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ABSTRACT Several recent studies have attempted to fully replace the conventional camera image signal
processing (ISP) pipeline with convolutional neural networks (CNNs). However, the previous CNN-based
ISPs, simply referred to as ISP-Nets, have not explicitly considered that images have to be lossy-compressed
in most cases, especially by the off-the-shelf JPEG. To address this issue, in this paper, we propose a
novel compression-aware deep camera ISP learning framework. At first, we introduce a new use case of
compression artifacts simulation network (CAS-Net), which operates in the opposite way of commonly
used compression artifacts reduction networks. Then, the CAS-Net is connected with an ISP-Net such that
the ISP network can be trained with consideration of image compression. Throughout experimental studies,
we show that our compression-aware camera ISP network can produce images with a better tradeoff between
bit-rate and image quality compared to its compression-agnostic version when the performance is evaluated
after JPEG compression.

INDEX TERMS Camera ISP, compression artifacts, convolutional neural network, image compression.

I. INTRODUCTION
Image signal processing (ISP) pipeline is used in modern
digital cameras to convert raw camera sensor data to a high-
quality human-readable sRGB image. ISP pipeline consists of
several operations including image demosaicing, denoising,
white balance, color space conversion, gamma correction,
tone mapping, and others [1]. Traditionally, each component
of ISP pipeline is manually tuned by experts for a given cam-
era, which is time-consuming and may yield the accumulated
error in the final reconstructed sRGB image [2].

Recently, deep learning has been extensively applied to
various image restoration tasks such as image demosaic-
ing [3]–[5], denoising [6]–[8], super-resolution [9], [10], and
tone mapping [11]–[14], and have demonstrated promising
results. Since these tasks are required for in-camera ISP
pipeline, several research endeavors have been made towards
a design of a fully convolutional neural network (CNN)-based
camera ISP [15]–[18], referred to as ISP-Net.

However, one of the common shortcomings of the pre-
vious ISP-Nets is that they have not explicitly considered
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that images have to be lossy-compressed in most cases,
especially by the off-the-shelf JPEG [19]. Although end-
to-end learning-based compression has received signifi-
cant interest [20], the classic JPEG is still in use today
for most camera ISPs. If ISP-Nets are trained without
considering image compression that is essentially fol-
lowed, resultant images after compression can be obtained
with a sub-optimal tradeoff between bit-rate and image
quality.

In this paper, we propose a compression-aware ISP-Net
learning framework that incorporates the JPEG compression
procedure into the training of ISP-Nets. Since the JPEG com-
pression is non-differentiable, we apply a fully-convolutional
compression artifacts simulation network (CAS-Net), which
can add JPEG compression artifacts to a given image. The
CAS-Net can be simply trained by reversing the input and
output required for training compression artifacts reduction
networks. The CAS-Net is pretrained and then cascaded with
an ISP-Net, and the parameters of the CAS-Net are fixed dur-
ing the training of the ISP-Net. In this way, the ISP-Net can be
trained with consideration of compression artifacts and thus
can produce images with a better tradeoff between bit-rate
and image quality compared to its compression-agnostic
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version. Experimental results demonstrate the effectiveness
of our compression-aware camera ISP network.

The rest of the paper is organized as follows. We review
the related work on deep learning-based camera ISP network
and compression artifacts simulation in Section II. Then we
describe the proposed compression-aware camera ISP learn-
ing method in Section III. The experimental results and anal-
ysis are presented in Section IV, and finally the conclusions
are given in Section V.

II. RELATED WORK
A. DEEP CAMERA ISP LEARNING
Several studies have been conducted on replacing some sub-
tasks in an ISP pipeline with deep CNNs [3], [9], [21].
Gharbi et al. [21] proposed a method to train a CNN model
to address demosaicing and denoising jointly and achieved
significant improvement in both tasks compared to the pre-
vious non-deep learning-based techniques. Liu et al. [3] pro-
posed a self-guidance network for demosaicing and denoising
based on green-channel guidance and density map guidance
to better recover the high-frequency details. JDSR [9] pre-
sented a residual-dense squeeze-and-excitation network for
joint demosaicing and super-resolution.

On the other hand, several pioneering works have investi-
gated the application of deep CNNs on replacing the entire
ISP pipeline [8], [15]–[18], [22], [23]. DeepISP [15] is one
of the first attempts that replaces an entire ISP pipeline
by CNNs. Specifically, a two-stage network is proposed
to extract low-level and high-level features, where the first
and second stages apply local operations such as demosaicing
and denoising and global operations such as tone adjust-
ment and color correction, respectively. This design principle
makes the ISP-Net easy to share information across different
tasks. DeepCamera [22] is a light-weight CNN that replaces
the ISP pipeline completely. To be more specific, DeepCam-
era is designed to perform defective pixel correction, denois-
ing, white balancing, exposure correction, demosaicing, color
transform, and gamma encoding. Chen et al. [23] develop a
deep CNN model to convert a raw low-light sensor data to a
long-exposure high-quality sRGB image. To train this model,
they collected raw images captured with short-exposure in
low-light conditions. PyNET [16] presented a framework that
is independent of mobile ISPs by using the raw images from
a mobile camera and their corresponding sRGB images from
a DSLR camera. Moreover, PyNET inputs a low-resolution
image to the bottom layer and applies additional layers
with increasing scales to combine global and local features.
W-Net [17] improved the standard U-Net [24] by designing a
cascaded U-Net model. In addition, the color loss was intro-
duced to make the ISP-Net robust against the misalignment
between raw and sRGB image pairs. CycleISP [8] presented
a framework for learning both forward and backward pass
of ISP using CNNs to synthesize raw images from sRGB
images. CameraNet [18] proposed a two-stage network that
sequentially applies restoration and enhancement.

FIGURE 1. Compression artifacts simulation network: (a) Training
procedure and (b) example results (Best viewed on screen).

B. COMPRESSION ARTIFACTS SIMULATION
The JPEG image compression is widely used in digital cam-
eras for storing sRGB images with reduced bits. The JPEG
lossy compression inevitably leads to artifacts such as block-
ing and blurring artifacts in the compressed images, where the
amount of degradation can be adjusted by the JPEG quality
factor (QF) parameter. If a neural network is used in conjunc-
tion with off-the-shelf image compression methods, e.g., ISP-
Net followed by the JPEG compression, compression-aware
learning is required to produce high-quality compressed
images. However, since the quantization process included
in the JPEG compression is inherently non-differentiable,
the compression procedure cannot be directly integrated into
an end-to-end learning framework.

To overcome the aforementioned problem, several stud-
ies have attempted to incorporate image compression into
the training of end-to-end neural networks. For example,
Ballé et al. [20] added uniform noise to the low dimensional
features such that the network can take the quantization noise
into account during training and applied entropy coding to the
low dimensional features for image compression. Recently,
towards the design of invertible camera ISP [2], a differen-
tiable JPEG simulator (DJS) was proposed to reconstruct raw
data from JPEG images. Since the rounding function used
in the quantization step is non-differentiable, a differentiable
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FIGURE 2. Comparison between (a) the compression-agnostic learning and (b) the proposed compression-aware learning of ISP-Net.

approximation of the rounding function is proposed using
the Fourier series expansion. Other works on differentiable
rounding function can also be found in [25]–[28]. For exam-
ple, Shin and Song [25] approximated the rounding operation
using the third-order polynomial such that it has non-zero
derivatives almost everywhere. Theis et al. [26] replaced the
derivative of the rounding function with the derivative of
its approximation, where the identity function was used for
the smooth approximation. In other words, the rounding is
performed as usual in the forward path while the gradients are
simply bypassed in the backward path. Gong et al. [27] pro-
posed a differentiable soft quantization function that approx-
imates discrete rounding using tanh functions. Recently,
Son et al. [29] investigated the utility of CNNs in explicitly
imitating image degradation caused by image compression.
Specifically, by considering the characteristics of the image
compression process, they introduced the auxiliary codec

network (ACN) that can synthesize compression artifacts
such as contouring and ringing artifacts in the output image.
The effectiveness of the ACN was demonstrated by training
their compact representation networkwith theACN for image
compression.

We apply the same principle of the aforementioned meth-
ods [2], [20], [29] to train the network located in front of
image compression, i.e., ISP-Net, in an end-to-end manner.
To this end, we use the standard U-Net structure for CAS-
Net due to their simplicity and generalizability and train
it using pairs of JPEG compressed and original images as
shown in Fig. 1(a). Since quality factors (QFs) used inmodern
camera ISPs are relatively high (80 and 90 were used in our
experiment), resultant JPEG compressed images suffer from
weak but non-marginal compression artifacts; our CAS-Net
successfully mimics such JPEG compression artifacts includ-
ing blocking and contouring artifacts as shown in Fig. 1(b).
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The performance comparison and analysis of compression
artifacts simulation methods will be provided in Section IV.

III. COMPRESSION-AWARE CAMERA ISP NETWORK
A. FRAMEWORK
Given a set of raw images X and their corresponding sRGB
images Y , our goal is to learn an ISP-Net f : X → Y ,
such that, for a pair x ∈ X and y ∈ Y , the compressed
version of the reconstructed sRGB image c(f (x)) matches
the target compressed image c(y), where c(·) denotes the
JPEG compression. To facilitate our compression-aware ISP-
Net optimization process, we replace the non-differentiable
JPEG compression procedure with our differentiable CAS-
Net g : y 7→ c(y), so that the ISP-Net f is trained to match the
compression artifacts simulation result of the reconstructed
sRGB image g(f (x)) to that of the target sRGB image g(y).
The overall pipeline of the proposed method is illustrated
in Fig. 2(b), and for comparison, the compression-agnostic
ISP-Net learning is shown in Fig. 2(a). We note that the
CAS-Net g is pretrained and then fixed during the training
of ISP-Net f , and the CAS-Net g is only used in the training
phase and not used in the testing phase, where the actual
JPEG compression is applied to the output of the ISP-Net
f (x) at test time. We perform simple bilinear interpolation
for demosaicing of Bayer raw images, and the demosaiced
images are then fed to the ISP-Net f to produce sRGB images.

B. LOSS FUNCTION
We first train the CAS-Net g with the given sRGB images Y
and their JPEG compressed counterparts using Lcas, which is
expressed as:

Lcas = Ey‖g(y)− c(y)‖1, (1)

where ‖ · ‖1 measures the L1 loss.
Next, we train the ISP-Net f with the given raw images

X and the corresponding sRGB images Y using the sRGB
reconstruction loss, denoted as Lisp, which measures the
L1-distance between the reconstructed sRGB image f (x) and
the ground-truth sRGB image y. Lisp is defined as:

Lisp = Ex‖f (x)− y‖1. (2)

Note that the training of ISP-Net using only Lisp corre-
sponds to compression-agnostic ISP learning as illustrated
in Fig. 2(a).

After the CAS-Net g and ISP-Net f are trained, we fine-
tune the ISP-Net f using the combined loss Ltotal , which is
formulated as follows:

Ltotal = λispLisp + λcompLcomp, (3)

where λisp and λcomp are hyper-parameters that balances the
two loss terms, andLcomp is the compression loss which com-
putes the L1-distance between the compression artifacts sim-
ulation result of the reconstructed sRGB image, i.e., g(f (x)),
and that of the ground-truth sRGB image, i.e., g(y).Lcomp can
be expressed as:

Lcomp = Ex‖g(f (x))− g(y)‖1. (4)

The use of Lcomp encourages the ISP-Net f to produce
sRGB images that are effective for image compression.

C. NETWORK ARCHITECTURE
We use the U-Net structure with channel attention mod-
ule [17] for the ISP-Net f , which has been demonstrated to
be effective in the raw to RGB mapping task. The model
f consists of the encoder, decoder, and skip connections
between them. The encoder part is composed of four lev-
els of convolutional blocks, where each block has three
3 × 3 convolutional layers, each of which is followed by a
Leaky ReLU. After each block, 2 × 2 max-pooling with
stride 2 is applied for down-sampling. The decoder part is
also composed of four-level convolutional blocks with 2×
bilinear up-sampling, and the channel attention module is
added at the end of each block, where the channel atten-
tion vector is obtained using the global average pooling,
two fully connected layers, and the sigmoid function. The
output of the channel attention module is then channel-wise
multiplied with the feature map. The channel dimension
of the first level of the encoder and decoder is 32 and
then doubled at each block level. The architecture of the
CAS-Net g is similar to the ISP-Net f without the channel
attention module, which is simply referred to as U-Net in
SectionIV.

IV. EXPERIMENTAL RESULTS
A. DATASET
To train and test our proposed framework, we used the
raw images from the MIT-Adobe FiveK dataset [30]. More
specifically, we collected 487 raw images captured by the
Nikon D700 camera. Likewise with [2], [8], we rendered
the sRGB images from the collected raw images using the
LibRaw library [31], which provides the most representative
in-camera ISP pipeline. Then, we compressed the rendered
sRGB images using the JPEG with the two QFs of 80 and
90. We split the dataset into a ratio of 80:5:15 for training,
validation, and testing of our model. Note that the model was
trained individually for each QF.

B. IMPLEMENTATION DETAILS
We used PyTorch [32] and a single NVIDA Titan Xp GPU.
During network training, we randomly cropped the images
with the patch size of 448 × 448, and normalized the pixel
values in the range of [0, 1]. The common data augmenta-
tions including flipping and rotation were applied. We used
the Adam optimizer [33] with a learning rate of 0.0001 to
train our CAS-Net and ISP-Net, while the learning rate was
decayed by a factor of 0.1 when fine-tuning the ISP-Net using
Ltotal . The CAS-Net was trained using Lcas for 30 epochs
with a batch size of 64, and the ISP-Net was pretrained using
Lisp for 30 epochs with a batch size of 32. Finally, the ISP-Net
was fine-tuned using Ltotal for 10 epochs with a batch size
of 16. We empirically set the hyper-parameters λisp and λcomp
to 0.1 and 1, respectively.
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FIGURE 3. Visual comparison of compression artifacts simulation methods. For each result, the error map of the local region is visualized and the PSNR /
SSIM values are presented.

TABLE 1. Quantitative results (PSNR / SSIM) of different methods for
compression artifacts simulation.

C. COMPRESSION ARTIFACTS SIMULATION RESULTS
We compare the quantitative and qualitative performance of
three compression artifacts simulation methods on our test
set, namely U-Net, ACN [29], and DJS [2]. Note that U-Net
and ACN are trained using sRGB-JPEG image pairs while
DJS does not require training. We train U-Net and ACN
models for each QF of JPEG compression. To evaluate the
quality of the simulated JPEG images produced by the above
methods, we measure peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [34] between simulated
and real JPEG-compressed images.

Table 1 shows the average PSNR and SSIM values of all
methods on the test set. It can be seen that U-Net achieves
the highest PSNR and SSIM scores at both QFs. The per-
formance gap between DJS and U-Net (1.49dB at QF = 80)
is much more significant than between ACN and U-Net

(0.27dB at QF = 80). There is a clear advantage of using
the CNN-based methods over the approximated rounding
function-based methods for compression artifacts simulation
in terms of PSNR and SSIM. Though the architecture of
ACN is specially designed to imitate the JPEG compression
process by rearranging the 8 × 8 non-overlapping blocks of
the input image into the channel axis, we found that the simple
U-Net structure is capable of achieving higher performance.
We believe our CAS-Net can be generalized to other codecs
such as JPEG2000 [35] and HEVC [36].

Fig. 3 shows qualitative comparisons of different meth-
ods for the JPEG simulation. We visualize the error map
of the compression simulation for each method. As can be
seen, DJS results in a significant difference between the
simulated and real compressed images, indicating its limited
performance in compression artifacts simulation.Meanwhile,
neural network-based methods, i.e., U-Net and ACN, show
much fewer differences.

D. COMPRESSION-AWARE ISP LEARNING RESULTS
We evaluate the effectiveness of our compression-aware
ISP learning method on the test set. To this end, we com-
pare the performance of our method to that of the
compression-agnostic ISP learning baseline in terms of the
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FIGURE 4. Visual comparison between compression agnostic and compression aware ISP-Nets: (left) GT sRGB, (center) resultant image of the
compression-agnostic ISP-Net followed by JPEG compression (QF = 90), and (right) resultant image of the compression-aware ISP-Net followed by JPEG
compression (QF = 90).

bit-rate and image quality. We apply the JPEG compression
to the sRGB images reconstructed by the ISP-Net from the
raw data with the two QFs, and then measure the average
bits per pixel (BPP) and PSNR of the compressed images.
The PSNR is computed between the compressed version of
the reconstructed sRGB images and that of the ground-truth
sRGB images. The three methods for the compression arti-
facts simulation, which are mentioned in Section IV-C, are
used as variants of the JPEG simulation module g in the
training of our compression-aware ISP-Net.

Table 2 summarizes the average PSNR and BPP results.
The compression-agnostic baseline corresponds to the
ISP-Net that is trained using only Lisp. It can be clearly seen
that the proposed compression-aware ISP-Net outperforms
the baseline by a large margin in terms of PSNR at the similar
BPP on both QFs. When the CAS-Net is not fixed during the
training of the ISP-Net, the performance is not better than
its parameter-fixed version because an unnecessary update
of the CAS-Net makes the ISP-Net ineffective at the test
stage. Note that the DJS is a parameter-free module. Among
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TABLE 2. Quantitative comparison results (PSNR / BPP) of different solutions for ISP-Net learning at JPEG QFs of 80 and 90.

FIGURE 5. Comparison of the average BPP and PSNR for the results of
the compression-agnostic and compression-aware ISP-Nets, followed by
JPEG compression with different QFs. ‘‘Ground-truth’’ indicates the
performance for the compressed ground-truth sRGB images with the
different QFs.

TABLE 3. Ablation study on the effect of parameter settings.

the three CAS-Net variants, the U-Net achieved the best
performance on QF = 80, and the ACN achieved the best
performance on QF= 90 in terms of PSNR.We highlight that
with any CAS-Net variants, a large performance gain over
the compression-agnostic baseline can be achieved, which
demonstrates the effectiveness of our ISP-Net learning frame-
work.

Fig. 4 shows the qualitative comparison results for the
compression-agnostic and compression-aware ISP Nets on
QF = 90. We visualize the error map between the resultant
image of the ISP-Net followed by the JPEG compression
and the ground-truth sRGB image. The PSNR and BPP

of the results are also shown. The results obtained by the
compression-agnostic baseline show large errors, which indi-
cates that the model produces sub-optimal results consider-
ing that the reconstructed sRGB images need to be passed
through the JPEG compression. On the other hand, it can
be clearly seen that the proposed compression-aware ISP-
Net followed by JPEG compression produces images much
less distortion compared to the baselinemethod. These results
show the potential of our approach for the practical applica-
tion of ISP-Nets.

E. ABLATION STUDY
We perform an ablation study on the selection of the hyper-
parameters λisp and λcomp. We compare the performance of
our proposed model with different parameter settings, where
λisp and λcomp are varied from {0.1, 1}. Table 3 shows the
results. We observe that the parameter setting of λisp = 0.1
and λcomp = 1 achieves the best performance in overall
in terms of PSNR for all CAS-Net variants on both QFs.
It can be clearly seen that lowering λcomp negatively affects
the performance both in PSNR and BPP, which demonstrates
the importance of Lcomp for the training of our compression-
aware ISP-Net.

F. GENERALIZATION TO UNSEEN QFs
Fig. 5 shows the average PSNR and BPP of the test images
obtained after applying the JPEG compression with differ-
ent QFs to the reconstructed sRGB images. Although the
CAS-Net was trained using the fixed QF of 90, the proposed
compression-aware ISP-Net shows consistent improvements
over the baseline for all test QFs from 80 to 96 with the
interval of 2, demonstrating its generalizability.

V. CONCLUSION
In this letter, we proposed a compression-aware camera
ISP learning strategy for effective sRGB reconstruction with
respect to image compression. To this end, the fully convo-
lutional CAS-Net was used to mimic the non-differentiable
JPEG compression procedure and incorporated into the train-
ing of the ISP-Net to make the reconstruction process con-
sider image compression. Experimental results demonstrated
that the images obtained by our compression-aware ISP-Net
have better image quality compared to the compression-
agnostic ISP-Net.
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Several future studies are being considered. First, in this
study, we applied the U-Net structure for both CAS-Net and
ISP-Net. Advanced architecture design can further boost the
performance, which is left for our future study. Second, ISP-
Net can be extended to take multiple frames as an input
for better image reconstruction. Finally, we plan to develop
a fully end-to-end ISP-Net that produces compressed bit-
streams from Bayer raw images without relying on JPEG.
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