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Abstract— In recent years, major depressive disor-
der (MDD) has been shown to negatively impact physical
recovery in a variety of patients. Functional near-infrared
spectroscopy (fNIRS) is a tool that can potentially supple-
ment clinical interviews and mental state examinations to
establish a psychiatric diagnosis and monitor treatment
progress. Thirty-two subjects, including 16 patients clini-
cally diagnosed with MDD and 16 healthy controls (HCs),
participated in the study. Brain oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) responses were recorded using a
22-channel continuous-wave fNIRS device while the sub-
jects performed the emotional sound test. This study eval-
uated the difference between MDD patients and HCs using
a variety of methods. In a comparison of the Pearson corre-
lation coefficients between the HbO/HbR responses of each
fNIRS channel and four scores, MDD patients and HCs had
significantly different Athens Insomnia Scale (AIS) scores.
By quantitative evaluation of the functional association,
we found that MDD patients had aberrant functional con-
nectivity compared with HCs. Furthermore, we concluded
that compared with HCs, there were marked abnormalities
in blood oxygen in the bilateral ventrolateral prefrontal
cortex (VLPFC) and bilateral dorsolateral prefrontal cor-
tex (DLPFC). Four statistical-based features extracted from
HbO signals and four vector-based features from both HbO
and HbR served as inputs to four simple neural networks
(multilayer neural network (MNN), feedforward neural net-
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work (FNN), cascade forward neural network (CFNN) and
recurrent neural network (RNN)). Through an analysis of
combinations of different features, the combination of 4
common features (mean, STD, area under the receiver
operating characteristic curve (AUC) and slope) yielded
the highest classification accuracy of 89.74% for fear emo-
tion. The combination of four novel feature (CBV, COE,
|L| and K) resulted in a classification accuracy of 99.94%
for fear emotion. The top 10 common and novel features
were selected by the ReliefF feature selection algorithm,
resulting in classification accuracies of 83.52% and 91.99%,
respectively. This study identified the AUC and angle K as
specific neuromarkers for predicting MDD across specific
depression-related regions of the prefrontal cortex (PFC).
These findings suggest that the fNIRS measurement of the
PFC may serve as a supplementary test in routine clinical
practice to further support a diagnosis of MDD.

Index Terms— Functional near-infrared spectroscopy
(fNIRS), major depressive disorder (MDD), activation pat-
terns, simple neural networks, feature selection.

I. INTRODUCTION

W ITH the accelerated pace of life and the increasingly
fierce social competition, people’s psychological pres-

sure is gradually increasing, and the incidence of depression
is increasing annually. According to the World Health Orga-
nization, the worldwide prevalence of depression is approxi-
mately 3%-5% (approximately 100 to 200 million people) [1].
By 2022, depression will become the most serious disease
burden in developing countries, and major depressive disor-
der (MDD) will become the second leading cause of suicide
and disease [2], [3]. Due to the lack of specific diagnostic
methods for depression and its various manifestations, accurate
and reliable diagnosis of depression mainly depends on the
clinical skills and clinical judgment of psychologists [4],
[5]. The comprehensive collection of accurate and reliable
medical history and careful psychophysiological examination
are the basis for diagnosis. Therefore, detecting depression
early through physiological indicators is becoming increas-
ingly important.

Brain imaging technology has allowed researchers to nonin-
vasively detect brain activity during a depressive state [6], [7],
and many imaging technologies, including electroencephalog-
raphy (EEG) [8], [9], magnetoencephalography (MEG) [10],
functional magnetic resonance imaging (fMRI) [11], and
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positron emission tomography (PET) [12], have been widely
used to explore the mechanism of abnormal brain activity in
depression and other mental illnesses. Neural activity pro-
vides better information for emotion recognition due to its
higher specificity for different types of emotions [13], [14].
Researchers have tried to develop objective biological criteria
for the diagnosis of depression and targeted treatment.

Jobsis [15] first reported a noninvasive infrared method
of monitoring cerebral oxygen sufficiency. Functional near-
infrared spectroscopy (fNIRS) is a noninvasive, safe, low
cost, and portable optical brain imaging technique that has
been recently proposed as a potential diagnostic method for
detecting MDD [16]. Because it can objectively reflect the
state of brain activity, it is currently an effective tool for the
auxiliary diagnosis of depression. Currently, the application of
fNIRS in rehabilitation and medical care is limited; however,
this approach has high potential.

In recent years, a significant amount of research on MDD
based on fNIRS has been widely performed, and these studies
have shown the great potential of neural-signal-based MDD
recognition [2], [17]. A recent analysis assessing depression
pre- and post-treatment showed a consistent wave pattern,
which led to the response in the frontal cortex being regarded
as a trait marker [18]. In such studies, the verbal fluency
task (VFT) is the most widely used paradigm. Liu et al. [19]
found that a brain oxyhemoglobin (HbO) concentration change
in the bilateral prefrontal cortex (PFC) and anteromedial
PFC was associated with depression severity. Moreover,
Akashi et al. [20] found that the mean HbO changes induced
by a VFT were significantly smaller in patients with MDD
than in healthy controls (HCs). In [21] and [22], patients with
MDD had smaller changes in HbO in the frontal and tem-
poral cortices than HCs. In addition, Toshio Matsubara [23]
found that different neural circuits play a role in emotional
processing in MDD patients and HCs. Regarding the MDD
classification research, Zhu et al. [24] used a wearable fNIRS
head probe monitoring specific brain regions, and limiting
extraction to a few features (mean HbO, full width at half
maximum and kurtosis) resulted in a classification accuracy
of 92.6%, a sensitivity of 84.8%, and a specificity of 91.7%
using the XGBoost classifier. In [25], 36 MDD patients and
48 bipolar depression (BD) patients were monitored by fNIRS
while conducting the VFT, and the average classification
accuracy reached 96.2%. Additionally, in [26], 20 partici-
pants (10 MDD patients and 10 HCs) were instructed to
perform submaximal isometric handgrip force control tasks,
and the best performance predictive model had an accuracy
of 85%.

The analysis methods of these studies are too simple to
fulfill all the diagnostic requirements, and similar paradigms
are used. Usually, only the blood oxygen levels of MDD
patients and HCs are studied. To solve these problems, differ-
ent paradigms and more comprehensive analysis methods need
to be implemented to assess the MDD state. Regarding MDD
classification studies, numerous studies have the problems of
a single feature type and low accuracy. Therefore, instability
of the classification accuracy in MDD recognition is seriously
detrimental to the normal use of fNIRS-based brain-computer

interfaces (BCIs) [27] and renders their deployment for treat-
ment or rehabilitation less likely [28], [29].

Focusing on this issue, we used fNIRS measurements and
conducted fNIRS sound induction experiments to explore
whether consistent, reproducible and typical prefrontal activa-
tion patterns exist in patients with MDD compared with HCs.
In this study, we used 22 fNIRS channels covering the PFC
region. Four different methods, namely, correlation analysis of
an oxygen index and a scale, resting-state analysis, activation
analysis and simple neural network recognition, were used
for quantitative classification of MDD patients. Through the
comparison of two different types of features, the feature
dimensions were reduced to 10 by feature selection. Our
study suggests fNIRS measurement of the PFC as a potential
biomarker for auxiliary diagnosis of MDD. The contributions
of this study are as follows:
(1) Several methods, including correlation analysis of the

oxygen index (HbO) of each individual fNIRS channel and
the scales (PHQ-9, PHQ-15, GAD-7 and AIS), resting-
state analysis and activation analysis were applied in our
study. It provides some neuroscience evidence for our
subsequent classification.

(2) An emotional sound test was conducted, during which
32 fNIRS signals (from 16 MDD patients and 16 HCs)
were recorded. Two types of features, namely, statistical-
based and vector-based features, were extracted from
the dataset. Moreover, the optimum feature matrix was
constructed for depression classification by the feature
selection method. The number of channels and the com-
putational complexity were reduced.

(3) Four simple neutral networks were evaluated and verified
using leave-one-subject-out (LOSO) scenario, and good
results were obtained.

The structure of this paper is as follows. In section II,
we describe the participants, experimental paradigm, optode
placement, data collection method, fNIRS data preprocessing
method, correlation analysis of the oxygen index and scales,
resting-state analysis and activation analysis used in this study.
In section III, we present the methods of feature extraction and
selection. The results and an accuracy comparison are reported
in section IV. Finally, we present a discussion in section V.

II. MATERIALS AND METHODS

A. Participants

In this study, through strict screening, matching, and effec-
tive data collation, 32 participants with no history of any
neurological disorder participated in the experiment, including
16 MDD patients and 16 HCs. The MDD patients recruited in
this study were from the psychiatric department of the Tianshui
Third Hospital, Gansu, China. This study was approved by
the local research ethics committee, and written informed
consent from all subjects was obtained after explaining the
experimental paradigm in detail.

All the MDD subjects were selected by professional psy-
chiatrists using the Mini-Mental State Examination (MMSE).
The relevant basic information statistics were analyzed for
the subjects. The Patient Health Questionnaire-9 (PHQ-9) and
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TABLE I
DEMOGRAPHIC CHARACTERISTICS; PHQ-9, PHQ-15, AIS,

GAD-7 SCORES; AND GROUP DIFFERENCE RESULTS OF

THE MDD PATIENTS AND HCS (MEAN±STD)

Patient Health Questionnaire-15 (PHQ-15) were used to assess
the degree of depression. The Generalized Anxiety Disorder-7
(GAD-7) is a tool for screening and measuring the severity of
anxiety, and we used this scale to distinguish depression from
anxiety. The t-test was used to evaluate the education level.
The results are shown in Table I. The statistical results showed
that there were no statistically significant sex and education
level differences between the two groups. The MDD group
showed higher scores on the PHQ-9, PHQ-15, and GAD-7
compared with the HCs.

B. Experimental Paradigm

Various brain activities, such as motor imagery, motor
execution, word generation, object rotation, mental arithmetic,
music imagery, letter padding, motor execution and other
visual tasks, have been used by fNIRS researchers in the
literature [30]. In this study, the above diagram illustrates the
areas of the PFC in which HbO, deoxyhemoglobin (HbR) and
total hemoglobin (HbT) changes were studied. We conducted
a sound stimuli paradigm, as shown in Fig. 1. The audio
material was carefully obtained from selected files. After veri-
fication in multiple subjects, significant differences were found
in the valence and arousal of each audio stimulus. Before the
experiment was conducted, subjects were evaluated in groups,
and uniform instructions were provided. Specifically, all the
subjects were given a mini lesson by the tester, in which
the precautions and requirements of the experiment were
explained. This experiment was divided into two parts: resting-
state fNIRS recording and task-relevant fNIRS recording.
In the resting-state recording session, all the subjects needed
to close their eyes and remain conscious for 3 minutes. There
was a “ding” prompt at the beginning and end and a prompt
in the middle of the screen during the audio stimulus.

For the task-relevant session, the experiment consisted
of 16 trials and was divided into four blocks; each block
consisted of 4 types of sound stimuli, played in a Latin
square design. For each trial, an affective sound stimulus
was played into the subject’s ears through earphones for
18 s. After each trial, the subject was given 20 s of rest to
allow the hemodynamic response to return to baseline. When

Fig. 1. Experimental paradigm for data acquisition. After the initial 180-s
resting state, a single trial consisted of 18 s of a sound stimuli task
followed by 20 s of rest, then 18 s of a sound stimuli task again followed by
20 s of rest. In total, 16 trials were recorded, corresponding to a complete
experimental duration of 878 s.

Fig. 2. Measurement points of the 22 fNIRS channels. Red and blue
diamond’s represent emitters and detectors, respectively. In total, eight
emitters and seven detectors, with a separation of 3 cm between each
emitter-detector pair, yielded 22 channels to record the brain signals. The
22 measured positions are labeled channel (Ch) 1 to Ch (22), from the
right to left sides of the PFC.

all 16 segments of stimulation were played, the experiment
was completed. The total duration of the experiment was
approximately 15 minutes. Subjects were asked to restrict their
body movements during the experiment as much as possible.

C. Channel Configuration and Optode Placement

Regarding the measured fNIRS signals from the PFC,
the measured brain regions were not consistent with those
of past studies [31]. In this study, the fNIRS system was
equipped with 8 sources and 7 detectors according to the
10-20 international system, and the distance between each pair
of sources and detectors was set to 3 cm. The measurement
area between each pair was defined as a channel (Ch). In total,
22 channels were recorded in this study. Fig. 2 shows the
emitter-detector arrangement on the PFC.

D. Data Collection

fNIRS signals from the PFC were acquired using a mul-
tichannel continuous-wave (CW) NIRScout fNIRS system
(NIRx Medical Technologies, LLC). The optode placement
configuration was recorded in the NIRStar data acquisition
software (version 15.1). The brain imaging system used two
wavelengths, 760 and 850 nm, and the sampling frequency
was 7.81 Hz. In our study, an elastic measurement headband
(20 × 8 cm) was mounted over the PFC of each subject’s head;
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the total fNIRS setup time required to place the headband was
approximately 8 minutes.

E. Data Preprocessing

The NIRS data were processed on a channel-by-channel
basis using the HOMER2 [32] toolbox. The raw optical
signal is recorded as a time series of optical intensity val-
ues for each channel, so the intensity data needed to be
converted to concentrations of HbO, HbR and HbT. The
changes in the concentrations of HbO and HbR due to neuronal
activity can be calculated using the modified Beer-Lambert
law (MBLL) [33].

The acquired hemodynamic signal contains various types
of noise, such as instrumental, physiological and experimental
noise, which should be removed before further processing [34].
First, for identification of motion artifacts, if any active data
channel exhibits a signal change of greater than the STD or
AMP threshold, then the segment of data around that time
point is marked as a motion artifact. The specific parameters
are set to t Motion=0.5, t Mask=3.0, STD threshold=20.0,
and AMP threshold=5.0. Then, we perform a spline inter-
polation for motion artifact correction. The spline interpo-
lation results depend on interpolation parameter p, and p
spline=0.99 is believed to be effective in removing motion
artifacts [35], [36]. Finally, we use a 2nd-order Butterworth
bandpass filter with a cutoff frequency of 0.01-0.2 Hz to
remove physiological noise due to heartbeat (>1 Hz), respi-
ration (approximately 0.2-0.5 Hz), and high-frequency noise
[16], [37]. In our study, signal preprocessing was performed
using the HOMER2 toolbox in MATLAB 2013b (MathWorks,
Inc.; Natick, US).

F. Correlation Analysis of the Oxygen Index and
Depression Scales

The objective was to explore the characteristics of the oxy-
gen index and its relationships with depression scale scores.
This relationship between the HbO index of each individual
fNIRS channel and the depression scales was characterized
by computing the Pearson correlation coefficients, and a
significance level of 5% was considered.

G. Resting-State Analysis

The brain functional networks are mainly composed of
edges and nodes. First, we defined the fNIRS channel positions
as the nodes of the brain network; the number of nodes was 22.
Moreover, the definition of the edge is based on the calculated
connectivity between the channels. In this study, we selected
three coupling methods, including Pearson’s correlation coef-
ficient (CORR), the magnitude squared coherence (COH)
and phase-locking value (PLV), to calculate the functional
connectivity matrixes. The formulas are shown in Table II.

C O RRxy is a measurement used to describe the linear
correlation between two channels. C O Hxy is the square of the
coherency function (K), Pxy( f ) is the covariance of the two
channels at frequency f, and Px x( f ) and Pyy( f ) are the power
spectra of the two channels at frequency f. The PLV index

TABLE II
MATHEMATICAL FORMULATION OF THE THREE COMPUTING

METHODS USED IN THIS STUDY

considers only the relative phase difference of two channels,
and it is not affected by the amplitude.

The connectivity matrix is represented by an N × N square
matrix, where the rows and columns represent the nodes in
the connectivity network. The nodes can be represented by
channels or the region of interest (RoI). The value in the
connectivity matrix represents the strength of the connectivity
between nodes.

H. Activation Analysis

Task activation was quantified by a statistical paramet-
ric mapping approach based on a generalized linear model
(GLM) [38]. In Equation (1), Y is the vector of measurements,
X is the design matrix encoding the timing of stimulus
events, and regression coefficients βi are weighted values of
the stimulus condition for the corresponding channel. This
method fits the fNIRS data with a linear combination of
explanatory variables that reflect the design of the stimulus.
Thus, the GLM has a higher statistical power than the mean
because it considers the entire fNIRS time series. In this
study, parameter β is the eigenvalue extracted to discriminate
the patients with MDD and the HCs. Only those channels
that were found to have significant activation (p<0.05) were
included in this study [39].

⎡
⎢⎢⎢⎣

Y1
Y2
...

Yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 X11 · · · X1p

1 X21 · · · X2p
...

...
...

1 Xnp · · · Xnp

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎣

β0
β1
...

βp

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

γ1
γ2
...
γn

⎤
⎥⎥⎥⎦ (1)

Once these values were obtained, we used these values and
Montreal Neurological Institute (MNI) coordinates to locate
the specific activation channel. The Nirs2img function was
used to construct .img and .hdr documents, and these overlays
were then added to the cerebra model achieved by Surf_Ice
software. Surf_Ice is a tool used for rendering the cortex with
overlays to illustrate the tractography, network connections,
anatomical atlases and statistical maps. In this study, we use
this method to render the activation mode.

III. FEATURE EXTRACTION AND SELECTION

A. Statistical-Based Feature Extraction

Statistical features are conventionally used to extract infor-
mation from data [40], [41]. The purpose of including these
features in the current study was to compare the performance
of the proposed method against that of these conventionally
used features. Four common statistical features (mean, STD,
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Fig. 3. Polar coordinate plane for the analysis of cerebral oxygenation.
Phase numbers are shown in each octant. The relationship between the
cerebral oxygen change (ΔCOE) and cerebral blood volume (ΔCBV)
can be detected by the trajectory of a vector.

area under the receiver operating characteristic curve (AUC)
and slope) were calculated for �H bO. The temporal statistical
features were aggregated using a statistic for each trial and
channel.

In our study, each trial had 18 s of task-related data points,
and only 0-7 s of data points were extracted in the study;
therefore, we had a total of 8 trials for positive and negative
conditions. The total number of samples were 16 (subjects)×
4 (tr ials) × 2 (M DD + H C) = 128. Four attributes
(mean, STD, AUC and slope) from all 22 channels were
obtained, yielding 4 × 22 = 88 channels of vector features,
from Ch1_Mean, Ch2_Mean. . . to Ch21_Slope, Ch22_Slope.
Therefore, the final feature vector using the statistical-based
features has dimensions of 128 × 88.

B. Vector-Based Feature Extraction

Vector-based phase analysis has been successfully used for
the detection of initial dips in fNIRS signals [30], [42], [43].
This method is based on an orthogonal vector coordinate plane
defined by �H bO and �H bR signals, and rotating this plane
by 45 degrees counterclockwise results in another orthogonal
plane defined by �C BV and �C O E . A positive value for
�C O E shows a hypoxic change starting from �C O E=0,
and a negative value for �C O E shows a hyperoxic change.
The polar coordinate plane formed from these four axes is
called a cerebral oxygen regulation (CORE) vector plane.
A CORE vector has the four hemoglobin indices �H bO,
�H bR, �C BV and �C O E as its components, and the
relationship between them is shown in Fig. 3.

The angle k represents the ratio of �C O E to �C BV and
indicates the degree of oxygen exchange. The magnitude |L|,
drawn from the origin of a CORE vector to the coordinates
of a cumulative sum, shows the amplitude of a CORE vector
and represents the amount of change in hemoglobin.

The formulas are defined in Table III.
The four attributes of the vector-based phase analysis given

in Table III are computed for each time point of �H bO
and �H bR. In our study, each trial had 140 data points,
and we had a total of 8 trials for positive and negative
conditions. Therefore, the total number of data samples were
140 (data points)×16 (subjects)×4 (tr ials)×2 (M DD+
H C) = 17920. Four attributes (�C BV , �C O E , |L| and K)
from all 22 channels were obtained, yielding 4 × 22 =
88 channels of vector-based features from Ch1_�C BV and

TABLE III
DESCRIPTION OF VECTOR-BASED FEATURES

Ch2_�C BV . . . to Ch21_K and CH22_K. Therefore, the final
feature vector using the vector-based features has dimensions
of 17, 920 × 88.

C. Feature Selection

ReliefF is a type of feature weighting algorithm [44].
According to the correlation between each feature and cat-
egory, different weights are given to the features, and the
features whose weights are less than a certain threshold are
removed. This correlation is a measure of the distance between
the feature and its nearest samples. The weight of each feature
was determined by this distance. Therefore, the larger the
weight, the stronger the classification ability of the feature,
and vice versa. In this study, the ReliefF algorithm was used
for feature selection. For statistical- and vector-based features,
we selected the top 10 features for later classification.

IV. RESULTS AND ANALYSIS

A. Correlation Analysis of the Oxygen Index and Scales

The correlation between the oxygen index (MDD: HbO,
HCs: HbO) and the scales (PHQ-9, PHQ-15, GAD-7 and
AIS) was analyzed by Pearson correlation coefficients, and
we obtained some significant results. The statistical tests
were performed at the channel-based level. False discovery
rate (FDR) correction was used for the channels with sig-
nificant results, and p-values below 0.05 were considered to
indicate statistically significant differences. The results were
as follows: under the happy condition, correlation results of
more channels were found in both the MDD and HC groups,
as shown in Table IV.

Notably, we found that under the happy condition, the HbO
concentration in the MDD group was correlated with the AIS
scale for the most channels, namely, Ch1, Ch3, Ch4, Ch10,
Ch12, Ch15, Ch16, Ch17, and Ch19. Additionally, all the
results were negatively correlated, i.e., the higher the value
of the AIS scale score is, the lower the blood oxygen level
of MDD patients. The primary reason for this result is that
MDD patients often have refractory sleep disorders, and the
incidence rate is as high as 98% [45]. Furthermore, some
studies have shown that more than 70% of chronic insomnia
patients have hypoxemia, resulting in brain excitability due to
hypoxia, which leads to insomnia [46]. In the HC group, there
was negative correlation of some channels with the PHQ9
(Ch3, Ch5, Ch8, Ch9, Ch10, Ch17) and PHQ15 (Ch3, Ch8,
Ch9, Ch10, Ch22).
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TABLE IV
STATISTICAL RESULTS OF HBO CONCENTRATION DIFFERENCES

BETWEEN MDD PATIENTS AND HCS UNDER HAPPY CONDITIONS

Fig. 4. Functional connectivity matrixes calculated by the CORR.
(a) Functional connectivity matrixes of the HC group; (b) functional
connectivity matrixes of the MDD group; (c) difference matrix between
the two groups filtered out by a t-test (P < 0.05).

Under the fear condition, the HC group showed the most
channel correlation with the PHQ15 scale, and the results were
as follows: PHQ15: (Ch6) R = 0.385∗∗, (Ch7) R = 0.345∗∗,
(Ch12) R = 0.271∗, (Ch13) R = 0.253∗, (Ch15) R = 0.258∗,
(Ch18) R = 0.277∗, (Ch19) R = 0.357∗, (Ch21) R = 0.269∗
and (Ch22) R = 0.365∗∗. Under the calm and white noise
conditions, the HbO concentrations of MDD patients and HCs
did not appear significant for all channels.

To summarize the above results, we concluded that the
MDD group was significantly correlated with the AIS. Further-
more, we speculate that the reason for this finding may be that
people with MDD do not want to reflect their true emotional
state, and these scale questions often infringe on their privacy.
However, for the AIS, they are more willing to describe
their real situations. Our study showed a negative correlation
between the MDD patients and the assessed scales [47], [48].

B. Resting-State Analysis

We calculated the CORR, COH and PLV connectivity
matrix of the MDD and HC groups. The results are shown
in Figs. 4-6. Among them, the blue area indicates a more
active node (smaller p-value), which shows that it has a
higher relevance or synchronization level, and the yellow area
indicates a lower degree of relevance between channels.

Fig. 4 (a) and 4 (b), which represent the HC and MDD
groups, respectively, show that the yellow area for the MDD
group is larger than that of the HC group. The difference

Fig. 5. Functional connectivity matrixes calculated by the COH. (a) Func-
tional connection matrixes of the HC group; (b) functional connectivity
matrixes of the MDD group; (c) difference matrix between the two groups
filtered out by a t-test (P < 0.05).

Fig. 6. Functional connectivity matrixes calculated by the PLV. (a) Func-
tional connectivity matrixes of the HC group; (b) functional connectivity
matrixes of the MDD group; (c) difference matrix between the two groups
filtered out by a t-test (P < 0.05).

matrix between the two groups was filtered out by a t-test
(P <0.05). Fig. 4 (c) shows the obvious difference in the
functional connectivity matrixes of the two groups measured
by the CORR. Four significant results were found: Ch1–Ch4
(P = 0.038), Ch5–Ch6 (P = 0.039), Ch4–Ch6 (P = 0.040)
and Ch8–Ch11 (P = 0.008).

By the same method, Fig. 5 (c) shows the obvious differ-
ence in the functional connectivity matrixes of the two groups
measured by the COH. Six significant results were found:
Ch5–Ch6 (P = 0.031), Ch6–Ch13 (P = 0.036), Ch8–Ch13
(P = 0.038), Ch8–Ch12 (P = 0.039), Ch8–Ch11 (P = 0.003)
and Ch3–Ch11 (P = 0.004). Fig. 6 (c) shows the obvious
difference in the functional connectivity matrixes of the two
groups measured by the PLV. Four significant results were
obtained: Ch8–Ch11 (P = 0.004), Ch11–Ch15 (P = 0.019),
Ch8–Ch19 (P = 0.047) and Ch16–Ch20 (P = 0.045).

Fig. 4 (c), Fig. 5 (c) and Fig. 6 (c) suggest that the
functional connectivity matrix constructed by the COH has a
higher overall level of relevance or synchronization [49], [50],
and its significant result is larger than those of the CORR
and PLV. MDD patients have been shown to have aberrant
brain function.

C. Activation Analysis

Previous fNIRS studies revealed that positive and negative
emotion activation occurs in the PFC [20], [23], [47], [51]. Our
study used emotional sound stimuli to induce happiness-calm-
fear emotion states in the MDD and HC groups. Statistical
analysis of group variables indicated that the HbO concen-
tration of the MDD group was significantly higher than that
of the HC group under the happy condition (P = 0.014,
t = 2.57), the HbO concentration in the MDD group under the
calm condition was significantly higher than that in the HC
group (P = 0.001, t = 3.69), and the HbO concentration in the
MDD group under the fear condition was significantly lower
than that in the HC group (P = 0.001, t = −3.50). There was
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TABLE V
SIGNIFICANT DIFFERENCE IN THE HBO CONCENTRATION BETWEEN

MDD PATIENTS AND HCS UNDER DIFFERENT CONDITIONS

Fig. 7. HbO changes in the MDD patients under (a) happiness, (b) calm,
and (c) fear conditions.

Fig. 8. HbO changes in the HC group under (a) happiness, (b) calm and
(c) fear conditions.

no significant difference in HbO concentration between the
two groups under the white noise condition (P > 0.05). The
specific results are shown in Table V.

Fig. 7. shows the frontal lobe activation of MDD patients
under three conditions, and the activation patterns show obvi-
ous differences. Fig. 8. shows the frontal lobe activation of
HCs under three conditions. Red represents a strong activation
of HbO, while yellow indicates that activation is not obvi-
ous. By comparing Fig. 7 (a) and Fig. 8 (a), we found that
the right orbitofrontal cortex (ROFC) and left orbitofrontal
cortex (LOFC) were both activated in MDD patients and
HCs. However, for the MDD group, the activation of the
ROFC was significantly stronger than that of the LOFC.
By comparing Fig. 7 (b) and Fig. 8 (b), we can conclude that
compared with HCs, the activation area of MDD patients is
significantly reduced because depressed mood is associated
with the bilateral ventrolateral PFC (VLPFC). We found that
the activated state of the MDD group was significantly reduced
under neutral conditions in the bilateral dorsolateral PFC
(DLPFC).

Our result supports the findings from [49]; specifically,
MDD subjects showed reduced functional connectivity in parts
of the default mode network (DMN) compared with HCs.
Fig. 7 (c) and Fig. 8 (c) show the HbO concentration changes
in the MDD patients and HCs in terms of the fear emotion,
and these changes are significantly different than those found
for the happiness emotion. There were significant differences
between the MDD patients and HCs in the activation region.
MDD group activation was significantly reduced in the bilat-
eral ventrolateral PFC (VLPFC), while there was apparent

TABLE VI
STRUCTURES AND PARAMETERS OF SIMPLE NEURAL NETWORKS

activation in the HCs. Based on all of the above results,
it can be deduced that MDD patients had abnormal activation
patterns compared with HCs [47], [52], [53], and depression
may lead to abnormal blood oxygen metabolism in MDD
patients.

D. Simple Neural Networks

To determine the optimal feature combination that provides
the best results, all possible single-feature, two-feature, three-
feature and all-feature combinations using the statistical- and
vector-based features were computed. All the statistical- and
vector-based features were used to obtain classification accu-
racies for the two groups (MDD vs. HC) using a simple neural
network.

In this study, we used four simple neural networks to
perform classifications: a multilayer neural network (MNN),
a feedforward neural network (FNN), a cascade forward neural
network (CFNN), and a recurrent neural network (RNN). The
network structures are shown in Table VI. The classification
performance was evaluated using LOSO strategy. For the
MNN, the training algorithm used was the scaled conjugate
gradient (CG) method [54], and the performance was mea-
sured by the cross-entropy. For the FNN, CFNN and RNN,
the training algorithm used was the Levenberg-Marquardt
(LM) method [54], and the performance was measured by the
mean squared error (MSE).

Table VII provides the accuracies of signal features
using statistical- and vector-based features. The highest
classification accuracies obtained using a single feature
are 88.79% (happiness: RNN_AUC) and 98.61% (fear:
CFNN_|L|) for the two types of features. Table VIII pro-
vides the accuracies of the two-feature combinations using
the statistical- and vector-based features. The highest classi-
fication accuracies obtained using the two-feature combina-
tions are 87.37% (fear: FNN_Mean and STD) and 99.78%
(happiness: CFNN_�C O E and |L|). Table IX provides the
accuracies of three-feature combinations using the statistical-
and vector-based features. The highest classification accu-
racies obtained using the three-feature combinations are
90.51% (fear: CFNN_Mean, STD and Slope) and 99.91%
(fear: RNN_�C BV , �C O E and |L|). Table X provides the
accuracies for the all-feature combinations using the statistical-
and vector-based features. The highest classification accura-
cies obtained using the all-feature combinations are 89.74%
(fear: mean, STD, AUC and slope) and 99.94% (fear: �C BV ,
�C O E , |L| and K) for the two types of features.

In conclusion, these results suggested that the best result was
obtained for the fear condition. Therefore, there is a significant
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TABLE VII
AVERAGE CLASSIFICATION ACCURACIES OF THE SIGNAL STATISTICAL- AND VECTOR-BASED FEATURES FOR THE MDD PATIENTS AND HCS

TABLE VIII
AVERAGE CLASSIFICATION ACCURACIES OF THE TWO-FEATURE COMBINATIONS FOR THE MDD PATIENTS AND HCS

TABLE IX
AVERAGE CLASSIFICATION ACCURACIES OF THE THREE-FEATURE COMBINATIONS FOR THE MDD PATIENTS AND HCS

difference between the MDD patients and HCs in terms of
negative emotions, and negative emotions play an important
role in the distinction between MDD patients and HCs.

E. Feature Selection

In this study, we used the ReliefF algorithm to perform
feature selection, and its classification accuracies are shown
in Fig. 9 and Fig. 10. The results of feature selection with
6 different parameters (ref (5), ref (10), ref (15), ref (20),

ref (25), ref (30)) were compared with those without fea-
ture selection. As can be seen from the figures, when the
feature dimensions are reduced to 10 dimensions, there is
better accuracy and fewer feature dimensions. Additionally,
we performed simple feature fusion and machine learning
classification (KNN, RF and SVM) of the 10-dimensional
feature results, as shown in Table XI and Table XII.

Table XI shows the accuracy when the feature dimensions
are reduced to 10 dimensions. For the statistical-based fea-
tures, the highest accuracy is 83.52% (fear: CFNN_Ref (10)),
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TABLE X
AVERAGE CLASSIFICATION ACCURACIES OF THE ALL-FEATURE COMBINATIONS FOR THE MDD PATIENTS AND HCS

TABLE XI
RESULTS OF FEATURE SELECTION AND FEATURE FUSION

TABLE XII
RESULTS OF MACHINE LEARNING

Fig. 9. Results of the statistical-based feature using the ReliefF feature
selection algorithm.

Fig. 10. Results of the vector-based feature using the ReliefF feature
selection algorithm.

and for the vector-based features, the highest accuracy is
91.99% (fear: CFNN_Ref (10)). Table XII shows that the
highest accuracy of machine learning when the feature dimen-
sions are reduced to 10 dimensions is 79.67% (fear: SVM)
and 86.60% (fear: SVM). In addition, Table XIII shows the
top 10 features we obtained. These features show that the

TABLE XIII
RESULTS FOR THE STATISTICAL- AND VECTOR-BASED FEATURES

USING THE RELIEFF FEATURE SELECTION ALGORITHM AND THE

TOP 10 FEATURES OBTAINED FOR EACH CLASS

abovementioned combinations can also be effectively used to
achieve enhanced classification accuracies.

V. DISCUSSION

The present study investigated fNIRS-based MDD recog-
nition. Four different methods, namely, correlation analysis
of the oxygen index and scales, resting-state analysis, acti-
vation analysis and simultaneous neural network recognition,
were used for quantitative recognition of MDD patients. The
response patterns for different emotion classes were character-
ized by computing the Pearson correlation coefficients between
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the HbO/HbR responses of each individual fNIRS channel and
four scale scores. The MDD and HC groups had significant
differences in terms of the AIS scores. We speculate that
MDD patients often have insomnia, which will affect their
blood oxygen metabolism for a long time. Kawano et al. [48]
investigated the relationship between recorded blood flow and
depression severity assessed using the Hamilton depression
scale in patients with various psychiatric disorders, and they
found that the severity of depression was negatively correlated
with the integral value of blood flow in the frontal lobe,
irrespective of psychiatric diagnosis (f=5.94, P=0.02). Our
results support blood flow in the frontal lobe as an potential
biomarker of depression severity across various psychiatric
disorders.

By quantitatively evaluating the functional connectivity,
we found that MDD patients exhibit aberrant functional con-
nectivity compared with HCs. In Rosenbaum’s study, subjects
with depression showed reduced functional connectivity in
parts of the DMN compared with HCs. The results suggest
that MDD damages the local connectivity of the functional
brain networks of patients, which is consistent with the results
of earlier studies [55].

Previous fNIRS studies have reported reduced oxygenation
changes in the PFC during cognitive tasks in patients with
MDD [56]. One study used image stimuli to induce very pleas-
ant, neutral, and very unpleasant emotional states, and it was
found that negative emotion was accompanied by an increase
in HbO in the bilateral VLPFC. Nevertheless, positive emotion
showed a decrease in HbO in the left dorsolateral PFC [57].
However, another music therapy-based study showed that the
MDD group exhibited significant activation in the DLPFC,
orbitofrontal cortex (OFC) and ventromedial prefrontal cor-
tex (VMPFC) after music therapy [3]. In the present study,
the reduction in the HbO concentration in the PFC subregions
is consistent with previous fNIRS studies in humans [2], and
we found significant differences between patients with MDD
and HCs in terms of the activation region. The activated state
of the MDD group was significantly reduced under neutral
conditions in the bilateral DLPFC, and the blood oxygen
metabolism level in the bilateral VLPFC was significantly
reduced. Based on all of the above results, it could be deduced
that MDD patients have abnormal activation patterns compared
with HCs.

As summarized in Tables VII-X, the statistical-based fea-
tures achieved an accuracy of 89.74%. However, the classifi-
cation performance of the vector-based features demonstrated
significant improvement compared with the former, achieving
an accuracy of 99.94%. In addition, the result of the Reli-
efF feature selection algorithm indicates that by using only
10-dimensional features, we can also obtain better results.

These results all indicate that there are great differences
between MDD patients and HCs in different aspects. The
innovations of this paper are as follows: (1) The differences in
brain activity between MDD patients and HCs were analyzed
from different perspectives, providing some neuroscience evi-
dence for our subsequent classification. (2) We tried to use
correlation analysis to assess the association between the blood
oxygen index and scales and found that there was a significant

negative correlation between HbO and sleep status in MDD
patients. (3) Two types of features, namely, statistical-based
features and vector-based features, were extracted from our
dataset. Moreover, good results were obtained using four sim-
ple neural networks. Through the method of feature selection,
we found that when the feature dimensions are reduced to
10 dimensions, the highest accuracy is 83.52% and 91.99%
for statistical- and vector-based features, respectively. We also
identified the AUC and angle K as specific neuromarkers for
predicting MDD across specific depression-related regions of
the PFC.

In the future, we will aim to employ the concurrent
EEG+fNIRS method, the decoding accuracy of which has
been shown to be greater than that of its subsystems. We are
now developing a set of portable EEG+fNIRS devices for
medical diagnosis and rehabilitation engineering, and we will
aim to identify a new type of neurovascular feature derived
from hybrid data. Beyond these objectives, we will attempt
to provide some optimal channel selection methods to reduce
the number of source and detector optodes while retaining
the classification performance. Additionally, to translate these
findings to the clinical diagnosis of depression, more extensive
research with a larger sample size involving both sexes must
be performed.
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