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Who Will Travel With Me? Personalized Ranking
Using Attributed Network Embedding for Pooling
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Abstract— In ride matching, the search results can be person-
alized for a particular driver. Given a query with trip plans,
it is advantageous to rank potential riders in terms of who are
most appealing to the driver for increasing occupancy rates.
While personalized ranking approaches such as collaborative
filtering and factorization are available, they are not suitable for
pooling because candidate riders are associated with different
preferences, and their travel is sparsely distributed with a long
tail of users for a few popular destinations. The user embedding
method is a good candidate in terms of alleviating data sparsity,
but it has issues such as difficulty encoding user preferences
from rich information. In this study, we explore user embedding
techniques for the purposes of short-term personalized rider
ranking, where the aim is to present to drivers a set of potential
riders who share similar itineraries with them and can be picked
up on their current route. Considering trip requests, along
with the preferences issued in advance, this study uses attribute
representations to rank the riders based on the higher-order
similarities in the participants’ itineraries in a three-step man-
ner: (i) start with a distributed representation of the riders’
preference regarding the cost of extra distance, (ii) generate
user embeddings in a heterogeneous network with the meeting
points and associated waiting times, and (iii) match and rank
riders for drivers depending on an attribute fusion operation by
adopting a personal route and schedule. Our proposed method
performs well in an offline estimation on a huge dataset from
DiDi in Chengdu, China. Experimental results indicate that with
the learned embeddings, we can obtain statistically significant
advancements (e.g., 4.6–29.5% increase in mean reciprocal rank
(MRR); 2.8–17.4% in normalized discounted cumulative gain
(nDCG)) over current methods for pooling ranking. Furthermore,
we implement the proposed method on our simulated pooling
system. These results validate that personalized ranking can
undoubtedly boost the number of trips served, and reduce the
total trip distance and waiting time.

Index Terms— Attributed network representation, personalized
ranking, pooling, SUMO.

I. INTRODUCTION

POOLING is an emerging mode of transport that enables
individuals with similar itineraries and schedules to share
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a journey in an individual vehicle. By increasing the occupancy
of vehicles, the driver and rider(s) naturally divide the costs
of fuel and tolls so that all benefit from the shared ride [1].
In China, for instance, challenges regarding heavy traffic
and poor parking lots are acute problems with far-reaching
consequences. In this context, pooling is attractive and offers
immense benefits, including opportunities to increase the
driver’s income and reduce their down time [2], [3]. With our
previous data study of real-world trips (Fig. 1), the potential
for increased mobility sharing is clear [4]. A fraction of trips,
ranging between 15% and 25%, can be shared by a simple
model for trip aggregation. Furthermore, on average, over 22%
of trips may potentially be shared with at least one other trip
when two riders are in close proximity to each other in time
and space (walking distance from one another is less than
0.5 km, and the time difference is less than 300 seconds). This
percentage increases to over 45% if a car can transport up to
four passengers, which implies that the number of carpoolers
is a determinate of trip sharing. However, a lower utilization
of vehicles occurring under 200 trips is probably related to the
sparse spread of trip requests; this is highlighted via weekly
patterns in mobility sharing (see Fig. 1(b)). The scaling law
relating the daily number of shared trips with total trips has
an overall R2 value of 0.93. The shared trips are especially
ubiquitous on weekends compared with the routine weekly
trip requests. Thus, trip density and spatiotemporal patterns
are likely to play a large role in trip sharing. Companies such
as Didi have introduced pooling to their platforms. By the end
of 2017, there were over 21 million DiDi drivers in China,
serving more than 450 million passengers from 400 cities
daily [5]. It is reported that due to pooling, the cost of detours
were reduced by an average of 30%, 1.05 billion seats were
shared by DiDi’s pooling services, and the traffic congestion
index decreased by 10% to 20%.

In the context of this study, multiple riders can be matched
with a driver whose vehicle capacity is not exceeded. For
an area with high passenger volume, drivers often prefer
pooling services that can selectively provide passengers for
them quickly. Effective ride-matching depends not only on
the orientation of drivers and riders under time and distance
constraints, but more substantially on personal preferences,
adaptable idling time, pooling trip types [6], and social
preferences [7]. Therefore, personalizing matching results
for a particular driver based on time schedules as well as
preferences, and further ranking riders is the most attractive
and effective type of solution. With the one million drivers
and one billion riders on platforms like Uber, the most
critical problem is how to personalize and quickly rank
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Fig. 1. Mobility sharing analysis (Chengdu DiDi Express trip data from November 2016 were used). (a) The interplay between the daily number of total
DiDi trips and combinable trips with the same origin. (b) Weekly patterns by clustering points with the same color. The colors of the dots correspond to
different weekdays.

riders whose time schedule and social interaction prefer-
ences are in line with the driver’s desires for trip cost and
duration.

There are three major technical challenges facing personal-
ized ranking in ride-matching:

Attribute: Pooling can be understood as a sociologi-
cal phenomenon due to the rich information about partic-
ipants, ranging from gender, age, and income level [8],
to hobbies and talkativeness [9]. We term all such auxil-
iary information as attributes, which have a large influence
on preference elicitation and ranking when jointly consid-
ering attributes and schedule proximity. A deep challenge
for integrating personal preferences is to take in different
underlying attributes embedded within the raw trajectory
data.

Sparsity: Due to the fact that a large number of passengers
tend to travel to a relatively small number of popular sites [10],
there is a long tail in the destination-frequency distribution
(Fig. 2(a)). This leads to sparsity in the trajectory data.
It is thus difficult to learn the proximity in both spatial and
temporal dimensions, and train an accurate ranking model; this
is especially true for passengers with destinations that are quite
isolated. Fitting log( f requency) and log(rank) using linear
regression yields an R-squared value of 0.88259, and a p-value
of 4.775e-17. Fig. 2(a) shows that the rank-frequency follows
a power law distribution in which a few destinations dominate
the data.

Scalability: Despite the fact that many existing approaches
for ride-matching work well on a first-come-first-served basis
in the general spatial extent [11], [12], they ignore the diverse
relationships embedded within other information indicators.
For example, the greater the utilization rate of vehicles for
serving, the less time a vehicle will have to pick up a passenger
(see Fig. 2(b) and 2(c)). This law provides a means of ranking
riders by considering decreasing the average time needed to
be en route to next passengers. Such indicators should thus be
represented efficiently for good ride-matching; however, this
poses difficulties when dealing with a much larger-scale travel
dataset.

Considering trip requests with preferences that are issued
in advance, in this study, we address the challenges of cal-
culating similarities between driver and candidate riders that
need to be ranked for further personalization. Existing works
have very rarely explicitly considered personal preferences for
carpoolers as the objective. Here, we jointly optimize ranking
for both preference and schedule similarity. To achieve this,
we construct an attributed pooling network (ARN) derived
from the participants’ travel behavior, and then apply network
embedding methods to learn the user embeddings. Since
drivers are typically eager to pick up and drop off riders en
route [13], there is a cost to the rider due to increased walking
and waiting. We can use travel cost signals, e.g., walking
toward the meeting point and waiting for a ride, to show rider
preferences in real-time personalization.

We then propose to leverage the attribute embeddings,
which are low-dimensional vector representations learned from
these signals, to generate a set of candidate riders based on
the similarities of both preference and schedule. The candidate
riders are jointly computed via these embedding vectors. Note
that in earlier works, spatiotemporal optimality is used to
estimate these similarities. However, this method explicitly
views the co-occurrence of participants in spatial and temporal
dimensions [12], [14], [15]. In our work, using a meta-path-
based walk in an ARN, we can obtain higher-order closenesses
between drivers and riders.

The novel contributions of this paper are as follows:

(1) We formally define the problem of personalized rank-
ing for pooling, which demonstrates the importance of
attributes for learning participant preferences in benefiting
from the shared ride. We leverage distance saving to
create personalization attributes for our ranking model,
and to enhance our ride-matching.

(2) We design a powerful method to create the attributed
pooling network from the travel behavior of two mil-
lion passengers of Didi Chuxing. Efficient and scalable
embedding for an ARN are developed to alleviate the
sparsity problem. Our method can preserve both the
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Fig. 2. (a) Destination rank-frequency and log-log plot. (b) The daily changes in vehicles’ operations modes (i.e., on the way to pick up; serving; cruising).
(c) The differences from the last day’s modes.

schedule and preference proximity of each driver–rider
pair.

(3) We carry out experiments on real-world datasets for
the two tasks of pooling prediction and ride ranking.
Our results demonstrate the capability of the proposed
method. We also evaluate our model by developing a
realistic pooling simulator that provides a platform for
comparing various matching polices on relevant metrics.

II. RELATED WORK

A. Matching in Pooling

Driver–rider matching services predict personal willingness
to share a ride conforming to travel characteristics [16] such
as mode of transport and trip purpose [17]. There is a large
collection of studies on stable matches in two-sided markets.
Typical applications include the centralized matching of a
set of passengers and drivers participating in shared taxi
rides [15], [18]. Earlier work on pooling matching typically
considers both the spatial and temporal dimensions of exact
pick-up locations, and typically involve matching a driver with
the nearest rider on a first-come-first-served basis [13], [19],
[20]. Researchers have proposed various algorithms focused
on the discovery of a rider’s trip information to optimize
system efficiency, such as reduction in total travel time and
cost [4], [21]. Furuhata et al. [22] consider the shared oper-
ating cost as the optimization objective to detect the routes

and schedules of the vehicles in real time. Such vehicles
can service the ride requests that appear dynamically over
time at different locations. A new rider can be matched by
minimizing the total cost of other carpoolers when receiving
the request. Stiglic et al. [13] introduce meeting points to
make a driver pick up multiple riders without making other
stops. By studying the participant’s time flexibility on trip
duration, Stiglic et al. [23] also demonstrates the efficiency
gains of different objectives to achieve an optimal matching.

These typical paradigms of pooling matching rarely take
into account the traveler’s attributes, such as gender, trans-
portation mode, carry-on baggage, and payment. The under-
lying assumption is that no rejection would arise after the
matching is performed. In practice, a rejection can happen
if the rider finds the assigned driver unsuitable, which may
result from the rider’s preference attribute, including travel
distance, time requirements, destination types [24], and char-
acteristics of the driver. Disregarding such attributes can lead
to a poor system acceptance [12] and matching rate [23].
Existing methods for this matching problem are primarily
developed for graphs with known edge weights [25], [26];
however, this is not suitable for providing solutions with
personalized matching, where we would like to leverage as
many fine-grained attributes as possible. Zheng and Chen [27]
addressed the optimal assignment problem by assigning users
with the proper tasks to maximize their acceptance. They
also developed a pruning strategy for obtaining the optimal
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solution. Moreover, Berlingerio et al. [28] investigated the
importance of social attributes in constructing an enjoyable
pooling experience. Our previous work [7] measured the bias
of a rider to group with others via social media data, and
relied on the destinations derived to identify passengers who
could travel together. Wang et al. [29] discussed pooling with
different types of social contact, and imposed a matching
constraint using the trust level between participants. Unsur-
prisingly, it has been concluded that aside from schedule
proximity, preference attributes also provide important factors
for the pooling matching procedure [30]. Although Zhang and
Zhao pointed out the social benefits of pooling, and developed
matching according to the preference rank orders for fellow
passengers, they neither addressed the issues of real-valued
preference representation nor utilized the preferences to offset
the weaknesses of efficiency-based matching models. Thus,
to obtain more informative representations for participants,
we should model information on attributes to complement the
OD-based matching, thereby enabling the two parts to closely
collaborate with each other.

B. Similarity Join in Matching

Typically, ride-matching refers to a search for a group
of individual travelers who have similar itineraries and time
schedules. In this context, the similarity join is a major opera-
tion for matching [31]. Similarity join and search were widely
studied [32]–[36], and many studies have been conducted
to support proximity-based trajectory processing [37], [38],
group rides [15], [39], and order dispatching [13], [19], [40].
However, most existing methods only focus on leveraging the
explicit trip information [41], [42], such as extra locations
and expected arrival time [43]. In reality, multiple types of
supplementary data (e.g., spatial distribution, temporal period,
and moving path) are available to enrich trip data [44].
This rich attribute information also reveals the participant’s
preferences, thus exerting a huge impact on the formation of
pooling. In addition, the riders are often connected to multiple
typed objects, such as a special location (e.g., work place), or a
fellow rider (e.g., friend) when traveling, which correspond to
various kinds of relations. It is thus possible for network-based
methods [45] to represent complicated travel features and
the connections between them, such as when and where the
participants should meet to minimize their trip costs [46].

Many advanced similarity join algorithms have emerged for
information networks, where given two sets of nodes in a
network, a similarity join returns several pairs of nodes, which
are ranked based on the neighborhood or structural prox-
imities [35]. One mainline work leverages meta-path-based
contexts for preserving semantic information [47]. Xiong et al.
considered various semantic meanings underlying links, and
addressed the problem of the similarity join while considering
the heterogeneity and diversity of the networks [31]. These
methods were widely applied in various fields, including
feature prediction [48], [49] and object recommendation [50].
Note that these applications deepened domain knowledge to
prefer meta-paths while ignoring the attributes of nodes, and
thus they cannot catch the rich semantics in a real travel

TABLE I

SYMBOLS

environment. Moreover, a few studies [51]–[53] leverage the
network-based similarity joins to achieve pooling matching.
Some apply social ties data to nodes to improve the robustness
of the matching. Nonetheless, these methods discount the
heterogeneity of travel-related information, and hence cannot
model diverse relations with a network structure, nor can they
search the node pairs in terms of structure similarity.

III. PRELIMINARIES

In the following we provide a set of definitions to system-
atically formulate the problem of personalized ranking as an
embedding learning problem on the ARN.

Given a heterogeneous network [54] G = (V, E,A), each
node vi ∈ V is correlated with types of attributes ai ∈ A.
Each edge er

i j = (vi , v j ) ∈ Er , E = UrEr is classified into a
particular edge type r . In practice, G could be undirected, and
we have er

i j = er
j i . Our goal is to learn a low-dimensional

representation for each node (participant) in the space Rd

(d � |V |). Since the spatiotemporal patterns and attributes
provide distinct sources of proximities, we are inclined to
obtain a comprehensive representation of the participants.
In our work, we strive to develop a ranking method that
learns user embedding in terms of schedules and preferences.
Notations are summarized in Table I.

A. Problem Statement

We consider a pooling setting in which a sequence of
trip requests over time from potential riders is issued in
advance. Each request designates an origin and a destination
location, as well as auxiliary information that implies its
potential timing [14]. Referring to the “cap of maximal detour”
rule [55], the difference between the departure time and
the actual pick-up time of shared trip should be considered.
For any driver–rider pair, if one’s actual arrival time to the
pick-up location is greater than a predetermined time flexibil-
ity, the pair is considered non-shareable [30]. In other words,
riders to be matched, the two must be able to board at the
same location within a particular time period.
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Fig. 3. ARN and network schema. (a) Toy example. (b) Network schema. (c) Symmetric meta-paths.

A similar work can be found in [43], where a
vehicle-shareability network is proposed to link multiple share-
able trips (denoted as nodes), and thus reduce fleet size. The
network assumes that the driver makes a detour for the next
trip, but ignores the possible increase in travel time, leading
to the driver possibly not arriving at the destination on time.
Moreover, the minimum fleet problem is NP-hard and has
to be optimized, which makes it difficult to solve efficiently.
However, in the present work, a shared trip is represented as an
attributed heterogeneous network, in which nodes contain user
types U (i.e., drivers and riders), location types L (i.e., pick-up
points), and time types T (i.e., time differences). The relations
of nodes among U , L, and T are three-dimensional, and each
relation represents the various spatiotemporal patterns of the
participant’s travel behavior. Each user type is associated with
a certain attribute A referring to their preferences for the
shared ride, such as “gender,” “reputation,” and “trip costs.”
Fig. 3 shows that the ARN can describe pooling behaviors of
participants via considering extra meeting points on the routes.

Definition 1 (Meta-Path-Guided Schedule Proximity):
denotes the proximity of nodes in terms of the participant’s
schedules. For ui , there exists a visited node u j when ui

walks along the given symmetric meta-path P (starting from
ui ), which indicates the direct proximity. We employ the
word “neighbors” to indicate the n − th step nodes of ui as
N n

P (ui ).
Taking Fig. 3(c) as an example, given the symmetric meta-

path “User - Location – User(ULU)” and a user u1, we can
obtain neighbors N 1

P (u1) = l1, l2 and N 2
P (u1) = u2. Then, all

the neighbors of u1 are denoted as NU LU (u1) = u1, l1, l2, u2.
Likewise, the neighbors of a location node l1 are NU LU (l1) =
u1, u2. The meta-path “ULU” means that we can assign a
driver to a passenger if they are connected by a path containing
a shared location. Details can be found in our previous
work [46], which focuses more on striving for optimal matches
via the spatiotemporal relationships between riders and drivers,
with no consideration for personal preferences on shared trips.

Definition 2 (Trip Attribute): Represents the participant
preferences in each shared trip. We use the distance savings
as the measure of attributes. Consider the example where for
each driver di ∈ D and rider r j ∈ R, if there is a possible
match between di and r j (with a pick up at mα and/or a drop
off at mβ ), edge connecting nodes di and r j arise. We use
oi and di to indicate the origin and destination of a driver,
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and o j and d j to indicate a rider. The system-wide savings in
total trip distance due to a match is

δ(i, j ) = (doi di +
∑

j∈R

do j d j ) − (doi mα + dmβdi + dmαmβ

+
∑

j∈R

(do j mα + dmβd j ))

=
∑

j∈R

(do j d j − (do j mα + dmβd j )) (1)

We denote the distance from a rider’s origin to their desti-
nation as do j d j . We note that a pick up or drop off can occur
at the rider’s origin and destination as well, i.e., mα = o j and
mβ = d j .

In this work, we investigate the problem of the personalized
ranking of riders using a sequence of trip announcements. The
profile vectors can be automatically learned for producing the
schedule patterns of a participant. We then specify the problem
as a task of calculating similarities between drivers and can-
didate riders that need to be ranked with deep representations.
An ARN presents the overall travel profile, and a rider’s
personal preferences are usually implied by their attributes.
Hence, this task has a combined objective of keeping both the
total schedule patterns and rider attributes in representation
learning.

Formally, given
• An ARN, i.e., G = (U,L,T , E,A,P);
• Two disjoint sets of user-type nodes, i.e., a set of riders

R = {r1, r2, . . . , r j } ⊂ U , and a set of drivers D =
{d1, d2, . . . , di } ⊂ U ;

• Meta-path-based relations among the nodes, i.e., P ∈
RU×L ∪ RU×L×T ;

• K different sets of attributes of riders r j for driver di ,
i.e., Ai = {δ(i,1), . . . , δ(i, j ), . . .}(i = 1, . . . , K )( j =
1, . . . , M).

We aim to rank riders listed in R based on embedding
similarities between representations of di and r j , i.e.,

Z = (

K⋃

i=1

Z(i),

M⋃

j=1

Z( j )),Z( j ) = aggregator(Z( j )
A ,Z( j )

S )

(r j ∈ N n
p (di ))

where Z(i) denotes the representation of driver nodes. The
embedding Z( j ) of node r j is aggregated from its attribute
embedding Z( j )

A and structural embedding Z( j )
S on G.

B. Framework Overview

The basic idea of the proposed framework is to design an
attributed network representation for enriching the personal-
ized ranking in ride-matching. With the help of the ARN,
our framework leverages meta-paths to guide the selection
of different “neighbors” and obtain the rich embeddings of
drivers and riders. Moreover, we represent the rider prefer-
ences regarding cost of trip distance via attribute embedding.

Fig. 4 exhibits a sketch of the proposed framework that
contains four tasks: (i) constructing the ARN and aggregating
the information of meta-path-guided neighbors to represent
the profiles of pooling; (ii) measuring the distance savings to

indicate the personal attribute; (iii) fusing the embeddings of
attributes and network structure to develop a jointly learned
participant representation from the ARN; and (iv) measuring
the similarity between embeddings to rank candidate riders.
We illustrate these tasks in detail in the following sections.

IV. ENCODING ATTRIBUTES

A. Determining Meeting Points

Stiglic et al. demonstrated the benefits of introducing meet-
ing points for increasing the number of matched partici-
pants [13]. We view a ride-share setting where riders are
inclined to walk to and from different meeting points to
facilitate easy trip sharing. In this paper, we discuss the
personal distance savings when matching drivers and riders
with meeting points. The first focus is to identify the best
pickup meeting points as soon as the trip announcements has
been received.

Each rider r j defines a maximum distance σ j within which
they can reach a meeting point. R∗ is the set of candidate
riders who may be picked up and dropped off at the points
are σ j distant from their origin or destination. The set of
possible meeting points along the original route Route(di )

is M(i)
j := {m ∈ Route(di)|dmo j ≤ σ j or dmd j ≤ σ j } for r j .

With a larger set of trip announcements, the efficiency issue
becomes huge when searching M(i)

j because most existing
methods are iterative and have a high computational cost.
Our approach applies an R-tree for the spatial indexing.
We organize a hierarchy of nested 2d rectangles to index the
driver’s trajectory data. Each node represents the minimum
bounding rectangle (MBR) of its children or, for leaf nodes,
a set of sampling points on Route(di ). By computing the
distance between r j ’s origin and all the points, searching in
the R-tree runs from the root to the leaf nodes to find M(i)

j
within a fixed-radius search region.

Once we obtain the set of M(i)
j for a rider, we need to ensure

the time feasibility of a matching with M(i)
j . While a pooling

trip is feasible if all participants can arrive the pickup location,
it may still be inconvenient for a driver and/or rider as it may
involve some waiting time. The acceptable waiting time of a
rider at each m ∈ M(i)

j is denoted as tm , i.e., the time window
between the earliest arrival times from riders’ origins to m, and
the latest departure times from m to their destinations. Here, tm
is different for different riders and meeting points. Referring to
Stiglic et.al.’s work [13], a driver can be matched with a rider
if there is an overlapping interval within their time windows.
In other words, a match is time-feasible if all participants can
reside at m during an interval overlapping within the time
window of r j ∈ R∗ and di , i.e., either

⋂
m∈M(i)

j
(tm ⊂ τm) or

⋂
m∈M(i)

j
(τm ⊂ tm), where τm is the time window of the driver.

Consider the example for driver di and rider r j with a
pick-up meeting point mα and a drop-off meeting point mβ .
We define tmα for r j and τmα for di to be [to j + to j mα , td j −
(td j mβ + tmαmβ )] and [toi + toi mα , tdi − (tdi mβ + tmαmβ )].
We denote the arrival time at o j as to j , and the time period
from departing o j to arriving at mα as to j mα . The candidate

meeting points M(i)
J and associated overlapping intervals are
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Fig. 4. An outline of rider ranking via joint embedding.

then pruned if both td j − (td j mβ + tmαmβ ) < toi + toi mα and
tdi − (tdi mβ + tmαmβ ) < to j + to j mα are not satisfied. Therefore,

a pick-up meeting point m ∈ M(i)
j for a driver–rider pair

(di , r j ) is optimal when the associated driving distance savings
δ(i, j ) in (1) is maximized.

B. Distance Savings Embedding

In an ARN, the distance savings are treated as the discrete
rider attributes. Given a driver–rider pair, we observe that each
pair of pick-up and drop-off meeting points brings a distance
savings. Searching M(i)

j generates multiple candidate meeting
points and associated multiple disjoint sets of distance savings
for each r j . We consider the attributes to be categorical, and
convert them to a series of binary features by way of one-hot
encoding. Specifically, in consideration of each driver–rider
pair (di , r j ), we distribute the distance savings value into
λ sections (e.g., 600 meters per section) and associate the
maximum value with a low-dimensional attribute embedding
vector Z( j )

A . For example, we express a value of 240 as the

vector Z( j )
A = {1, 0, 0, · · · , 0} ∈ Rλ, where the feature of

value 1 implies the achieved maximum distance savings for
rider r j .

V. THE PROPOSED FRAMEWORK

Assume that a set of time schedules from N participants
is given, where each schedule specifies a driver–rider pair
with a best meeting point and associated overlapping interval.
We then aim to learn a d-dimensional real-valued represen-
tation of each participant by preserving the structure of the
ARN, where similar participants are placed close together in
the embedding space. In this section, we illustrate the proposed
framework: Joint Embedding for personalized Ranking in
pooling (JERR).

A. User Embedding

To be able to calculate the similarities of schedules between
drivers and riders that need to be ranked, every participant
should have a unique embedding. We first propose an ARN,
based on which we leverage meta-paths to obtain different-step

Fig. 5. An example of meta-path-guided neighbors generation. Nodes in this
example are from Fig. 3.

neighbors of a node. The embeddings of drivers and riders are
the aggregation of their neighbors under meta-paths.

We show an example in Fig. 5 to illuminate the meta-paths
of an ARN. We have ULU and ULTLU, and aggre-
gate the meta-path-guided neighbors to obtain the embed-
ding Z(1)

S for rider r1. According to the network schema
in Fig. 3(b), we extract all N-step neighbors of r1 as⋃

n∈N N n
ULU(r1) = {m1, m2, d1, d2}, ⋃

n∈N N n
ULTLU(r1) =

{m1, m2, tm1 , tm2 , d1, d2}, and construct a walk path to predict
the probability distribution of r1’s neighbors in terms of the
local network structure. In this example, under the meta-path
‘ULTLU’, the walker at node m1 transferred from r1 can arrive
at time-type nodes: tm1 . Following this process, we can obtain
the ULTLU-guided embedding of r1, such as Z(1)

S .
We develop a way to search the different-step neighbors

N n
P (v) of node v along the meta-path, and aggregate the walk

path, which is then fed to a skip-gram model. We define a set
of neighbors surrounding node v along an l-length path as the
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“context” of v:

Nn =
c⋃

n=1

N n
P (v)(c ∈ [[ l − 1

2
], l − 1]) (2)

The proximity probability of each node v and u ∈ Nn can
be generated via the Softmax function as follows:

p(u|v; θ) = eZu ·Zv

∑
u∈Nn

eZu ·Zv
(3)

where Zu and Zv denote the embeddings of u and v, respec-
tively.

To learn the t-dimensional representation of a user-type
node ZS (i.e., Z(i)

S for driver di or Z( j )
S for rider r j ) that

captures the structural properties of the ARN, we consider the
problem as a maximum likelihood problem. The probability
that u is related to all nodes v ∈ VP should be maximized,
i.e.,

∑

v∈VP

∑

u∈Nn

p(u|v; θ) (4)

where VP is a set of nodes on a meta-path P starting from a
user-type node. For illustration, consider the ARN’s structure
in Fig. 3(a). The neighborhood of a node r1 can be structurally
close to another location (e.g., m1, m2), time (e.g., tm1&tm2 ),
and drivers (d1&d2). From (3) and (4), we observe that the
proposed framework models the spatiotemporal contexts of
driver–rider pairs, where pairs with a similar context (i.e.,
arriving at the same meeting point within a time interval) have
similar representations.

We leverage the negative sampling approach proposed
in [56] to optimize our model:

arg max
θ

log σ(Zu · Zv ) +
∑

u�∈Ne(v)

log σ(−Zu� · Zv ) (5)

where σ(x) is a sigmoid function, and Ne(v) is the set of
negative samples that are randomly sampled from the whole
node set in the ARN in accordance with p(v) ∼ d3/4

v , where
dv is the in-degree of v. The stochastic gradient descent can
facilitate the optimization.

B. Enhanced User Embedding With Attributes

To blend the advantage of both structure and attribute
modeling, we concatenate their embeddings using early fusion,
and jointly optimize all parameters. Since rider preferences
can complement the learning of schedule proximity, it allows
a real-time personalization in ride-matching. To address the
challenge of attribute fusion in the ARN, we propose a
user-level attention network to immediately learn the impor-
tance of attributes on rider ranking. In what follows, the design
of the JERR is elaborated on layer by layer.

1) Input Layer: Taking a group of rider embeddings as
input, the learned weights can be expressed as follows:

(ωϕ1 , ωϕ2 ) = att (ZS ,ZA) (6)

where att denotes the encoder–decoder neural network, which
shows that the user-level attention can learn both the structure
and attribute information of each rider.

Due to the different dimensions of the learned embeddings,
we first transform the set of embeddings through a nonlinear
transformation. Let the adjacency matrices of P = (ZS)t and
A = (ZA)λ be WS ∈ Rt×k and WA ∈ Rλ×k . We have
F = tanh(WS ·P + bs), G = tanh(WA ·A+ ba) where F, G ∈
R|R|×k , bs and ba form a bias vector, and |R| is the number
of riders.

2) Attention Layer: This layer provides the decoder with
information from every pair’s hidden representations, which
correspond to a row in matrices F and G, denoted by qϕ1 , qϕ2 .
We then obtain the score of these representations via the dot
product between the hidden states. To learn the importance of
each representation, we put the scores into a softmax function
so that the weight, denoted as ωϕi , can be normalized across
all representations:

ωϕi = exp(qT
ϕi

qϕi )∑2
i=1 exp(qT

ϕi
qϕi )

(7)

If qT
ϕ1

and qϕ1 have a large dot product, the structure is
an informative representation, and the weight of the structure
embedding will be large.

3) Output Layer: Finally, using the learned weights as
coefficients, we are able to merge the hidden representations
by multiplying each qϕi ) by its weight. We obtain the final
embedding X j for rider r j as follows:

Z( j ) =
2∑

i=1

ω( j )
ϕi

· q( j )
ϕi

, (8)

To better understand the user-lever aggregation, we provide
a short description in Fig. 6. The final embedding is combined
with structure- and attribute-specific embeddings. We can then
employ the final embedding to rank riders by their preferences.

4) Optimization: We specify the link probability in the ARN
between the driver and riders as the objective function. In this
way, the JERR framework is jointly trained to minimize the
deviation over all user-type nodes regarding all parameters
� = {WS , WA, bs, ba}:

arg min
�

∑

di∈D,r j∈R

cos(Z(i) − Z( j )) (9)

We employ the widely used mini-batch Adaptive Moment
Estimation (Adam) optimizer [57] to adapt the learning rate for
each parameter [58]. In particular, we initialize the parameters
in � to optimize the JERR. Then, we sample a batch size
of N embeddings (ZS ,ZA) of structure and attributes at
random, retrieve their representations after L(L = |R|

N ) steps
of propagation, and then update the parameters by using the
gradients of the loss (i.e. (9)). After optimization, we obtain
the fusion representation Z( j ) for each rider r j , which leads
to better performance.

We sum up our algorithm in Algorithm 1. Since the JERR
is an encoder–decoder-based solution, and assuming that we
have k embedding dimensions and a batch size of N , each
iteration of JERR takes O(|R| · k2) operations. The global
time complexity of JERR is O(ns · |R| · k2) when we run ns

iterations of training. The memory complexity is O(ns ·k ·|R|).
Since we treat k as a small constant, the complexity of each
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Fig. 6. Explanation of user-level aggregation. In the input layer, two types of embeddings of riders are projected onto the unified matrix space. In the
attention layer, joint learning of the weights of each type and fusion of the node embeddings takes place.

iteration increases linearly with the number of nodes, i.e. |R|,
in the ARN, which implies the efficiency and scalability of
JERR.

C. Candidates Search for Ranking

The proposed method helps incorporate personal prefer-
ences into the driver-to-rider similarity computation. Specif-
ically, for each pair (di , r j ), we exploit our JERR to learn
the representations Z(i) and Z(i)

S of the pair. Next, we train a

neural network with Z( j )
S and Z( j )

A as input, in order to pre-
serve the preferences on trip cost. Eventually, we rank riders
via their average cosine similarities to generate a candidate
list:

cos(di , r j ) = Z(i) · Z( j )


Z(i)
 · 
Z( j )
 (10)

VI. SIMULATION

We evaluate the proposed JERR using a realistic pooling
simulator. The simulation is designed to enable a fair compar-
ison between various matching polices.

A. Base Case Settings

We generated a dataset of daily driver’s trips and
rider’s requests within the Chengdu Er’Huan region via
Grid2Demand.1 Most of the demands were related to the
zones, and arise around points of interest(POI). One hundred
random streams of driver’s trips with an origin–destination
pair were deployed at the beginning of the simulation. For
each rider’s announcement, we generated the origin and des-
tination points randomly around the center of FuLi plaza.

1Grid2Demand: a tool for generating zone-to-zone travel demand based on
grid zones, https://github.com/Anjun93/grid2demand

TABLE II

TYPICAL FEATURES OF THE BASE CASE INSTANCES

The departure times we in intervals of 60 seconds. Afterward,
we measured the expected arrival time by adding trip duration
flexibility and direct travel time to the departure time; this
flexibility was considered to be 300 seconds for all riders.
Duration flexibility refers to the maximum extra trip time
that riders accept, which indicates the “waiting time” from
departing.

Subsequently, the state of the riders is determined as either
waiting for rides at the origin under a certain matching policy
or starting to walk toward a meeting point. We adopt a walking
speed of 1.22 m/s [59]. The distance flexibility d f lex defines
the possibility for riders to walk to a meeting point. d f lex
can be fine-tuned when probing for a possible meeting point
in the R-tree. With the help of a particular matching policy,
the simulator periodically detects the position of vehicles
and riders. After each ride match, drivers who are assigned
orders will pick up riders and transport them to their drop-off
locations or destinations. We consider that after a driver
finishes an order, he would be available to be reallocated to a
new trip request starting from another meeting point. Table II
summarizes the features of the base case instances, and the
workflow of the simulator is depicted in Fig. 7.
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Fig. 7. Workflow of the rider ranking simulator.

We compare solutions using the following metrics: (1) the
matching rate for riders; (2) the distance savings, i.e., the
fraction of the system-wide vehicle-miles if all participants
drove alone; and (3) the trip time increase, i.e., the average
relative increase in the trip duration, as a fraction of original
travel time.

B. Impact of Pooling With Multiple Riders

Fig. 8 shows distance savings for different vehicle capaci-
ties. The ‘n/P O I ’ denotes the number of trip requests submit-
ted at each POI. To reduce the influences of POI on matching,
we compare the savings under the same POI distribution. The
results suggest that the primary benefit of carpooling is an
increase in distance saving. When the number of drivers and
riders in the system is roughly different, it is more desirable
to have single driver-multiple riders matches for maximizing
the utilization of vehicles (from 1 to 2.9 when pooling four
riders, in Table III). We see that the number of vehicles
served in matches with one rider is quite small in different
vehicular distributions when 4 riders per vehicle are allowed
at most. This is due to an increase in the number of single
driver–multiple rider matching opportunities. That is, if it is
possible to match four riders with the same driver, but it is
also possible to match the four riders with different drivers,
then the former option is preferred as it results in assigning
1 driver, while the latter results in 4 vehicles served.

C. Impact of Unbalanced Supply and Demand

We conduct some experiments with 150 participants, and
using driver-to-rider ratios of 1:1, 2:1, and 1:2. The results
can be found in Table IV. We focus on the matching rates in
the unbalanced scenarios.

Fig. 8. Distance savings when single, double, and quadruple matches for
different trip-request distributions.

Inspecting the differences from the base cases tells us that
trip density plays a large role in matching. For the ratio 1:2,
a high system density (100 trips) restricts the capability of the
system to establish matches. However, since the riders have
to wait much longer for success pickup, which consequently
increases the trip time.

D. Impact of Duration Flexibility

We investigate the impact of duration flexibility on the
matching rate with different numbers of trip announcements.
We compare the system performance when the waiting time
shorter, i.e., tm = 300 s, and when the waiting time is
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Algorithm 1 Embedding Generation

Input: meta-path scheme P , rider embeddings Z( j ); driver
embeddings Z(i)

1: build R-tree with drivers’ trajectories;
2: for each rider do
3: find meeting points based on R-tree;
4: filter meeting points with time window;
5: for each driver do
6: if driver and rider have feasible meeting points then
7: calculate distance savings according to (1);
8: encode maximum distance savings using one-hot

encoding as ZA;
9: end if

10: end for
11: end for
12: Z(i),Z( j )

S = User Embedding(P) using (2)-(5);

13: function FUSION(Z( j )
S , Z( j )

A )
14: F = tanh(WS · P + bs);
15: G = tanh(WA · A + ba);
16: for each row q( j )

ϕ1 , q( j )
ϕ2 in F, G do

17: ω
( j )
ϕ1 , ω

( j )
ϕ2 = so f tmax(q( j )

ϕ1 , q( j )
ϕ2 );

18: generate embedding Z( j ) according to (7) and (8);
19: end for
20: optimize parameters by Adam with (9);
21: end function
22: return embedding results

TABLE III

EFFECT OF CARPOOLING ON VEHICLE SERVED, WHERE n/P O I MEANS

TO DEPLOY n VEHICLES AT EACH POINTS

longer, i.e., tm = 900 s. Fig. 9 illustrates that increasing the
?exibility from 300 to 900 s contributes to a 9.9% growth in
average matching rate for 45 trips. Moreover, a low flexibility
of 300 s heavily reduces the matching rate. Even at the higher
density (45 trips), the average matching rate is only 51.1%.
We also can conclude in Figure 8 that the distributions of
riders are critical in matching. When most of trip requests (e.g.,
5 trips) arise around the POIs, that will make more matches.
Instead,the trip density increases to 45, part of which is far
away from POIs, but the matching rate reduces.

VII. EVALUATION

In this section, we give the experimental details to demon-
strate the effectiveness of the proposed framework. We first

TABLE IV

EFFECTIVENESS OF THE DRIVER-TO-RIDER RATIOS

Fig. 9. Matching rates for different duration ?exibilities and number of trip
announcements.

cover the details of training user embeddings, and their offline
evaluation. We then compare performance of link prediction
with other advanced embedding methods. Finally, we make
comparisons of our ranking model to validate the capabilities
of leveraging user embeddings to implement features for
personalization in rider ranking.

A. Datasets and Baselines

We use a real travel dataset, collected in the city of ChengDu
and generated by DiDi chuxing, which is one of the largest
pooling service companies. It contains 1,070,404,834 highly
sampled trajectories (about every 2–4 s) of trip requests
received by nearly 1,142,717 private drivers within one month.
We first extract 50,000 trajectories of drivers, the feasible
meeting points, and features associated with distance savings.
Then, we construct the ARN, which consists of three types
of nodes: users, locations (i.e., meeting points), and time
periods (i.e., waiting times). Since users can share rides to
locations, we collect time-limited pickup behavior to construct
the relations between users and locations. Some statistics of
the ARN are shown in Table V.

To decide on the ideal method for rider ranking, we test how
good trained user embeddings are for producing the candidate
rider listings based on their time schedules and attributes. Let
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TABLE V

STATISTICS OF THE ARN

us assume we are given some driver and rider candidates that
need to be ranked. By measuring the cosine-based similarities
between embeddings of drivers and candidate riders, we can
list the candidates and identify the position of the selected
rider in the list.

-metapath2vec [60]. metapath2vec employs the heteroge-
neous Skip-Gram model on the created meta-path-based node
sequences. We followed the meta-path settings, including
window size, walk length, walks per node, and the number
of negative samples.

-MNE [61]. MNE adopted one popular embedding and
several supplementary embeddings for each edge type, which
are jointly learned by a unified network embedding model.
The supplementary embedding is initialized to zero with the
size of 10.

-ASNE [58]. ASNE gains node representations by con-
necting deep neural network models with social information
to develop the network structure and heterogeneous node
attributes together. ASNE uses an early fusion model to
preserve the nodes’ structural and attribute proximity in social
networks.

Note that metepath2vec and MNE are devised to adopt only
the structural information. We then extend them to incorporate
attributes for a fair comparison with JERR. Following [58],
we name these variants as metapath2vec* and MNE*.

B. Experimental Setups

We choose the link prediction task for user embedding eval-
uation. The reason for this is that a better embedding should
produce better user representations from both the network
structure and user attributes, which will lead to a superior
prediction of the occurrence of links between driver–rider
pairs. Our implementation of JERR is based on TensorFlow.
To ensure a fair test, for all the embedding-based methods,
we set the number of structural embedding dimensions to be
128. For MNE, we use the implementation released by the
original authors. Since ASNE has two kinds of embeddings
(the structural proximity and attribute proximity), we set the
embedding dimension for the network structure and attributes
to be 128 and 20, respectively, and then concatenate them
together. For all methods, in the training stage, we initialize the
model parameters with a Gaussian distribution (with a mean
of 0.0 and standard deviation of 0.01), and optimize the model
with mini-batch Adam. For our method, the mini-batch size
is 64, the initial learning rate is 0.005, and the regularization
parameter is 0.001. The hyper-parameter controlling the walk-
ing process is set to be the same as that of metapath2vec.

We also use a hyperbolic tangent function (tanh) for all
experiments.

For all the ride-matching methods, we set the driving speed
to be 30 km/h, and walk speed to/from a meeting point is set to
1.22 m/s [59]. The maximum allowable walking duration and
distance are 900 s and 3 km, respectively. The service time
related to the pickup and drop off of a rider is negligible.
For searching meeting points by the R-tree, we define the
maximum number of entries stored N = 32 in each node. All
our experiments are conducted on an Intel Core i7-6700 CPU
@3.4 GHZ with 16 GB RAM.

C. Performance Comparison

1) Characteristics of JERR: Link Prediction. We randomly
offer 20% of the links as the testing set, and train JREE on
remaining links. Following [54], we randomly select the same
number of positive and negative edges for each edge type,
and list both positive and negative instances in accordance
with the prediction results. We employ the area under the ROC
curve (AUC) as the metric to judge the ranking quality. Fig. 10
lists the experimental results obtained on the DiDi dataset.
JERR reaches the best performance among all the methods,
with at least a 7.16% performance increase in AUC compared
with the best results of other methods. Meanwhile, JERR
exhibits more stability when we use fewer links for training.
Especially, compared with the pure structure-based methods,
metapath2vec and MNE, JREE performs better with only
half the number of links. Besides, metapath2vec* (MNE*) is
slightly improves over metapath2vec (MNE). This illustrates
the efficiency of attributes for finding out missing links,
along with the advantage of JREE in using attributes for
achieving better matching. We can see that JERR consistently
outperforms ASNE, which also combines attributes in the
network embedding. Even though ASNE compresses the node
representation by allowing hidden layers to learn the interac-
tions between structure and attribute, it fails to obtain sufficient
information for weighting the proximity of the structure and
attributes. In this way, nodes with a lower structural proximity
as well as a large attribute proximity may be mistakenly
ranked.

Network Sparsity Analysis. We set up 3 groups of experi-
ments, where 10%, 30%, and 50% of the user–user edges are
removed, respectively. The connections of any two users (i.e.,
a driver–rider pair) under the 80% train ratio are identified
firstly, and we put all the remaining user–user edges (of which
the proximities are up to 0.7) into the training set. For each
edge in the training set, we randomly sample a rider that is not
linked to a driver, and regard this pair as the negative instance
in the training set. The testing set is formed using the same
way. We make the following observations from Table VI:

• JERR gains the best performance. For instance, as 10%–
50% edges are moved, JERR improves the performance
by 0.4%–6.5% compared to the baseline. The reason
for this is that JERR captures the relations in personal
preferences and the shared schedule.

• JERR and ASNE show better performance than MNV
and Metapath2Vec, which further shows the significance
of attribute information.
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Fig. 10. Comparison of different methods for link prediction task on DiDi
dataset.

TABLE VI

PREDICTION PERFORMANCE WITH EDGES REMOVED

• The performance of Metapath2Vec is worst. Meta-
path2Vec can only work for structure unweighted net-
works, and cannot take advantage of additional informa-
tion such as edge weights.

Parameter Sensitivity. We now test the effect of the training
ratio q on performance when other parameters are fixed. The
results are shown in Fig. 11(a). We find that the performance of
JERR increases with the training ratio, and achieves its maxi-
mum when q is 90%. Fig. 11(b) illustrates the accuracy when
changing the base embedding dimension d from the default
d = 128. With increasing embedding dimension, the perfor-
mance first improves, and then slowly starts to drop. This is
because a larger dimension may introduce sparsity in riders
and drivers’ representations, making it difficult to encode
their relations accurately. To check the effect of negative
sampling, we study the accuracy of JERR with various lengths
of contextual window c. The result is shown in Fig. 11(c).
Fixing d = 128, the value increases when c increases to 3,
and tends to be stable when c > 5, thus indicating that more
context nodes related to the given meta-paths (i.e. ULTLU)
are sampled, and that the JERR has reached its best solution.
We also discover that negative sampling can drive the training
process to be more stable.

2) Numerical Results for Ranking Riders: To validate the
effectiveness of rider ranking, we use some popular models.
Note that some matching models are not included, such as [4],

[12], [22], because they are not suitable for our problem. For
each driver in the test set, we treat all the riders independent
of drivers as being negative. Then, each method outputs the
rider’s ranking.

We give a brief description below of the policies used to
compute the final ranking. Variations arise from the way the
optimization operates under different assumptions.

-Baseline. A Hungarian method, (also known as the KM
algorithm) that solves the weighted minimum matching prob-
lem in a complete bipartite graph, was used for a multiple
rider/single driver setting. There are some similar matching
methods [26] designed for graphs with known edge weights,
but they focus more on improving the searching efficiency.
We class these algorithms together.

-Stiglic et al.’s Work [13]. This considers a pooling setting
where one pick up and drop off are supported per shared
ride. A multi-rider match is feasible when it can satisfy the
time constraints, i.e., more than one riders can traverse to the
meeting point simultaneously. In all experiments, we match
one driver and multiple riders by solving a weighted bipartite
matching problem.

-Shareability Network-Based Methods [43], [62]. These
approaches match multiple shareable trips via a network, and
models the trips as nodes. By assessing the link possibility of
these nodes in terms of extra travel time between any two trips,
a vehicles can be assigned to serve several trips sequentially
or simultaneously.

Efficiency of Ride-Matching. In this work, we use the
number of participants matched and the mileage savings as
measures of matching efficiency. In Fig. 12, we present the
result obtained in the base case setting with embedding to
that obtained in the case without embedding; we also increase
the number of trips from 800 to 2,000. We can see that
the introduction of embedding produces a substantial increase
in matching rates. The matching rate using JERR increases
by 15.4% (from 56.9% to 72.5%), and is slightly larger
than that of the KM algorithm (the weights of the edges
in KM were set to be 1) because of matches consider more
road information. Besides, the KM algorithm is widely used
for optimal matching by seeking a one-to-one relationship,
but fails to match a single driver and multiple riders, and
thus degrades efficiency. In comparison with Stiglic’s work,
we notice that JERR maintains an improvement in mileage
savings, with an averaged improvement from 0.8% to 50.8%.
We suspect this is due to preserving the attribute information
on distance savings. Stiglic et al. determined the meeting
points from the exact locations, without considering the latent
spatiotemporal proximities. Our results also reveal that benefits
can be reached when the meeting points are within the limits
of a rider’s origin and destination. In Fig. 13, we see that
for 2,000 participants, when the batch size is 64 in Stiglic’s
work and the KM algorithm, the running time is 112.39%
and 32.61% longer, respectively, than that of JERR. Therefore,
we believe that JERR is efficient enough to handle matching
tasks on large car-hailing systems like DiDi and Uber.

We also compare our method with the online model from
Kondor et al.’s work [62], where the trips connected via the
shareability network are treated as successful matches. For
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Fig. 11. Parameter sensitivity of JERR w.r.t. training ratio, dimension, and length of windows.

Fig. 12. Effects of trip densities.

a fair comparison with JERR, which additionally exploits
attributes, we extend the shareability network [43] to incor-
porate attributes. Specifically, the detour tolerances for con-
necting trips are randomly generated as individual attributes
of each trip. We dub the variant Shareability+attr. We calculate
the average waiting time of riders unserved in JERR, or of trip
requests unconnected, as done in Kondor et al.’s work. We see
in Fig. 14 that these results offer significant improvements
over the compared approaches via the shareability network.
On the DiDi dataset, where the trip requests are quite dis-
persed, vehicles have to detour to probe for and connect
to the shareable trips’ OD, thus leading increased travel
time. However, the flexible matching with available meeting
points in JERR can minimize potential risks to travel time,

Fig. 13. Running time with different number of participants.

allowing drivers to pick up the riders en route. Thus, we can
conclude that proximity modeling via the ARN is essential for
making significant improvements in ride-matching and vehicle
utilization.

Efficiency of Ranking. To validate the effect of proximity
modeling on matching, we evaluate each method’s capability
of finding and ranking riders. We apply two common rank-
ing metrics: mean reciprocal rank (MRR), and normalized
discounted cumulative gain (nDCG). Matches are consid-
ered as positive labels. Since the shareability network-based
approaches search for a trip satisfying certain conditions each
time, without a candidate list, these ranking metrics do not
apply to them. Let S be the set of drivers for the evaluation,
and let rs,i be equal to 1 when the rider at position i is
recommended to be matched, and 0 otherwise. For each metric,
the larger the better. The metrics are formulated below:

M RR = 1

|S|
∑

s∈S

1

minrs,i =1 i

nDCG = 1

|S|
∑

s∈S

∑
i

rs,i
log2(i+1)

j
∑

i
rs, j

log2( j+1)

(11)

Table VII lists all metrics used in the experiments. We divide
the test dataset into ten sub-datasets, and calculate the averages
for each metric per sub-dataset. JERR achieves the best
results for all metrics. Meanwhile, Metapath2Vec is worse than
MNE and ASNE. This suggests that the relationship between
drivers and riders cannot be expressed with simple network
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Fig. 14. Performance of matching using different network models.

TABLE VII

RESULTS FROM RANKING EXPERIMENTS

relationships. JERR is significantly better than the three other
models. We conclude that this is because it can express more
complex relations of drivers and riders by combining the
attributes of riders. Because Stiglic et al.’s work exhibits
an improvement over the KM algorithm, implying that the
meeting points should work better. However, it calculates
the distance savings without leveraging the network structure,
which makes the ranking only rely on the distance savings.
KM performs worst of all the methods, since it allows only
one driver to be assigned to a rider, and thus it is unable
to express more relations between each driver–rider pair and
make more matchings.

VIII. DISCUSSION AND CONCLUSION

A better understanding of individual behaviors and pref-
erences is fundamental when developing a pooling system.
Unfortunately, ranking that is done via preference closeness
rather than exact trip locations may be problematic, partly due
to the challenge of representing personalized preferences when
there is a high degree of heterogeneity across individuals in
travel preference [63]. This includes the pick-up and drop-off
times, travel duration, financial benefits, and person-specific
information, such as gender, age, professional profile, feed-
back, and reliability scores [64]. In contrast to traditional pool-
ing matching, such as Zhang and Zhao’s work [30], we have
modeled pooling preferences as node attributes in a network.
To learn descriptive representations for pooling participants,
it is necessary to clarify the relationships implied in the net-
work structure. To this end, we proposed a generic framework
for embedding pooling networks and preserve the closeness
between nodes with attributes. We extended a deep neural net-
work via an attention mechanism to model the latent interre-

lations between network structures and attributes. Remarkable
performances on link prediction and rider ranking also shows
the effectiveness of incorporating attributes in the model.

While a network for ranking riders provides abundant
sources of information, e.g., individual schedules and demo-
graphics, we will examine the following in future work. First,
JERR will be strengthened by considering the dynamics of
participant preferences. It might need to be noted here that
the preference we used is independent of travels, which drives
our design of modeling the proximity via attribute embedding.
However, we have observed that preference for travel attributes
in pooling may vary from one day to the next. As an
illustration, a rider’s waiting time may depend on the time of a
day. Although we consider the changing preference where the
distance savings is different for different riders and meeting
points, continuous change is not supported. In such conditions,
focusing on offline evaluation of attribute proximity might
induce unacceptable results. Some recent studies contribute
to predictive modeling via time-series analysis [65]. These
models can be seen as special cases of recurrent neural
networks that do not treat time itself as a feature, and typically
assume that inputs are synchronous. In practice, RNNs often
fail to effectively make use of time as an attribute. Thus,
to feed the time-dependent preferences as an input dimension,
and concatenating the representations of time and attributes
to form multiple types of vector embeddings can be a good
way forward. A network can then learn which embeddings
it prefers by predicting a weight for each embedding type,
depending on the context.

Second, we are interested in considering trust in pool-
ing, and investigating how to model the evolution of pool-
ing networks, which contain rich multi-modal social data.
For instance, the trust in pooling links develops over time;
strangers who share the same routes a few times in their daily
commute can gain trust and be connected in a network [51].
Based on several snapshots of networks in everyday life, and
reflecting the trust level at a given moment, we can predict
the positive or negative input of participant behavior on the
trust level. Then, the dynamic co-evolution of networks can be
modeled by adding dynamic information into the attributes of
nodes and edges. Lastly, we will deal with boosting the effi-
ciency of our JERR by developing better indexing structures
to make it more suitable for use in a large-scale commercial
environment.
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