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Abstract— This paper is focused on planning fast, accurate,
and optimal trajectories for autonomous parking. Nominally,
this task should be described as an optimal control problem
(OCP), wherein the collision-avoidance constraints guarantee
travel safety and the kinematic constraints guarantee tracking
accuracy. The dimension of the nominal OCP is high because it
requires the vehicle to avoid collision with each obstacle at every
moment throughout the entire parking process. With a coarse
trajectory guiding a homotopic route, the intractably scaled
collision-avoidance constraints are replaced by within-corridor
constraints, whose scale is small and independent from the
environment complexity. Constructing such a corridor sacrifices
partial free spaces, which may cause loss of optimality or
even feasibility. To address this issue, our proposed method
reconstructs the corridor in an iterative framework, where a
lightweight OCP with only box constraints is quickly solved in
each iteration. The proposed planner, together with several preva-
lent optimization-based planners are tested under 115 simulation
cases w.r.t. the success rate and computational time. Real-world
indoor experiments are conducted as well.

Index Terms— Autonomous parking, trajectory planning, col-
lision avoidance, numerical optimal control, optimization.

I. INTRODUCTION

A. Background

AUTONOMOUS driving systems are making a promising
change to the urban transportation modes [1]. As a
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critical module in an autonomous vehicle [2], [3], trajectory
planning identifies a spatiotemporal curve that is free from
collisions, easily tracked by the controller, and comfortable
for the passengers. Trajectory planners have been widely
developed for on-road autonomous driving [4]–[6]. Compared
with on-road cruising, parking in an unstructured scenario
is more challenging [7]–[9] because 1) there is no longer a
navigational reference line, 2) a trajectory typically contains
cusps, thus it is no longer a smooth curve, and 3) obstacles are
less regularized than those on a structured road. Few of the
prevalent on-road trajectory planners can be used to handle a
generic parking planning scheme because of these factors. This
work is focused on the autonomous parking trajectory planning
problems in complex scenarios with irregularly placed static
obstacles.

B. Related Works

The existing trajectory planners suitable for autonomous
parking primarily include the sampling-and-search-based and
optimization-based methods. A sampling-and-search-based
approach discretizes the continuous state space into a graph
of nodes and searches in the graph for a valid link from
the starting node to the goal node. This category has two
branches, that is, to sample the state space or control space.
Typical methods that sample the state space primarily include
the state lattice approach [10], and the rapidly-exploring
random tree series [11], [12]. Meanwhile, the typical control-
space samplers include the hybrid A∗ algorithm [13], and
the dynamic window approach [14]. As the second category,
optimization-based methods describe a trajectory planning task
as an optimal control problem (OCP) and discretize it into a
nonlinear programming (NLP) problem [15], [16]. Sampling-
and-search- based planners are good at choosing the homotopy
class globally (e.g., left or right around each of the obstacles)
while optimization-based planners are superior in finding a
local optimum while keeping the homotopy class not altered.
Sampling-and-search-based and optimization-based planners
perform better when they are combined. The rest of this sub-
section elaborates on the state-of-the-art optimization-based
trajectory planners for autonomous parking.

An optimization-based trajectory planner is commonly used
to provide optimal trajectories precisely. To the best of the
authors’ knowledge, Kondak and Hommel [17] were the first
to describe a parking trajectory planning problem as an OCP
and then numerically solve it. Using a triangle-area criterion
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to describe the vehicle-to-obstacle collision-avoidance con-
straints analytically, Li and Shao [18] proposed a unified
OCP model for parking cases with arbitrarily placed obstacles.
However, such collision-avoidance constraints are nominally
non-differentiable and non-convex. Shi et al. [19] formu-
lated a nested optimization model to simplify the nominal
collision-avoidance constraints. Zhang et al. [20] proposed
an optimization-based collision avoidance (OBCA) method,
wherein signed distance functions are used to improve the
differentiability of the nominal collision-avoidance constraints.
Bergman and Axehill [21] proposed a Sequential Homo-
topy Quadratic Programming (SHQP) strategy, which shrinks
the obstacles to ease the collision-avoidance constraints and
then expands them incrementally towards their nominal sizes.
By solving a series of easier OCPs prior to handling the
nominal one, the entire difficulties are dispersed evenly
among the easier OCPs. A similar idea was proposed by
Li et al. [22], wherein an arbitrary spatiotemporal restriction
is first imposed to simplify the OCP formulation, and then
gradually relaxed until a near-optimal parking trajectory is
found.

A near-optimal or even near-feasible initial guess can largely
facilitate the numerical solution process of an OCP. One may
generate a coarse trajectory and then warm-start an OCP solu-
tion process with that initial guess. A∗ [23], hybrid A∗ [13],
and metaheuristic algorithms [24] were used to provide an
initial guess. Since the predominant NLP solvers only find
local optima, an initial guess determines the homotopy class of
the optimized trajectory finally [25]. The same-homotopy-class
property makes an initial guess close to the final optimum,
thus it is natural to consider paving a local corridor along the
initial guess so that the vehicle is completely separated from
the surrounding obstacles [26]. Circles [27], rectangles [28],
and convex polygons [29] were considered to construct a
corridor, whereby the intractably scaled collision-avoidance
constraints in the nominal OCP are converted into a small scale
of within-corridor constraints. However, these methods either
ignore the vehicle shape when paving the corridor [27], [29]
or require exhausting offline preparations [28]. Li et al [30]
proposed a spiral growth strategy to construct the corridors
along a reference trajectory derived by the hybrid A∗ algorithm
online, thereby quickly finding a near-optimal parking trajec-
tory. However, this method sometimes fails for the following
reasons. First, the adopted hybrid A∗ method is theoretically
incomplete, thus the corridors are unavailable if the hybrid A∗
algorithm becomes inefficient. Second, the reference trajectory
derived by the hybrid A∗ method may not be optimal or
even kinematically feasible, thus influencing the quality of the
constructed corridors.

C. Contributions

This work aims to achieve fast, accurate, and high-quality
parking trajectory planning performance. To ensure that the
planning results are optimal and precise, we need to formulate
an OCP and numerically solve it. To make the numerical
solution process fast, we need to 1) identify a good ini-
tial guess via a sampling-and-search-based method quickly;

and 2) replace the intractably scaled collision-avoidance con-
straints with within-corridor conditions. As previously men-
tioned, constructing corridors has the underlying risks of
rendering the OCP infeasible or the derived solution far
from being optimal. As a typical sampling-and-search-based
algorithm for autonomous parking, the conventional hybrid
A∗ algorithm is incomplete, thus sometimes cannot find a
solution within a limited time. The purpose of this work is to
address the aforementioned issues in planning fast, accurate,
and high-quality trajectories for autonomous parking.

The contributions of this paper are two-fold. First, a fault-
tolerant variant of the hybrid A∗ algorithm is proposed, which
ensures that a reference trajectory is available quickly even
if the conventional hybrid A∗ algorithm becomes inefficient.
Second, an iterative framework that incorporates a corridor
construction procedure and a lightweight NLP solution pro-
cedure is proposed to ensure that the trajectory optimization
quality is not affected when the initial guess is poor, or when
the free spaces are left out by the constructed corridors.

D. Organization

The rest of this paper is structured as follows. Section II
presents the problem statement in the form of a nominal
OCP. As a foundation, Section III introduces how to convert
the nominal collision-avoidance constraints of the OCP into
within-corridor constraints. A lightweight iterative framework
is proposed in Section IV for providing trajectory planning
results. Experimental setups and results are elaborated in
Section V. Finally, some conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

In this section, a generic autonomous parking trajectory
planning scheme is formulated as an OCP nominally.

A. Overall Formulation

Let us denote the vehicle state profile as z ∈ R
nz , the control

profile as u ∈ R
nu , the workspace as ϒ , the obstacle space as

ϒOBS ⊂ ϒ , and the free space as ϒFREE = ϒ\ϒOBS. The
trajectory planning scheme is written as

min
z(t),u(t),T

J (z(t),u(t)) ,

s.t., ż(t) = f (z(t),u(t)) ,

z ≤ z(t) ≤ z̄, u ≤ u(t) ≤ ū, t ∈ [0, T ];
z(0) = zinit, u(0) = uinit;
gend (z(T ), u(T )) ≤ 0;
f p(z(t)) ⊂ ϒFREE, t ∈ [0, T ]. (1)

Herein, T denotes the parking process duration in seconds
(not known a priori), and J is the cost function to be
minimized. We use the common shorthand ż to denote the
derivative w.r.t. time, i.e., ż = ∂z/∂ t [31], [42]. Function
f describes the vehicle kinematics. [z, z̄] and [u, ū] denote
the allowable intervals where z(t) and u(t) stay. zinit and uinit
denote the initial values of z(t) and u(t), respectively. The
inequality gend ≤ 0 models the implicit end-point conditions
at t = T . f p(·):Rnz → R

2 is a mapping from vehicle
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Fig. 1. Schematics on vehicle kinematics and geometric sizes.

state to its footprints, thus f p(z(t)) ⊂ ϒFREE,∀t represents
the collision- avoidance constraints. In the remainder of this
section, we elaborate on the details behind the aforementioned
abstract symbols.

B. Vehicle Kinematic Constraints

This subsection formulates the differential equations ż(t) =
f (z(t),u(t)) in (1). The well-known bicycle model is used to
describe the vehicle kinematics during the low-speed parking
process [18]:

d

dt

⎡
⎢⎢⎢⎢⎣

x(t)
y(t)
v(t)
φ(t)
θ(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v(t) · cos θ(t)
v(t) · sin θ(t)

a(t)
ω(t)

v(t) · tan φ(t)/LW

⎤
⎥⎥⎥⎥⎦ , t ∈ [0, T ]. (2)

Herein, (x , y) is the rear-wheel axle mid-point (point P
in Fig. 1), φ is the steering angle, ω is the angular velocity,
v is the velocity of P , a stands for the acceleration, θ is the
orientation angle, and LW denotes the wheelbase. According
to (1), the state profiles z refer to the variables that are
differentiated. Thus z(t) = [x(t), y(t), θ(t), v(t), φ(t)] and
u(t) = [a(t), ω(t)].

Besides LW, other geometric parameters such as LF (front
overhang length), LR (rear overhang length), and LB (width)
are also depicted in Fig. 1.

The aforementioned state/control variables have allowable
intervals, which reflect the physical or mechanical limitations
related to vehicle kinematics:⎡

⎢⎢⎣
amin
vmin
−�max
−�max

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

a(t)
v(t)
ω(t)
φ(t)

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

amax
vmax
�max
�max

⎤
⎥⎥⎦ , t ∈ [0, T ]. (3)

C. Boundary Constraints

Boundary constraints z(0) = zinit, u(0) = uinit, and gend ≤ 0
in (1) are deployed to specify the vehicle’s configurations at
t = 0 and T . At t = 0, we have

[x(0), y(0), θ(0), v(0), φ(0), a(0), ω(0)]
= [x0, y0, θ0, v0, φ0, a0,w0], (4)

Nonetheless, at the endpoint t = T , simply imposing
z(T ) = zend may cause problems because of θ(T ). Concretely,
θ(t) is differentiable, thus it is continuous w.r.t. t . Since

Fig. 2. An example reflecting the difference between setting θ(T ) to 0 and
2π .

θ(t) cannot jump, directly setting θ(T ) to a point would fix
the phase difference between θ(0) and θ(T ), which might
misleadingly restrict the behavior of the vehicle. For example,
the trajectories of a vehicle that travels from θ(0) = 0 to
θ(T ) = 0 or θ(T ) = 2π are plotted in Fig. 2, respectively.
Typically in an on-road local trajectory planning scheme,
the phase difference between θ(0) and θ(T ) is not large,
thus setting θ(T ) to a point never excites challenges. But
free-space parking allows backward maneuvers, thus a winding
trajectory may be necessary to avoid collisions. Due to this
reason, we use the following equalities to describe the end-
point constraints:
[x(T ), y(T ), v(T ), φ(T ), a(T ), ω(T )]

= [xF, yF, vF, φF, aF,wF], (5a)

and

sin θ(T ) = sin(θF),

cos θ(T ) = cos(θF). (5b)

D. Collision-Avoidance Constraints

This subsection presents the collision-avoidance constraints
f p(z(t)) ⊂ ϒFREE in (1). Suppose that the ego vehicle moves
in a static environment with NOBS convex polygonal obstacles.
Collisions between the ego vehicle and each obstacle should be
avoided at every instance during [0, T ]. Suppose that the ego
vehicle does not collide with any of the obstacles at the initial
moment t = 0, collisions will not occur during t ∈ (0, T ]
if 1) every vertex of the rectangular ego vehicle stays out of
each polygonal obstacle, and 2) every vertex of each polygonal
obstacle stays out of the rectangular ego vehicle. It deserves
to emphasize that the aforementioned conditions are true only
when the polygonal obstacles are convex. Concave polygonal
obstacles need to be decomposed into convex ones. The
requirement to keep one point Q = (xq, yq) out of a polygon
W1W2 . . .Wm can be modeled analytically via a triangle-area
criterion [32]:

S
QWmW1 +
m−1∑
l=1

S
QWl Wl+1 > S W1W2...Wm , (6)

where S
 denotes a triangle area, and S denotes the area
of a polygon. Each S
 is computed based on the vertex
coordinates. Concretely, suppose that the coordinate of Wl is



LI et al.: OPTIMIZATION-BASED TRAJECTORY PLANNING FOR AUTONOMOUS PARKING 11973

(xWl , yWl), then

S
QWl W(l+1) =
1

2
· ∣∣xqyWl + xWlyW(l+1) + xW(l+1)yq

− xqyW(l+1) − xWl yq − xW(l+1)yWl

∣∣ . (7)

As a constant value, S W1W2...Wm is calculated by summing
up multiple triangle areas.

Suppose that the four vertexes of the ego vehicle at t
are denoted as A(t), B(t),C(t), and D(t), and that the
j th obstacle has NP j vertexes {V j k

∣∣k = 1, . . . ,NP j }, then
the conditions 1) and 2) are summarized into the following
inequalities:

S
QV jNP j V j1 +
NP j−1∑

k=1

S
QV jkV j (k+1)

> S V j1V j2...V jNP j
,

×∀Q ∈ {A(t), B(t),C(t), D(t)} , (8)

and

S
Q A(t)B(t)+ S
Q B(t)C(t)+ S
QC(t)D(t)+ S
Q D(t)A(t)

> S A(t)B(t)C(t)D(t),

×∀Q ∈ {
V j1,V j2, . . . ,V jNP j

}
. (9)

Applying (8) and (9) to ∀t ∈ [0, T ] and j = 1, . . . ,NOBS
yields the complete collision-avoidance constraints.

This work assumes that all of the obstacles are static because
predicting the future maneuver of a moving obstacle in a
parking scenario is typically not as easy as it is on a structured
road. Also, some extra computational time is needed before the
vehicle can really react to the moving obstacles. In parking an
autonomous vehicle, the primary challenge is not the capability
to consider moving obstacles, but to handle the irregularly
placed obstacles in a cluttered environment regardless of they
are static or not.

E. Cost Function

In this work, a time-energy cost function is defined as
follows:

J = w ·
∫ T

τ=0

(
a2(τ )+ v2(τ ) · ω2(τ )

)
· dτ + T , (10)

where w > 0 is a weighting parameter. The first term models
the passenger comfort according to the ISO 2631-1 standard
mentioned in [33], the second term is deployed to show our
preference to finish the parking process early.

As a summary of the whole section, a generic autonomous
parking trajectory planning scheme is described as the follow-
ing OCP:

min
z(t),u(t),T

(10),

s.t. Kinematic constraints (2) and (3);

Boundary conditions (4) and (5);

Collision-avoidance constraints (8) and (9). (11)

Fig. 3. A simple case illustrating partial collision-avoidance constraints in
the nominal OCP formulation are redundant.

Fig. 4. Schematics of the constructed corridors. A corridor is paved along
each route and each corridor consists of five local boxes. Note that the scale
of the within-corridor constrains is irrelevant to the number of obstacles.

III. CORRIDOR CONSTRUCTION

A. Motivations

The nominal OCP (11) formulated in the preceding section
is intractable because it requires the ego vehicle to avoid
collision with each obstacle at every time instant. However,
the ego vehicle does not have the chance to collide with each
obstacle at every moment. Regarding the task to travel from A
to B in Fig. 3, if the ego vehicle travels via route 1, then it has
slim chances to collide with obstacles O1 or O2 at the bottom;
if the vehicle chooses route 2 instead, it may not collide
with O5. Therefore, simultaneously avoiding collisions with
O1, O2, and O5 renders redundant constraints. If a guiding
route is given a priori, the scale of the collision-avoidance
constraints can be reduced. To consider further, if a corridor
is constructed along a selected route to separate the ego
vehicle from the surrounding obstacles, then the scale of
the environment-related constraints becomes fully independent
from the number of obstacles, i.e., being irrelevant to the
complexity of the environment (Fig. 4).

In the remainder of this section, we first identify a guiding
route, then construct the corridors, finally formulate the within-
corridor constraints.

B. Generation of a Guiding Route

A guiding route like the ones presented in Fig. 4 should be
identified before we construct the corridors. This subsection
introduces how to generate such a guiding route. Searching in
the x − y− θ 3-dim mesh grids, the hybrid A∗ algorithm [13]
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generates a route that connects the initial and goal configura-
tions.

Since the hybrid A∗ algorithm is not complete, it may
fail when the environment is complex. We propose a fault-
tolerant hybrid A∗ (FTHA) algorithm, which guarantees to
have an output even if the conventional hybrid A∗ search
fails. In FTHA, a best-so-far node is maintained to record the
explored node with the smallest cost-to-go value during the
iterations. Recall that a hybrid A∗ search process is regarded
as failed when the maximum iteration number is reached or
the openlist becomes empty. When a hybrid A∗ search process
fails, one can still get a path from the initial node to the best-
so-far node. At the same time, another path from the best-
so-far node to the goal node can be identified via a 2-dim
A∗ search. Connecting the two paths renders a guiding route
from the initial point to the goal point, although the end-point
orientation angle may not satisfy the desired constraint (5b).
The identified guiding route determines from which side the
ego vehicle bypasses each of the NOBS static obstacles.

When the guiding route is derived, we attach a minimum-
time velocity profile to form a coarse trajectory. This is
achieved by solving a one-dimensional OCP via Pontryagin’s
Maximum Principle (PMP). The derived coarse trajectory
is resampled evenly in time as (NFE + 1) elements χP ={
σ0, σ1, . . . , σNF E

}
, wherein each element σi is a vector

containing the vehicle location, orientation angle, and time
stamp, i.e., σi = [x(ti), y(ti ), θ(ti ), ti ]. The time-stamp in the
last element tNF E reflects the initially guessed T , which is
specified by the aforementioned PMP.

Note that a coarse trajectory derived by our FTHA algorithm
may not satisfy the vehicle kinematic constraints, but as we
will introduce later, χP is used to construct the corridors at
the very beginning. This means that the underlying low quality
of χP would not influence the entire trajectory optimization
performance provided that the selected homotopy class is
unpromising.

C. Construction of Corridors

This subsection introduces the construction of corridors
along the coarse trajectory such that the ego vehicle can
safely avoid all of the obstacles if it stays in the corridors.
When a corridor is available, requiring a mass point to
stay in the corridor is easier than requiring a rectangular
vehicle. Thus the well-known safe flight corridor (SFC) based
planners in the community of unnamed aerial vehicle (UAV)
(e.g. [34], [35]) are not directly applicable. In our study,
the SFC concept is extended such that a rectangular vehicle
body can be dealt with.

Two discs are used to evenly cover the vehicle body
(Fig. 5a). The disc centers, namely Pf = (xf, yf) and Pr =
(xr, yr), are quartile points along the vehicle’s longitudinal
axle:

xf(t) = x(t)+ 1

4
(3LW + 3LF − LR) · cos θ(t),

yf(t) = y(t)+ 1

4
(3LW + 3LF − LR) · sin θ(t),

xr(t) = x(t)+ 1

4
(LW + LF − 3LR) · cos θ(t),

Fig. 5. Schematics of vehicle shape shrinking and obstacle dilatation:
(a) presenting the vehicle shape with two discs; (b) shrinking the vehicle
shape and dilating the environmental obstacles.

yr(t) = y(t)+ 1

4
(LW + LF − 3LR) · sin θ(t). (12)

RD, the radius of either disc, is determined by

RD = 1

2

√
(
LR + LW + LF

2
)2 + (LB)2. (13)

The condition that each disc does not overlap with the
obstacles is the same as that each disc center keeps a distance
of RD from the obstacles at least. Therefore, an equivalent
conversion can be made by simultaneously shrinking the two
discs to their centers and dilating the obstacles by RD (see
Fig. 5b). The new map with the dilated obstacles is denoted
as a dilated map.

The next step is to construct two corridors in the dilated
map for Pf and Pr, respectively. Note that the corridors we
build for the disc centers are based on the dilated map, thus
keeping Pf and Pr in their own series of corridors ensures that
the rectangular vehicle does not collide with the obstacles in
the original environment.

Let us focus on the corridor construction process of Pf
first. With the coarse trajectory χP at hand, we compute
the coarse trajectory of point Pf via (12). The resultant
trajectory is presented in the form of (NFE+1) elements
χPf =

{
σ F

0 , σ
F
1 , . . . , σ

F
NF E

}
. We need to pave a corridor which

1) fully covers χPf , and 2) does not overlap with the dilated
obstacles in the dilated map. We require that the corridor
consists of multiple regularly placed local boxes like the ones
shown in Fig. 6a. We use regularly placed local boxes because
they make the within-corridor constraints box constraints (we
will introduce this idea in the next subsection). Except for the
first element, each of the rest NFE elements in χPf represents
a point, which is called a waypoint. Each waypoint should be
covered by one local box, which means a corridor consists of
NFE local boxes. Without losing generality, we focus on how
to identify the kth local box.
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Fig. 6. Principle to identify a corridor: (a) a corridor consisting of local
boxes; (b) expansion trial direction order and sampled waypoints along the
coarse trajectory; (c) expansion trials conducted in a sequence.

The kth local box is responsible for covering the element
indexed k in χPf . The kth local box is initially constituted by a
zero-width-zero-length rectangle and is expanded in each edge
in turn until an overlap with the dilated map is detected. The
expansion order is defined in Fig. 6b. In Fig. 6c, each expan-
sion trial pushes the involved edge of the currently approved
region outwards by a constant size 
s. We check, at each time,
whether the expanded region (see each small block labeled
with a unique number 1,2,3,…,11 in Fig. 6c) causes collisions
in the dilated map [36]. If no collision occurs, the expanded
region is merged into the currently approved region; otherwise,
it is rejected and no further expansions are conducted in that
direction. In each direction, a maximum expansion length
Llimit is introduced to avoid excessive growth. The principle
to identify a local box over a given waypoint (xc, yc) is
summarized by the pseudo-codes in Alg. 1 as follows:

The output of GenerateLocalBox() is a vector containing
four elements, which records the ranging intervals of the
identified local box in the x and y axes, respectively. In line 7,
the function tr ial_area ← ExpandBox(box, dir) is used to
identify an additional region tr ial_area by pushing the edge
of a regularly placed box box in the direction of dir by
a certain step 
s. The function IsBoxValid(tr ial_area) is
deployed to check if the aforementioned region tr ial_area
overlaps with the dilated obstacles in the dilated map.

Applying Alg. 1 to all of the waypoints yields two corridors
for Pf and Pr, respectively:

The output of GenerateCorridors() is a vector
containing 8NFE elements, all of which determine
the two corridors. In line 1 of Alg. 2, the function
GenerateReferenceTrajectory(χP) calculates two reference
trajectories according to the coarse trajectory χP we identify
in Section III.B.

Algorithm 1 Local Box Generation
Function GenerateLocalBox(xc, yc)

1. �ID← {1, 2, 3, 4}
2. �DIRECTION← {π/2, π, 3π/2, 0};
3. �LENGTH← {0, 0, 0, 0};
4. ϒAPPROVED← (xc, yc);
5. while �ID 	= ∅ do
6. for each i ∈ �ID do
7. ϒTRIAL←ExpandBox(ϒAPPROVED,�DIRECTION[i ]);
8. if IsBoxValid(ϒTRIAL) then
9. �LENGTH[i ] ← �LENGTH[i ] +
s;

10. ϒAPPROVED← ϒTRIAL ∪ ϒAPPROVED;
11. if �LENGTH[i ] ≥ Llimit then
12. �ID← �ID\i ;
13. end if
14. else
15. �ID← �ID\i ;
16. end if
17. end for
18. end while

19.

xmin← xc −�LENGTH [3],
xmax ← xc +�LENGTH [1],
ymin← yc −�LENGTH [2],
ymax ← yc +�LENGTH [4];

20. return with
[
xmin, xmax, ymin, ymax

]
.

Algorithm 2 Corridor Generation
Function GenerateCorridors(χP)

1. [χPf, χPr ] ← GenerateReferenceTrajectory(χP );
2. �← ∅;
3. for k = 1 . . .NFE do
4. [xrk

min, xrk
max, yrk

min, yrk
max]

← GenerateLocalBox(χPr[k].x, χPr[k].y);
5. �← � ∪ [xrk

min, xrk
max, yrk

min, yrk
max];

6. [xfk
min, xfk

max, yfk
min, yfk

max]
← GenerateLocalBox(χPf [k].x, χPf[k].y);

7. �← � ∪ [xfk
min, xfk

max, yfk
min, yfk

max];
8. end for
9. return with �.

D. Within-Corridor Constraint Formulation

With the two constructed corridors at hand, we formulate
the within-corridor constraints, which are designated to replace
the nominal collision-avoidance constraints (8) and (9).

The within-corridor constraints require that the points Pf
and Pr should stay in the corresponding local boxes at speci-
fied time instances:

Pf(t) stays inkth local box for Pf, and

Pr(t) stays inkth local box for Pr,

t = T/NFE · k, k = 1, . . . ,NFE. (14)

Since each local box is regularly placed, (14) is explicitly
written as

xf(t) ∈
[
xfk

min, xfk
max

]
, yf(t) ∈

[
yfk

min, yfk
max

]
,
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xr(t) ∈
[
xrk

min, xrk
max

]
, yr(t) ∈

[
yrk

min, yrk
max

]
,

t = T/NFE · k, k = 1, . . . ,NFE. (15)

The within-corridor constraints (15) are box constraints
w.r.t. xf(t), yf(t), xr(t), and yr(t). Since box constraints are
the simplest type of linear constraints, replacing (8) and (9)
with (12) and (15) makes the entire OCP tractably scaled and
less complex. Now the modified OCP is presented as

min
z∗(t),u(t),T

(10),

s.t. Kinematic constraints (2), (3) and (12);

Boundary conditions (4) and (5);

Within-corridor constraints (15). (16)

Herein, z∗ is defined as the expanded state profile,
i.e., [z, xf, yf, xr, yr]; the geometric relation equation (12) is
taken as part of the interior kinematic principle of the ego
vehicle. In contrast with (11), the dimension of (16) is fully
irrelevant to the complexity of the environment, which means
that the number of constraints in (16) does not alter no matter
how large NOBS is. By solving (16) numerically, collocation
points that represent a parking trajectory are derived.

IV. LIGHTWEIGHT ITERATIVE OPTIMIZATION

FRAMEWORK

A. Motivations

The preceding section has presented how to simplify the
nominal OCP (11) into an easier version (16). However,
(16) is subject to the following issues. First, the identified
corridors inevitably leave some corner regions in the free space
uncovered (see the blue regions in Fig. 6a). Second, the quality
of the coarse trajectory (derived by FTHA introduced in
Section III.B) may not be high, which influences the con-
struction of the corridors. Due to the first issue, solving (16)
renders a near-optimal rather than an optimal solution when
the optimum falls into the uncovered regions. The second issue
may make (16) fail to be solved if the constructed corridors do
not cover any kinematically feasible trajectory. To summarize,
directly solving (16) is not always reliable.

B. Iterative Optimization Framework

To address the issues pointed out in the preceding subsec-
tion, a natural idea is to adjust the corridors adaptively if
they are found to be inappropriate. We establish an iterative
framework, in which the corridors are built once per iteration
and an intermediate OCP is formulated accordingly. The
solution to the intermediate OCP in one iteration is used as
the coarse trajectory χP for re-constructing the corridors in
the next iteration. The entire iterative optimization process is
initialized by the proposed FTHA algorithm, which guarantees
to have an output within a limited time.

Intuitively, the iterative framework would work well to
gradually find an optimal parking trajectory. However, one
needs to ensure that each intermediate OCP is always solved
with success, otherwise, an intermediate failure blocks any
further evolution. To fix this underlying issue, we simplify (16)
so that it never becomes infeasible. One may notice that

the only nonlinear constraints in (16) include the kinematic
equalities (2) and (12), as well as the end-point boundary
condition (5b). If these nonlinear equalities are softened via
external penalty functions and merged into the cost function J ,
(16) becomes a problem with purely box constraints. Eq. (2)
is softened as

JEQ2 =
∫ T

τ=0
 f (z(τ ),u(τ ))2 · dτ. (17)

Herein,  f (z(τ ),u(τ ))2 measures the violation degree of
f (z(τ ),u(τ )) = 0 at t = τ , which is integrated from 0 to
T so as to form JEQ2. Eq. (12), abstracted as g (z∗(t)) = 0,
is softened as

JEQ12 =
∫ T

τ=0

∥∥g
(
z∗(τ )

)∥∥2 · dτ. (18)

The end-point boundary condition (5b) is softened as

JEQ5B=(sin θ(T )− sin(θF))
2+(cos θ(T )− cos(θF))

2 . (19)

The aforementioned three terms are summed up as
ψinfeasibility:

ψinfeasibility = JEQ2 + JEQ12 + JEQ5B. (20)

For a candidate solution, ψinfeasibility = 0 iff the con-
straints (2), (12), and (5b) are strictly satisfied. The compound
cost function is presented as

JINT = J + wpenalty · ψinfeasibility, (21)

wherein J is defined in (10), and wpenalty > 0 should be set
relatively large to ensure that the penalty for the violations of
softened nonlinear constraints is dominant. But please note
that setting wpenalty too high results in an ill-conditioned
optimization problem.

The complete intermediate OCP is presented in the follow-
ing form:

min
z∗(t),u(t),T

(21),

s.t. Kinematic constraints (3);

Boundary conditions (4) and (5a);

Within-corridor constraints(15). (22)

Theoretically, (22) is never subject to the risk of being
infeasible because every vector that lies between the box
boundaries would be a feasible solution that satisfies all of the
box constraints. As (22) does not contain complex constraints,
its numerical solution process is extremely fast.

We use the following pseudo-codes to present our proposed
autonomous parking trajectory planning method.

The inputs of ParkingTrajectoryPlanning() include map and
task. map presents the environmental setup, i.e. the geometric
size and location of each obstacle, as well as the scenario
boundaries. task presents the parking scheme, i.e. the initial
and terminal configurations of the ego vehicle. The output
of the function is the optimized parking trajectory in the
form of a sequence of timed configuration points χP ={
σ0, σ1, . . . , σNF E

}
. In line 1 of Alg. 3, GenerateCoarseTrajec-

toryViaFTHA() is used to generate a coarse trajectory. In line
2, FormInitialGuess() approximates the control profiles and the
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Algorithm 3 Autonomous Parking Trajectory Planning
Function ParkingTrajectoryPlanning(map, task)

1. χP←GenerateCoarseTrajectoryViaFTHA(map, task);
2. sol ← FormInitialGuess(χP);
3. i ter ← 0, ψinfeasibility←+∞;
4. dilated_map← DilateMap(map);
5. while ψinfeasibility ≥ εtol do
6. i ter ← i ter + 1;
7. if i ter > itermax then
8. return with failure;
9. end if

10. � = GenerateCorridors(χP);
11. OC PINT ← GenerateOCP(task, �);
12. sol ← SolveOCP(OC PINT, sol);
13. ψinfeasibility← MeasureInfeasibility(sol);
14. χP ← ExtractTrajectory(sol);
15. end while
16. return with χP .

rest state profiles based on χP to form an initial guess. In line
4, the function DilateMap() is deployed to inflate the original
obstacles so that a dilated map is built for corridor construc-
tion. In line 5, εtol→ 0+ is a user-specified parameter denot-
ing the convergence acceptance threshold, i.e., the softened
nonlinear constraints are regarded as satisfied if ψinfeasibility <
εtol. The parameter itermax in line 7 denotes the maximum
allowable iteration number, and exceeding this number renders
a solution failure. GenerateOCP() formulates an intermediate
OCP in the form of (22). SolveOCP(OC PINT, sol) stands for
solving OC PINT numerically. Concretely, it is about convert-
ing OC PINT into an NLP problem and solving it via an NLP
solver, which is warm-started by sol. With a solution vector
sol at hand, we calculate its infeasibility degree ψinfeasibility via
MeasureInfeasibility() according to (20). ExtractTrajectory() is
a simple function to extract the trajectory part from the entire
solution vector.

Remark 1: The final output of Alg. 3 is feasible w.r.t. the
nominal planning scheme (11).

Recall that the output of Alg. 3, denoted as χP , is derived
by solving an intermediate OCP in the form of (22). Thus
χP satisfies all of the constraints in (22), including the
boundary conditions (4) and (5a), and kinematics-related box
constraints (3).

According to the criterion to exit the while loop, the finally
derived χP satisfies that ψinfeasibility < εtol. According to
the semi-positive definitions in (17)–(20), ψinfeasibility < εtol
indicates that

JEQ2 < εtol, JEQ12 < εtol, JEQ5B < εtol. (23)

When εtol → 0+, JEQ2, JEQ12, and JEQ5B approaches 0+
as well, which means the constraints (2), (12), and (5b) are
satisfied.

Besides that, the usage of two disks to cover the rectangular
vehicle body, the establishment of two tunnels, and the satis-
faction of the within-tunnel constraints (15) ensure that χP

satisfies the nominal collision-avoidance constraints (8) and

TABLE I

PARAMETRIC SETTINGS REGARDING MODEL AND APPROACH

(9). Since χP does not violate any of the constraints in the
nominal OCP (11), Alg. 3 always provides a feasible solution
to it.

Remark 2: The final output of Alg. 3 is near-optimal w.r.t.
the nominal planning scheme (11) if wpenalty is sufficiently
large.

If we set wpenalty � ε−1
tol , then wpenalty · ψinfeasibility → 0+

w.r.t. the final output χP . In that case, the intermediate cost
function JINT→ J , which means the cost function of the last
intermediate OCP is consistent with the nominal OCP (11).

Let us denote the feasible region of an OCP as �I D , where
ID denotes the equation index. �22 is a subset of �11 because
the establishment of the within-corridor constraints defiantly
indicates that the vehicle body is presented by two dicks rather
than a rectangle. The usage of two discs wastes free spaces
inevitably. Since �22 is slightly smaller than �11, χP is not
an optimal solution if the optimum lies in �22 ∩¬ �11.

V. EXPERIMENTAL SETUPS, RESULTS, AND DISCUSSIONS

A. Simulation Setup

Simulations were conducted in C++ and executed on an
i9-9900 CPU with 32 GB RAM that runs at 3.10 × 2 GHz.
Regarding the function SolveOCP() defined in Section IV.B,
we use the first-order explicit Runge-Kutta method to form
the NLP problem and use the primal-dual interior-point solver
IPOPT [37] with the linear solver MA97 [38] called through
the AMPL interface [39]. Basic parametric settings are listed
in Table I.

A set containing 115 simulation cases is built to evaluate
the performance of the proposed parking trajectory planner.
Manually selected from 6,000 randomly generated cases,
the 115 cases are classified as maneuvering, detouring, and
narrow passage traverse. Each case contains 5 polygonal
obstacles; the vertex number of each obstacle randomly ranges
from 4 to 7; the location of each vertex obeys the uniform
distribution within a 40m × 40m workspace; each polygonal
obstacle’s area ranges randomly from 5m2 to 50m2; the initial
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TABLE II

DEFINITIONS OF COMPARABLE TRAJECTORY PLANNERS

TABLE III

COMPARATIVE SIMULATION RESULTS

and terminal locations of the parking vehicle are uniformly
distributed in the workspace; the initial and goal orientations
are uniformly distributed in [−2π, 2π]; and the other boundary
constraints are set to⎡

⎢⎢⎣
v(0)
a(0)
φ(0)
ω(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
v(T )
a(T )
φ(T )
ω(T )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

B. Simulation Results and Discussions

To evaluate the performance of the proposed trajectory
planner, comparable algorithms are defined in Table II. The
performances of Alg. 3 and its competitors on the 115 simu-
lation cases are summarized in Tables III.

Directly solving the nominal OCP (11) is time-consuming.
Given that the nominal collision-avoidance constraints (8)
and (9) are highly non-convex and almost non-differentiable,
the Naïve NLP solution process cannot easily get correct
gradient information when the initial guess is not close to
being optimal. As the result, 10 of the gross 115 cases fail to
be solved by the Naïve NLP method.

The STC method is featured by solving the OCP (16)
once. Since the collision-avoidance constraints in the OCP (16)
are linear, the numerical solution process is faster. However,
as we mentioned in Section IV.A, the STC method relies on
the initial guess. In each of the 4 failed cases, the corridor
construction operation leaves out essential free spaces to form
a feasible solution.

Regarding the TEB method, the nominal OCP is softened
as an unconstrained optimization problem and then solved
quickly via the g2o solver. TEB is featured by running fast,
but the finally derived solution may violate the kinematic
constraints or the collision-avoidance constraints, which is
regarded as a solution failure.

Fig. 7. On the performance of Alg. 3 under different settings of Llimit.

The TDR-OBCA method is a variant of the conventional
OBCA method [20]. In contrast with the OBCA method,
the TDR-OBCA method refines the coarse trajectory before
using it as the initial guess. Also, it reformulates the con-
straints/cost function to enhance the planning robustness and
efficiency. As seen in Table III, all of the 115 cases are
solved with success using the TDR-OBCA method, but the
CPU runtime is longer because that method, like the basic
OBCA method, does not consider the intractability issue of
the collision-avoidance constraints.

Our proposed planning method scales tractably w.r.t the
environmental obstacles, and is insensitive to the quality of
the initial guess at the very beginning. It builds a lightweight
iterative framework to recover from kinematical infeasibility.
We name the framework as lightweight because each interme-
diate OCP only contains a tractable number of box constraints.
These are the reasons that our proposal outperforms its com-
petitors listed in Table II.

In our proposed Alg. 3, Llimit is a critical parameter that
decides the maximum length/width of each local box. By set-
ting Llimit to different values, the changes in the success rate
and the average CPU time are depicted in Fig. 7. From that
figure, one may conclude that setting Llimit smaller makes the
corridor construction faster but leads to more iterations; setting
Llimit larger consumes more time in constructing the corridors
within one iteration, but fewer iterations are needed before the
trajectory planning process is completed. The success rate is
not affected unless Llimit is set overly small (Llimit = 0.1).
This is a merit of our proposed iterative framework. As a
comparison, in using the STC method to solve the 115 cases
with Llimit = 0.1, we find that the success rate drastically
reduces to 6.09%.

A video containing the simulation results is available at
bilibili.com/video/BV1n7411q7iv/. A typical simulation result
is depicted in Fig. 8.

C. Real-World Experimental Setups and Results

Besides simulations, we have also carried out real-world
experiments based on a small car-like robot in a 1.8m ×1.2 m
indoor scenario.

As depicted in Fig. 9, the vehicle localization is done
visually. Concretely, the location and orientation of the car-like
robot are identified through tracking the AprilTag placed on
the top of the robot via a bird-eye-view camera. AprilTags are
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Fig. 8. Typical simulation results: (a) footprints of planned parking trajectory;
(b) constructed corridors consisting of two series of local boxes.

Fig. 9. Experimental platform based on an ackermann-steering car-like robot.

also used to “percept” the location and orientation of each reg-
istered obstacle. The perception and localization information
is sent to a desktop PC, in which our proposed autonomous
parking trajectory planning method would be implemented
once to generate an open-loop trajectory before the robot
begins to move. In using the proposed planner, we add a
buffer of 0.01m to the radius of each covering disc such
that collisions caused by small tracking errors would be

Fig. 10. Closed-loop parking trajectory tracking performances under various
discretization accuracy conditions.

TABLE IV

UPDATED PARAMETRIC SETTINGS FOR EXPERIMENTS

avoided [41]. Parametric settings different from Table I are
listed in Table IV. The derived open-loop trajectory is sent to
the robot platform via ZigBee communication. Thereafter, the
open-loop trajectory is used for closed-loop control. Particu-
larly in the closed-loop trajectory control module, we use a
PID controller for longitudinal tracking and use a pure pursuit
controller for lateral tracking. We set the execution frequency
of the control module to 10.0 Hz.

Fig. 10 shows the closed-loop tracking performances under
various conditions in a typical vertical parking scenario.
We generate an extremely precise open-loop trajectory under
NFE = 200 (NFE, as listed in Table I, decides the discretization
accuracy when converting an OCP to an NLP problem). There-
after, the open-loop trajectory is down-sampled by setting NFE
to smaller values and then sent to the low-level controller
for closed-loop tracking. The results show that the numerical
discretization accuracy is not a dominant factor that influences
the whole parking performance. Also, Fig. 10 shows that our
planner can generate easy-to-track trajectories.

VI. CONCLUSION

This paper has proposed an autonomous parking trajectory
planning method in a generic unstructured environment. To get
precise and optimal solutions, we build an OCP to describe
the concerned scheme. To solve it efficiently, we convert
the nominal collision-avoidance constraints to within-corridor
conditions via STC. The performance of the adopted STC
method depends on the quality of the initial guess, thus we
1) propose the FTHA method to enhance the time efficiency
of the coarse trajectory generation process, and 2) build an
iterative framework to gradually recover from a poor initial
guess.

Generally speaking, the optimization-based planners run
more slowly than the sampling-and-search-based planners,
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thus how to enhance the runtime efficiency is a primary con-
cern. This work has confirmed that simply softening the hard
constraints via external penalty functions does not guarantee
solution feasibility, although it makes the optimization process
faster. Linearizing the original collision-avoidance constraints
without making their scale tractable, as the OCBA-related
methods do, renders a low calculation speed. Relying highly
on the initial guess, as the STC method does, is not a promis-
ing approach especially in dealing with intricate scenarios with
narrow passages. By contrast, our proposed method balances
the solution accuracy, optimality, solution speed, and robust-
ness (weak reliance on the initial guess). All of the difficulties
in the planning scheme can be dispersed into the intermediate
problems defined in our iterative framework. We expect that
the kinematics infeasibility and the solution optimality can
evolve in cooperation during the iteration. In this sense,
there is no need to make the intermediate procedures too
strict, thus we make each intermediate problem lightweight,
i.e., a simple optimization problem with fixed-scale box con-
straints. Comparative simulation results have shown that our
proposal outperforms the other few optimization-based strate-
gies w.r.t the CPU runtime and success rate. The proposed
iterative framework can be extended to handle generic high-
dimensional state transfer problems with nonlinear system
dynamics and large-scale non-convex exterior constraints.

It deserves to point out that our proposed planner cannot
alter the homotopy class after a coarse trajectory is identified
at the very beginning via FTHA. If the coarse trajectory is
homotopically misleading, then our proposed method is not
able to find a different homotopy class. As our future work,
fault-recovery strategies should be designed in the outer loop
of our iterative framework so that imperfect homotopy classes
can be altered, which makes the entire optimization-based
planner insensitive to the initial guess.
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