
3_10, 3_11, 3_12, 4_10, 4_11, 4_12, 5_10, 5_11, 5_12, 6_7,
6_8, 6_9, 6_10, 6_11, 6_12, 7_7, 7_8, 7_9, 7_10, 7_11 and
7_12). We also used the ground truth that has not been eroded
for testing, and used the same data enhancement method as the
Vaihingen dataset.

B. Evaluation Metric

We employed the data publisher’s evaluation approach, which
was also used in the papers [25], [27], [43], [44]. We used
intersection over union (IoU) for each class, F1-score for each
class, mean intersection over union (mIoU), mean F1-score,
and overall accuracy (OA) as our evaluation indicators. Because
many indicators are based on confusion matrix for calculation,
before introducing the specific formula of each indicator, the
meaning of some symbols of the confusion matrix is defined as
follows: True positive (TP), true negative (TN), false positive
(FP), and false negative (FN). Therefore, the precision rate
is calculated by using (13), and the recall rate is calculated
using (14)

Precision =
TP

TP + FP
. (13)

Recall =
TP

TP + FN
. (14)

The definition of OA is shown in (15)

OA =
TP

TP + FP + FN + TN
. (15)

The F1-score formula for each class is defined as shown in
(16)

F1 = 2
precision × recall
precision + recall

. (16)

The mean F1-score is obtained by averaging the F1-score of
each class. The higher the value of F1-score is, the better the
experimental result is.

The definition of IOU is shown in the following formula:

IoU =
Np ∩ Ngt

Np ∪ Ngt
(17)

where Np represents the prediction set, and Ngt represents the
ground truth images. mIoU is generally calculated based on
class. With the calculated IoU of each class, a global evaluation
is obtained by using the average of the IoUs.

C. Training Configuration

All the experiments were implemented using PyTorch 1.4.0,
Python3.7, CUDA 10.1, and CuDNN 7.6.5. The networks use
the Adam optimizer, and the weight decay is 0.0002. We adopted
“ploy” learning rate policy with a power of 0.9. The cross-
entropy loss with weight was defined as shown in (18)

Wclass =
1

log(Pclass + c)
, c = 1.12. (18)

For all datasets, we set the size of batch size to 16 for all
models, except for the TNT model and the Transunet model.
Because the TNT model and the Transunet model are compu-
tationally expensive, in order to cater to our GPU memory size,
we set the batch size of these two models to 12. All experiments
were measured on a single 2080Ti with a memory size of 11 G.

V. EXPERIMENTAL

We tested the effectiveness of the proposed module through
ablation studies. Then, we compared the proposed STransFuse
with some state-of-the-art methods and discussed the experi-
mental results.

A. Ablation Studies

In this section, we discuss the experimental performance of
the single-branch model and the two-branch model. Also, we
discuss the experimental results of putting Resnet34 in serial and
parallel with Transformer. In addition to this, we will discuss the
effectiveness of the designed phased integration strategy. Finally,
we also discuss the effectiveness of the proposed AFM through
experimental results. We perform experimental comparisons in
the Vaihingen and Potsdam datasets.
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TABLE I
ABLATION RESULTS OF DIFFERENT BLOCKS COMBINED SWIN TRANSFORMER, RESNET34, AND STRANSFUSE FRAMEWORK USING VAIHINGEN AND POTSDAM

DATASETS. THE VALUE IN BOLD IS THE BEST, WHERE THE METRICS OA, MF1, AND IOU ARE IN PERCENTAGES; T REFERS TO THE TIME OF MODEL TRAINING IN

MINUTES (MIN). PARA REPRESENTS THE NUMBER OF PARAMETERS OF THE MODEL IN M

1) Quantitative Analysis in Ablation Studies: The experi-
mental results of the ablation experiments are shown in Table I,
and FCN [3] (Resnet34) was chosen as the baseline model for
comparison.

Table I summarizes the ablation results with different configu-
ration of the network blocks. Among them, Swin_xs4 represents
that only Swin Transformer is used as the feature extractor, and
only the feature map output by stage 4 is input into the decoder.
Swin uses concat for feature fusion of the feature maps output
by all stages of Swin Transformer, and inputs the fused feature
maps into the decoder. Res34+Swin represents that we use
Resnet34 to process the input map, and then input the extracted
feature map into Swin Transformer. Swin+Res34 is a two-branch
network model built by fusing Swin Transformer network and
Resnet34. This fusion model uses concat to fuse the feature maps
of different stages of Swin Transformer network and Resnet34.
Swin+Res_xs4 represents the fusion using only the feature maps
xs,4 and xc,4. STransFuse also uses a dual-branch structure as a
feature extractor. At different stages of the feature map, we used
our own AFM instead of the concat module to fuse the feature
map.

It is seen from Table I that the STransFuse model produced the
best results. We first examined the impacts of the single-branch
network model and the double-branch network model. Table I
shows that single-branch network models (FCNs, Swin_xs4,
Swin, Res34+Swin) perform worse for semantic segmenta-
tion of images than two-branch network models (Swin+Res34,
Swin+Res_xs4, STransFuse).

At the same time, we compared the experimental results of
using only the features (xs,4) output from the final stage of Swin
Transformer and fusing features of different stages (xs,1, xs,2,
xs,3, xs,4). The testing results demonstrate that the Swin model,
which combines the feature maps of several stages of the Swin
Transformer, can enhance metric OA by 0.49% in the Potsdam
dataset.

Then, we compared the experimental effects of connecting the
Resnet34 network with pretrained weights to the Transformer
model in series (Res34+Swin) and in parallel (Swin+Res34,
Swin+Res_xs4, STransFuse). The parallel network model per-
forms better in the experiments, as seen in Table I. In the Potsdam
dataset, Swin+Res34 is 1.19% OA higher than Res34+Swin.
The effectiveness of the staged fusion strategy can be found
by comparing the experimental results of Swin+Res_xs4 and
Swin+Res34.

Finally, we compared the AFM and concat modules’ perfor-
mance. As shown in Table I, the model (STransFuse) employing
our proposed AFM for feature map fusion performs 0.24% OA
better in the Potsdam dataset than the model (Swin+Res34) using
concat for fusion. By comparing the Swin Transformer’s trial
findings, it is observed that our model can solve the problem of
Swin Transformer’s inability to distinguish small targets. This
is because when the Transformer network computes the images,
it stretches the patch into a 1-D token. Under the influence of
the surrounding large target pixels, the same pixel values of
tiny targets will be separated into locations far apart, and the
features of the pixels of small targets will appear less visible. The
STransFuse model can learn features from both semantic and
spatial context information, which helps to tackle the problem
of Transformer’s inability to learn small target features.

Besides, Table I shows that our design STransFuse model has
a shorter training time than other parallel models (Swin+Res34,
Swin+Res_xs4).

2) Qualitative Analysis in Ablation Studies: It can be seen
clearly from Fig. 4 that the STransFuse model segmented better
than the baseline network FCNs, and that the STransFuse model
did not misclassify the ground objects with shading effects in
a row (b). It is demonstrated that combining the feature maps
of several stages of the swin Transformer is more effective
than utilizing simply single-stage feature maps when comparing
Swin_xs4 and Swin, and the two-branch network model has
superior segmentation performance for buildings than that by the
single-branch network model when comparing the visualization
effect maps of Res34+Swin and Swin+Res34 in a row (b).

B. Visualization Analysis

To further illustrate the ability of our STransFuse model to
effectively acquire feature information in remotely sensed im-
ages, we compared the recognition capabilities of the benchmark
model FCNs and STransFuse models for different classes of the
ground objects. We visualized the last convolutional layer in the
FCNs model and the STransFuse model using the class activa-
tion mapping (CAM) approach, respectively. CAM, originally
proposed in the paper [45], is a weighted linear sum of these
visual patterns that are at different spatial locations. It is the
multiplication of the weights corresponding to a certain class by
the layer corresponding to the feature map, normalized by the
heat map, as shown in the second row of the heat map in Fig. 5.
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Fig. 4. The result figures of ablation studies visualized in different datasets. (a) and (b) Results in the Vaihingen dataset. (c) and (d) Results in the Potsdam dataset.

Fig. 5. Class activation mapping: The predicted class scores are mapped back
to the previous convolutional layers to generate CAMs. The highlighted areas in
the image (red) represent the areas that the model focuses on for specific classes,
while the areas in the image that are dark (dark blue) represent the areas that the
model does not focus on.

By simply upsampling the CAM to the size of the input image,
we can identify those regions that the model focuses on. As
shown in the figure, we show the CAM implementation process
for the building class, using the FCNs model as an example.

As shown in Fig. 6, the STransFuse model can better detect
different sorts of targets in the Vaihingen dataset by comparing
the CAM of FCNs and STransFuse. In the building column, our
STransFuse model is able to have a more accurate classification
of the building. Because the ground objects are captured using an
overhead view, the lack of ground object height information in
the image causes the tops of buildings and impervious surfaces
to have a similar texture representation. Therefore, the FCNs
model appeared the phenomenon of “car flying on the roof of
the building” in the recognition image. However, due to the use
of self-attention, the STransFuse model modeled the long-range
semantic correlation and determined the class information
of similar semantics. Therefore, the STransFuse model can

recognize semantic information better. In the column where
the class car is located, the FCNs did not identify all cars and
were not accurate enough in the already identified car boundary
information, compared to the STransFuse model which is also
good at identifying ground objects with small scale like the
car. In the column where the impervious surface is located, it is
shown that FCNs recognized some car’s semantic information
as impervious surface. This is because the car occupies a
smaller proportion of the image compared to the impervious
surface, and impervious surfaces enclose the car. There is no
correlation between car and car. This is a common interclass
imbalance in remote sensing images, which occurs because
remote sensing images often span a wide range of locations, and
larger objects can fill a larger proportion of the image, whereas
smaller scale ground objects can only occupy a smaller number
of pixels. FCNs rely on a fixed-size convolution kernel to obtain
features. Therefore, when extracting such small-scale features,
they are easily affected by the surrounding feature classes [22].
The Transformer branch we use can effectively solve this
type of problem. The Transformer can obtain a weight matrix
by self-attentive computation, which adaptively enhances or
attenuates the feature values, making the class represented by
the pixel values more accurate. The small interclass differences
between tree and low vegetation can be seen through Fig. 6.
In the absence of image height information, it is easy to cause
misclassification. Compared to FCNs, the STransFuse model
has a better distinction between two different ground objects.

C. Window Size Impact Analysis

In this section, we discuss the effect of the size of the local
window on the experimental results. We first compare the effect
of local windows on the model performance when the size of M
is 4, 8, 7, and 10. Then, we compare the effect of local windows
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Fig. 6. The class activation mapping of different classes of features. The image of the first row is generated by FCNs and the second row is for STransFuse.

TABLE II
DISCUSSION ON THE EFFECT OF WINDOW SIZE ON EXPERIMENTAL RESULTS.
THE BOLD VALUES ARE THE BEST, AND THE UNDERLINED VALUES ARE THE

SECOND BEST, PARA (M), T (MIN)

on model performance when the patch size is 4 × 4 and 8 × 8.
The experimental results of the model on the Vaihingen and
Potsdam datasets are shown in Table II.

As we can see in Table II, the difference in M size has an
impact on the parameters of the model, the segmentation per-
formance, and the training time. A larger value of M represents
a larger window for local computation and therefore a larger
number of parameters for the model. In the Vaihingen dataset,
the model with a window size of 10 × 10 achieves the best
performance on the metrics mF1 and mIoU with 79.24% and
67.22%, respectively. In addition to this, the size of the patches
also had an impact on the experimental results. As can be seen in
Table II, the model with a patch size of 8× 8 was able to achieve
78.92% mF1 and 66.92% mIoU in Vaihingen and a suboptimal
result in the Potsdam dataset.

D. Confusion Matrix

Fig. 7 shows the confusion matrix generated after the com-
pletion of the test on the Vaihingen dataset. The proportion of
accurately predicted classes of the images to total predicted
classes is represented by the values in the image blocks at the
main diagonal places of the confusion matrix. The darker the
image block is, the higher the model’s classification accuracy
would be. Low vegetation and tree are prone to be misclassified,
as seen in Fig. 7, and small-scale car are easily labeled as

Fig. 7. Confusion matrixes of a sample of Vaihingen dataset with FCNs and
STransFuse.

large-scale impervious surface. To some extent, the STransFuse
model solves this problem.

E. Evaluation and Comparisons on the Vaihingen Dataset

We compared the performance of our STransFuse model
with other state-of-the-art models (Deeplabv3+, Unet, PSPNet)
based on pretrained Resnet34 on the Vaihingen Dataset. Then,
there are models based on Transformer improvements (BoTNet,
SETR_PUP, TNT, Transunet), the design details of which are all
mentioned in Sections I and II. Furthermore, we have undertaken
experimental comparisons with models that have used the same
dataset as ours in recent years, and the design details of these
models are presented below.

1) Scale-aware network (SAN): Lin et al. [22] presented
SAN in 2019. SAN uses a resampling approach with the
aim of enabling pixels to adjust their position to different
scales of ground objects and to implicitly introduce spatial
attention by using resampled maps as weighted maps.

2) Dilated convolutions’ merging network (DDCM-Net): Liu
et al. [46] proposed DDCM-Net in 2020. The proposed
DDCM-Net consists of a dense convolution of atrous im-
ages and different atrous rates, which effectively extends
the perceptual field of the model.
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TABLE III
COMPARISON OF STRANSFUSE WITH SOME STATE-OF-THE-ART MODELS USING VAIHINGEN DATASET. THE VALUES IN BOLD ARE THE BEST, AND THE

UNDERLINED VALUES ARE THE SECOND BEST. ALL VALUES ARE EXPRESSED AS PERCENTAGES

3) Context aggregation network (HCANet): Bai et al. [5] pre-
sented HCANet in 2021. HCANet has an encoder–decoder
structure similar to that of UNet. The researcher designed
the compact atrous spatial pyramid module to extract
contextual information for multiple semantic features and
the compact atrous spatial pyramid+ module to aggregate
contextual information.

4) Capsules-Unet: Guo et al. [4] presented this model in
2020. Capsules are incorporated into the U-net architec-
ture for remote sensing image classification, and capsules
are used to encapsulate the multidimensional properties
of objects in order to train better models.

To be fair, we put these models in the same experimental
setting and did not use other kinds of fancy tuning methods.

1) Quantitative Comparison: Table III shows the results of
the comparative experiments. It can be seen from Table III that
the STransFuse model can achieve the best results. Although
Deeplabv3+ [47] produced impressive results, the network uses
a lot of GPU memory during training due to the ASPP of the
model architecture, and Deeplabv3+ has the longest training
time of all the comparable experimental models, as seen in
Fig. 10. The Deeplabv3+ model’s overall efficiency is low.
BoTNet [48] replaced the last three bottleneck blocks in Resnet
with a global attention module, and was implicitly regarded
as multihead attention through the author’s model design. On
the Vaihingen dataset, this model performed reasonably well.
Due to the limited amount of remote sensing image data, the
TNT model [38] has poor experimental results. The Trans-
former was used as an encoder in the Transunet model [49]
to present modeled remote dependencies and to add low-level
detail information to the feature maps in the decoder via skip
connections. However, due to the design of the encoder and
the skip connection, Transunet model has higher requirements
for hardware equipment. Comparing the experimental results
in testing CNN-based improved models (FCNs, Deeplabv3+,
Unet, SAN, PSPNet) and Transformer-based improved models
(BoTNet, SETR_PUP, TNT, Transunet), the STransFuse model
achieved better performance.

Comparing the models using the same dataset as ours, the
model we designed improves 1.28% over SAN in OA, 0.08%

Fig. 8. Visualization results on Vaihingen dataset.

over DDCM-Net in OA, 0.13% over HCANet in OA, and 24.6%
over Capsules-Unet in OA. Overall, our STransFuse model,
which gets the first best score on OA, achieves the second best
score on mF1 and mIoU.

2) Qualitative Comparison: On the Vaihingen dataset, the
qualitative comparison results are displayed in Fig. 8. As shown
in Fig. 8, the STransFuse is capable of recognizing a vari-
ety of target classes. It benefits from the Transformer net-
work’s capabilities, such as improved global context modeling
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Fig. 9. Visualization results on Potsdam dataset.

Fig. 10. Efficiency comparison of different models on Vaihingen and Potsdam
datasets. The vertical axis represents the overall accuracy. The horizontal axis
indicates the training time of the model. The size of the circle indicates the
number of model parameters (note that except for TNT model and Transunet
model, the batch size is 12; the default value of other models is 16).

efficiency without sacrificing low-level detailed localization ca-
pability. Furthermore, we discovered that the model with a pure
Transformer encoder (SETR_PUP, TNT) incorrectly recognizes
a building as an impervious surface. The reason for this phe-
nomenon may be that the two classes of ground objects, building
and impermeable surface, have similar characteristics. When
Transformer stretches the patch into a 1-D token, the difference
between the building and impermeable surface feature values
in the token is not significant. When calculating the similarity,
the self-attention judges the two types of ground objects as
the same type. When the characteristics are very different, the
Transformer can distinguish them.

Besides, we can see that the shadows in the image have a large
impact on the model recognition performance. For example, in
the red box area in Fig. 8, the shadow of the building makes
it difficult for the model to extract the features of the road.
As can be seen in Fig. 8, shading has a significant impact on
all models. The shadow region of an image can be thought of
as a low-illumination image [50], with buried ground object
information and blurring edges as issues. Then, in the blue
box of the image, we can see that there is a tree and low
vegetation tightly surrounded by each other, and the human eye’s
recognition ability has made it difficult to discern the border
between the tree and the low vegetation. Without the inclusion
of new information, the model has a harder time distinguishing
between two types of ground object boundaries. The two issues
mentioned above are equally tough to solve in the field of remote
sensing image applications research.

F. Evaluation and Comparisons on the Potsdam Dataset

1) Quantitative Comparison: Table IV shows that the
STransFuse model is able to get the highest OA score on the
Potsdam Dataset. Comparing the models using the same dataset
as ours, the model we designed improves 1.32% over SANet in
OA, 0.02% over DDCM-Net in OA, 0.38% over HCANet in OA,
and 37.48% over Capsules-Unet in OA. Overall, our STransFuse
model achieves the first best score on OA and the second best
score on mF1 and mIoU.

2) Qualitative Comparison: The results of the qualitative
comparison of the models are displayed in Fig. 9, where it can
be shown that the STransFuse model performed well for various
sizes of ground objects. The STransFuse model determines more
precisely the borders of ground objects of small-scale car. It
discriminated trees from low vegetation better than previous
models. It also reliably determined the boundaries of buildings
with huge dimensions. As a result, the STransFuse model is
able to recognize multiscale remote sensing images with high
accuracy.

The effect of low-illumination images on model performance
is more pronounced in the Potsdam dataset, as shown in the red
boxed area in Fig. 9. The model is unable to extract features
adequately due to the image’s overall low brightness. At the
same time, the image features tree and low vegetation with
identical spectral information, making model recognition much
more challenging. We can see that all of the models have
low ground object recognition accuracy in this image, and the
misclassification problem is more pronounced. Although our
STransFuse model achieves more accurate segmentation, there
are still a small number of misclassifications. Therefore, our
study still needs further research and exploration for remote
sensing images with low illumination and low interclass varia-
tion.

G. Comparison of the Efficiency of State-of-the-Art Models in
Different Datasets

Fig. 10(a) shows a comparative plot of the efficiency of the
different models for the Vaihingen data. It can be seen that the
STransFuse model (green circles) improved OA with a small
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TABLE IV
COMPARISON OF STRANSFUSE WITH SOME STATE-OF-THE-ART MODELS USING POTSDAM DATASET. THE VALUES IN BOLD ARE THE BEST, AND THE UNDERLINED

VALUES ARE THE SECOND BEST. ALL VALUES ARE EXPRESSED AS PERCENTAGES

increase in training time. Because of the ASPP module, the
Deeplabv3+ model takes longer time in training and is thus less
efficient. It is also seen from Fig. 10 that when applied directly
to the semantic segmentation of remote sensing images, the per-
formance of the model based on improved Transformer model is
low. Because Transformer is based on self-attention for semantic
computation, the number of model parameters improved based
on Transformer is large, and our designed STransFuse model
can balance the number of model parameters and experimental
performance. The experimental efficiency of different models
on Potsdam is shown in Fig. 10(b), and it can be observed from
Fig. 10(b) that the STransFuse model reached a better OA in a
shorter period of time.

VI. CONCLUSION

In this article, we propose a model of fusing Swin Transformer
and CNN, STransFuse. This two-branch model can combine the
advantages of Transformer network and CNN. Transformer is
able to model the global semantic relevance of the input image.
CNN with pretrained weights are capable of acquiring spatial
contextual information of the images. And the designed model
structure of phased fusion can make full use of coarse-grained
and fine-grained feature information at different semantic scales,
enabling the model to have excellent feature representation.
In addition, we provide an attention fusion module that can
adaptively fuse the output features from the transformer and
CNN, resulting in a feature map input to the model’s decoder that
incorporates rich semantic and spatial contextual information.
The prediction result of our STransFuse model in Vaihingen
and Potsdam datasets gives a competitive result compared to
other advanced models. Transformer still has great potential for
application in computer vision, and we will continue to study
the application of Transformer in remote sensing field in future.

ACKNOWLEDGMENT

The authors would like to thank the International Society for
Photogrammetry and Remote Sensing for the dataset provided,
and the anonymous reviewers for their voluntary and construc-
tive comments that helped to improve this article.

REFERENCES

[1] X. Sun, P. Wang, C. Wang, Y. Liu, and K. Fu, “PBNet: Part-based
convolutional neural network for complex composite object detection
in remote sensing imagery,” ISPRS J. Photogrammetry Remote Sens.,
vol. 173, pp. 50–65, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0924271620303555

[2] Q. He, X. Sun, Z. Yan, and K. Fu, “DABNet: Deformable con-
textual and boundary-weighted network for cloud detection in re-
mote sensing images,” IEEE Trans. Geosci. Remote Sens., 2021, doi:
10.1109/TGRS.2020.3045474.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[4] Y. Guo, J. Liao, and G. Shen, “A deep learning model with cap-
sules embedded for high-resolution image classification,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 214–223,
2021.

[5] H. Bai, J. Cheng, X. Huang, S. Liu, and C. Deng, “HCANet: A hi-
erarchical context aggregation network for semantic segmentation of
high-resolution remote sensing images,” IEEE Geosci. Remote Sens. Lett.,
2021, doi: 10.1109/LGRS.2021.3063799.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[7] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[8] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881–2890.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.- Assist. Intervention, 2015, pp. 234–241.

[10] D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia, “Land cover mapping
at very high resolution with rotation equivariant CNNs: Towards small
yet accurate models,” ISPRS J. Photogrammetry Remote Sens., vol. 145,
pp. 96–107, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0924271618300261

[11] J. Fu, J. Liu, J. Jiang, Y. Li, Y. Bao, and H. Lu, “Scene segmentation with
dual relation-aware attention network,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 6, pp. 2547–2560, Jun. 2021.

[12] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, “Asymmetric non-local
neural networks for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 593–602.

[13] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
[14] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for

image recognition at scale,” 2020, arXiv:2010.11929.
[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.

Zagoruyko, “End-to-end object detection with transformers,” in Proc. Eur.
Conf. Comput. Vis., 2020, pp. 213–229.

[16] D. Zhang, H. Zhang, J. Tang, M. Wang, X. Hua, and Q. Sun, “Feature
pyramid transformer,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 323–339.

https://www.sciencedirect.com/science/article/pii/S0924271620303555
https://www.sciencedirect.com/science/article/pii/S0924271620303555
https://dx.doi.org/10.1109/TGRS.2020.3045474
https://dx.doi.org/10.1109/LGRS.2021.3063799
https://www.sciencedirect.com/science/article/pii/S0924271618300261
https://www.sciencedirect.com/science/article/pii/S0924271618300261


11002 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[17] J. He, L. Zhao, H. Yang, M. Zhang, and W. Li, “HSI-BERT: Hyperspec-
tral image classification using the bidirectional encoder representation
from transformers,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 165–178, Jan. 2020.

[18] H. Lin et al., “Cat: Cross attention in vision transformer,” 2021,
arXiv:2106.05786.

[19] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” 2021, arXiv:2103.14030.

[20] Y. Fan, Y. Qian, L. Yang, and Z. Huang, “Cotton recognition method for
remote sensing image based on bp neural network,” Comput. Eng. Des.,
vol. 5, no. 16, pp. 1356–1360, 2017. [Online]. Available: https://en.cnki.
com.cn/Article_en/CJFDTotal-SJSJ201705044.htm

[21] W. Shi, M. Zhang, H. Ke, X. Fang, Z. Zhan, and S. Chen, “Landslide recog-
nition by deep convolutional neural network and change detection,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 6, pp. 4654–4672, Jun. 2021.

[22] J. Lin, W. Jing, and H. Song, “SAN: Scale-aware network for semantic
segmentation of high-resolution aerial images,” 2019, arXiv:1907.03089.

[23] Y. Chong, X. Chen, and S. Pan, “Context union edge network for se-
mantic segmentation of small-scale objects in very high resolution remote
sensing images,” IEEE Geosci. Remote Sens. Lett., to be published, doi:
10.1109/LGRS.2020.3021210.

[24] S. Xiang, Q. Xie, and M. Wang, “Semantic segmentation for remote
sensing images based on adaptive feature selection network,” IEEE Geosci.
Remote Sens. Lett., to be published, doi: 10.1109/LGRS.2021.3049125.

[25] A. Li, L. Jiao, H. Zhu, L. Li, and F. Liu, “Multitask semantic boundary
awareness network for remote sensing image segmentation,” IEEE Trans.
Geosci. Remote Sens., 2021, doi: 10.1109/TGRS.2021.3050885.

[26] R. Liu, L. Mi, and Z. Chen, “AFNet: Adaptive fusion network for remote
sensing image semantic segmentation,” IEEE Trans. Geosci. Remote Sens.,
vol. 59, no. 9, pp. 7871–7886, Sep. 2021.

[27] X. Pan, J. Zhao, and J. Xu, “Conditional generative adversarial network-
based training sample set improvement model for the semantic segmen-
tation of high-resolution remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 9, pp. 7854–7870, Sep. 2021.

[28] Z. Yao, J. Jia, and Y. Qian, “MCNet: Multi-scale feature extraction and
content-aware reassembly cloud detection model for remote sensing im-
ages,” Symmetry, vol. 13, no. 1, p. 28, 2021, doi: 10.3390/sym13010028.

[29] L. Mou, Y. Hua, and X. X. Zhu, “A relation-augmented fully convolutional
network for semantic segmentation in aerial scenes,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 12416–12425. [Online].
Available: https://openaccess.thecvf.com/content_CVPR_2019/html/
Mou_A_Relation-Augmented_Fully_Convolutional_Network_for_
Semantic_Segmentation_in_Aerial_CVPR_2019_paper.html

[30] H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen, “Axial-
deeplab: Stand-alone axial-attention for panoptic segmentation,” in Proc.
Eur. Conf. Comput. Vis., 2020, pp. 108–126.

[31] J. M. J. Valanarasu, P. Oza, I. Hacihaliloglu, and V. M. Patel, “Medical
transformer: Gated axial-attention for medical image segmentation,” 2021,
arXiv:2102.10662.

[32] H. Chen et al., “Pre-trained image processing transformer,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 12299–12310.
[Online]. Available: https://openaccess.thecvf.com/content/CVPR2021/
html/Chen_Pre-Trained_Image_Processing_Transformer_CVPR_2021_
paper.html

[33] X. He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral
image classification,” Remote Sens., vol. 13, no. 3, p. 498, 2021, doi:
10.3390/rs13030498.

[34] L. Yuan et al., “Tokens-to-token VIT: Training vision transformers from
scratch on imagenet,” 2021, arXiv:2101.11986.

[35] Y. Jiang, S. Chang, and Z. Wang, “TransGAN: Two pure transformers can
make one strong GAN, and that can scale up,” 2021, arXiv:2102.07074.

[36] W. Wang, C. Chen, M. Ding, J. Li, H. Yu, and S. Zha, “TransBTS:
Multimodal brain tumor segmentation using transformer,” in Medical
Image Computing and Computer Assisted Intervention MICCAI 2021, M.
de Bruijne et al., Eds. Cham, Switzerland: Springer, 2021, pp. 109–119.

[37] S. Zheng et al., “Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 6881–6890. [Online].
Available: https://openaccess.thecvf.com/content/CVPR2021/html/
Zheng_Rethinking_Semantic_Segmentation_From_a_Sequence-to-
Sequence_Perspective_With_Transformers_CVPR_2021_paper.html

[38] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in
transformer,” 2021, arXiv:2103.00112.

[39] L. Mou, Y. Hua, and X. X. Zhu, “Relation matters: Relational context-
aware fully convolutional network for semantic segmentation of high-
resolution aerial images,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 11, pp. 7557–7569, Nov. 2020.

[40] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation with
transformers,” 2021, arXiv:2105.15203.

[41] ISPRS, Semantic Labeling Contest-Vaihingen (2018). Accessed: Sep.
4, 2021. [Online]. Available: https://www2.isprs.org/commissions/
comm2/wg4/benchmark/2d-sem-label-vaihingen/

[42] ISPRS, “Semantic Labeling Contest-Potsdam (2018). Accessed: Sep.
4, 2021. [Online]. Available: http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-potsdam.html

[43] L. Ding, H. Tang, and L. Bruzzone, “LANet: Local attention embedding
to improve the semantic segmentation of remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 426–435, Jan. 2021.

[44] G. Deng, Z. Wu, C. Wang, M. Xu, and Y. Zhong, “CCANet: Class-
constraint coarse-to-fine attentional deep network for subdecimeter aerial
image semantic segmentation,” IEEE Trans. Geosci. Remote Sens., to be
published, doi: 10.1109/TGRS.2021.3055950.

[45] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learn-
ing deep features for discriminative localization,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2921–2929. [On-
line]. Available: https://openaccess.thecvf.com/content_cvpr_2016/html/
Zhou_Learning_Deep_Features_CVPR_2016_paper.html

[46] Q. Liu, M. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Dense dilated
convolutions’ merging network for land cover classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 9, pp. 6309–6320, Sep. 2020.

[47] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder–
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

[48] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani,
“Bottleneck transformers for visual recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 16519–16529. [Online].
Available: https://openaccess.thecvf.com/content/CVPR2021/html/
Srinivas_Bottleneck_Transformers_for_Visual_Recognition_CVPR_
2021_paper.html

[49] J. Chen et al., “TransUnet: Transformers make strong encoders for medical
image segmentation,” 2021, arXiv:2102.04306.

[50] S. Qian, Y. Shi, H. Wu, J. Liu, and W. Zhang, “An adaptive enhancement
algorithm based on visual saliency for low illumination images,” Appl.
Intell., May 2021, doi: 10.1007/s10489-021-02466-4.

Liang Gao received the bachelor’s degree in com-
puter science and technology from Zaozhuang Uni-
versity, Zaozhuang, China, in 2019. He is currently
working toward the master’s degree in software engi-
neering with Xinjiang University, Urumqi, China.

His research interests include deep learning and
remote sensing image semantic segmentation.

Hui Liu received the B.S. degree in software engi-
neering from Xinjiang University, Urumqi, China, in
2014, and the master’s degree in software engineer-
ing in 2017 from the College of Software, Xinjiang
University, where she is currently working toward the
Ph.D. degree in computer science and technology.

Her research interests include deep learning and
opportunistic networks and the processing of remote
sensing image data.

Minhang Yang received the bachelor’s degree in
software engineering from the Xi’an University of
Technology, Xi’an, China, in 2019. She is currently
working toward the master’s degree in software engi-
neering with Xinjiang University, Urumqi, China.

Her research interests include deep learning and
multilabel image classification.

https://en.cnki.com.cn/Article_en/CJFDTotal-SJSJ201705044.htm
https://en.cnki.com.cn/Article_en/CJFDTotal-SJSJ201705044.htm
https://dx.doi.org/10.1109/LGRS.2020.3021210
https://dx.doi.org/10.1109/LGRS.2021.3049125
https://dx.doi.org/10.1109/TGRS.2021.3050885
https://dx.doi.org/10.3390/sym13010028
https://openaccess.thecvf.com/content_CVPR_2019/html/Mou_A_Relation-Augmented_Fully_Convolutional_Network_for_Semantic_Segmentation_in_Aerial_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Mou_A_Relation-Augmented_Fully_Convolutional_Network_for_Semantic_Segmentation_in_Aerial_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Mou_A_Relation-Augmented_Fully_Convolutional_Network_for_Semantic_Segmentation_in_Aerial_CVPR_2019_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Pre-Trained_Image_Processing_Transformer_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Pre-Trained_Image_Processing_Transformer_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Pre-Trained_Image_Processing_Transformer_CVPR_2021_paper.html
https://dx.doi.org/10.3390/rs13030498
https://openaccess.thecvf.com/content/CVPR2021/html/Zheng_Rethinking_Semantic_Segmentation_From_a_Sequence-to-Sequence_Perspective_With_Transformers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zheng_Rethinking_Semantic_Segmentation_From_a_Sequence-to-Sequence_Perspective_With_Transformers_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Zheng_Rethinking_Semantic_Segmentation_From_a_Sequence-to-Sequence_Perspective_With_Transformers_CVPR_2021_paper.html
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
https://dx.doi.org/10.1109/TGRS.2021.3055950
https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivas_Bottleneck_Transformers_for_Visual_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivas_Bottleneck_Transformers_for_Visual_Recognition_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Srinivas_Bottleneck_Transformers_for_Visual_Recognition_CVPR_2021_paper.html
https://dx.doi.org/10.1007/s10489-021-02466-4


GAO et al.: STRANSFUSE: FUSING SWIN TRANSFORMER AND CNN FOR REMOTE SENSING IMAGE SEMANTIC SEGMENTATION 11003

Long Chen received the bachelor’s degree in geo-
graphic information science from the Shandong Uni-
versity of Science and Technology, Qingdao, China,
in 2018. He is currently working toward the master’s
degree in software engineering with Xinjiang Univer-
sity, Urumqi, China.

His research interests include deep learning and
single-image super-resolution.

Yaling Wan received the bachelor’s degree in com-
munication engineering, in 2014, from Xinjiang Uni-
versity, Urumqi, China, where she is currently work-
ing toward the master’s degree in software engineer-
ing.

Her research interests include deep learning and
hyperspectral image classification.

Zhengqing Xiao received the Ph.D degree in ge-
ographic information system from Beijing Normal
University, Beijing, China, in 2011.

He is currently with the College of Mathematics
and System Sciences, Xinjiang University, Urumqi,
China. His research interests include Big Data analy-
sis, image processing, and complex system modeling.

Yurong Qian received the bachelor’s and master’s
degrees in computer science and technology from
Xinjiang University, Urumqi, China, in 2000, and the
doctorate degree in biology from Nanjing University,
Nanjing, China, in 2010.

From 2012 to 2013, she was a Postdoctoral Fellow
with the Department of Electronics and Computer
Engineering, Hanyang University, South Korea, and
is currently a Professor with the School of Software,
Xinjiang University. Her research interests include
computational intelligence such as Big Data process-

ing, image processing, and artificial neural networks.
Dr. Qian is a senior member of the Chinese Computer Federation. In 2015,

she was trained as a Young Scientific and Technological Innovation Talent by
the Science and Technology Department of Xinjiang Province, China.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


