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ABSTRACT This work develops robust semisupervised classifiers to tackle the three most challenging
problems in land-use classification using remote sensing data, namely, information imbalance, label noise,
and image uncertainty. Limited by technology and cost, collecting clean labels for remote sensing images
is difficult and often impractical. The change of environment and time also increases the uncertainty of
remote sensing images. To overcome the obstacles incurred by the mixed pixels and weak labels, this
work proposes dividing the pixels in remote sensing images into two groups, namely, pixels with accurate
labels and those with weak labels, before processing the weakly labeled pixels using a nuclear norm-based
cost function. To address the imbalanced data problem in pixels with accurate labels, an improved cross-
entropy-based cost function is proposed to weigh the contributions from data of different classes based on
their importance by exploiting the term frequency-inverse document frequency (TF-IDF) algorithm. Finally,
an artificial class called ‘‘unknown’’ is proposed to cope with the interference caused by weakly labeled
data with unrepresentative spatial features. Extensive experiments validate the effectiveness of the proposed
semisupervised classifier.

INDEX TERMS Land-use classification, nuclear norm, semisupervised learning, weak labels.

I. INTRODUCTION
In the history of earth observation, land-use information has
been considered a key factor in observing human develop-
ment. Reliable and accurate land-use information is criti-
cal for understanding historical land use and planning for
future land use. The advent of remote sensing technology
has enabled the accurate and dynamic monitoring of land-use
changes and global resource distributions in a periodic and
timely manner [1], [2]. In particular, high-resolution remote
sensing images can provide detailed land-use information,
which enables us to perform a thorough study of the changes
in land resource distributions. As a result, deep learning
technology has been widely adopted in remote sensing. Deep
learning-based algorithms are highly efficient in processing
large-scale high-resolution remote sensing images to reveal
hidden spatial features, which helps improve our understand-
ing of remote sensing images. For instance, the seminal work
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on fully convolutional networks (FCNs) for semantic seg-
mentation proposed in [3] has inspired tremendous research
interest, and deep learning technology has been widely
adopted in remote sensing [4]–[9]. However, it has been
observed that the generalization capabilities of these deep
learning-based algorithms are unsatisfactory [10], which hin-
ders the adoption of these deep learning-based algorithms for
the automatic processing of large-scale remote sensing data.

The generalization ability of a classifier has a solid
logical relationship with the quality of the dataset [11].
However, remote sensing data are different from traditional
computer vision (CV) data. The differences include the infor-
mation imbalance in natural image data, and natural image
datasets also contain considerable noise in their labeling sys-
tems [12]. The common errors in these datasets are shown
in Fig. 1. This research will focus on the three characteris-
tics of remote sensing datasets: data imbalance, noise, and
uncertainty [13], [14].

Imbalanced dataset information is an essential factor
that leads to the degradation of classifier performance.
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FIGURE 1. Errors in a remote sensing dataset. The red numbers in the figure represent different types of errors. For example,
the labels of E1 E2 and E3 are erroneous; this appears to be the result of an unprofessional drafter. E4 is an error caused by the
complexity of the land cover. E5 is not an error, but it represents a feature anomaly caused by cloud shadows. All samples come
from the DeepGlobe LandCover CVPR2018 dataset.

The number of samples may vary dramatically across
different land-use classes owing to the uneven spatial distri-
bution of land resources. Therefore, such a problem of sam-
ple imbalance restricts the classification accuracy of small
classes, which reduces the average classification accuracy of
image segmentation. In the field of machine learning, the
problem of imbalanced learning has been a topic of great
interest [15], and learning the decision boundaries between
different classes can be a very difficult task [16], [17].

In addition to information imbalance, label noise is a
common problem in remote sensing datasets. The problem
of label noise might be pervasive for the following rea-
sons [18]: First of all, there is a high probability of label
errors when the land cover in remote sensing images is
highly complex or the information provided to drafters is
minimal. Furthermore, the credibility is significantly reduced
when an automatic label system or unprofessional drafters
are used to cut costs. In addition, experts in different
fields have different identification standards for the same
land, which eventually leads to inconsistent labeling results.
Finally, various noise interferes with remote sensing images
when capturing and transferring data. When the classifica-
tion datasets are corrupted, the performance degeneration
issue of deep learning models becomes more severe than
that of shallow classifiers. Therefore, researchers have devel-
oped techniques to combat data noise. Although there are

some studies on the robustness of remote sensing classi-
fiers, only a few pieces of research focus on label noise
land-use classification. However, in the practical application
of remote sensing, label noise is an urgent and inevitable
problem.

Imbalanced data and noise are explained in the previ-
ous paragraphs. Uncertainty refers to the random abnormal
features in remote sensing images. Compared with natural
images, remote sensing images have higher robustness to
uncertainty [19]–[21]. Because sensors collect cloud shadows
and other irrelevant information, remote sensing images may
contain many invalid features. If there is no effective mech-
anism to deal with these features without classification sig-
nificance, then these invalid features will be uncontrollably
distributed to different land-use classifications, which will
cause the overfitting of classifiers.

This study uses a scheme similar to semisupervised learn-
ing and proposes a loss function composed of two compo-
nents. The first component computes the distance between
the label and the corresponding prediction matrix using an
improved cross-entropy (ICE) approach. In addition, a new
weight representing the importance of sample information
has been added into the cross-entropy function. The second
component is designed to maximize the rank of the pre-
diction matrix by exploiting the nuclear norm. An increase
in the rank of the prediction matrix means a decrease in
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redundant information. More specifically, the contributions
of this research can be summarized as follows.
• To circumvent the imbalanced data problem, an effective
solution for remote sensor image classification in the
presence of noisy labels is provided. It is very gen-
eral and can be seamlessly applied to current neural
networks.

• To circumvent the imbalanced data problem, the term
frequency-inverse document frequency (TF-IDF) [22] is
introduced. An algorithm initially developed for doc-
ument search and information retrieval is utilized to
weigh the loss function based on the sample size of each
class, and the weight is added into the cross-entropy
computation;

• There is an additional component of the nuclear norm
in the loss function. The information redundancy in the
prediction matrix is reduced by maximizing the nuclear
norm. This is similar to minimizing information entropy
but maximizing the kernel norm can avoid the perfor-
mance degradation of the classifiers due to information
imbalances.

• A new classification called the ‘‘unknown’’ class will
be added to the classifier. None of the information in
the dataset is about the ‘‘unknown’’ class. This class
does not have any labels, so it cannot participate in
the cross-entropy computation. However, it will have
significant implications in nuclear norm maximization.
In addition, the ‘‘unknown’’ class collects anomalous
features to prevent overlearning of the classifier.

Extensive computer experiments were performed to show
that the resulting semisupervised classifier is highly robust
against the mixed pixel, weak label, and imbalanced data
problems by exploiting a smaller amount of weakly labeled
data. The proposed classifier is particularly attractive because
it can make use of weak data, such as historical data of
the same area accumulated over the years. The remainder
of this paper is organized as follows. Sec. II introduces the
classical techniques for improving classifier performance.
Sec. IV elaborates on the proposed semisupervised classifier,
and the extensive simulation results are presented in Sec. V.
Finally, the conclusions are presented in Sec. VI.
Notation: Vectors and matrices are denoted by boldface

letters. ‖A‖F and ‖A‖ν denote the Frobenius and nuclear
norms of A, respectively. Furthermore, [A]i,j denotes the
i-th row and the j-th column element of A. rank(A) and
trace(A) represent the rank and trace of A, respectively.
In addition, AT and AH are the transpose and conjugate
transpose of A, respectively. Finally, sets are represented by
calligraphic letters, while |X | represents the cardinality of the
set X .

II. RELATED WORK
A. INFORMATION IMBALANCE IN DEEP LEARNING
Imbalanced information is a traditional and common prob-
lem, and research on this problem has drawn extensive
attention. For this problem, traditional solutions include

resampling and reweighting. Chawla et al. [23] proposed
a scheme called the synthetic minority oversampling tech-
nique to increase the importance of unusual samples.
He and Garcia [24] explained how to process unbal-
anced data and explored the relationship between different
resampling methods and classifier performance. Recently,
Byrd et al. [25] discussed the relationship between the
training samples’ position and the classifier’s performance.
They think that when the samples are sufficient, the infor-
mation balance can be better achieved by resampling.
These methods help us understand the relationship between
samples and classifier performance from the perspective
of resampling. The representative scheme is reweighting.
Khan et al. [26] proposed a cost-sensitive (CoSen) deep
neural network, which can automatically learn robust feature
representations for both the majority and minority classes.
Cui et al. [27] were convinced that datasets contain informa-
tion overlap, so they proposed a novel theoretical framework
to characterize data overlap, and a class-balanced reweighting
term that is inversely proportional to the adequate number of
samples was added to the loss function. Cao et al. [28] alter-
natively studied the minimum margin per class and designed
a label-distribution-aware loss function that encourages a
model to have the optimal trade-off between per-class mar-
gins. Tan et al. [29] proposed equalization loss to tackle
the problem of rare long-tailed categories by ignoring the
gradients for rare categories. In recent years, all of thesemeth-
ods have become popular reweighting methods. Researchers
have not stopped exploring the imbalanced information prob-
lem. Kang et al. [30] compared jointly learning a repre-
sentation and classifier to many straightforward decoupled
methods and found that instance-balanced sampling gives
more generalizable representations that can achieve state-of-
the-art performance after properly rebalancing the classifiers.
Zhou et al. [31] proposed a new model consisting of two
branches, termed the ‘‘conventional learning branch’’ and the
‘‘rebalancing branch,’’ to simultaneously address both rep-
resentation learning and classifier learning. These methods
have also received more attention in recent years, although
their methods increase the computational costs.

B. LABELS NOISE IN DATASETS
The high cost of acquiring satellite image labels is a
well-known problem in the field of remote sensing. Almost
all data sets related to semantic segmentation are faced with
label noise. Label noise was first considered by pioneers in
CV, and these pioneers have produced many exciting and
significant research results. Angulin and Laird [32] asked
the following question: how can a learning algorithm cope
with incorrect training examples?. Since then, label noise has
been the focus of researchers. Lawrence and Schölkopf [33]
proposed an algorithm for constructing a kernel Fisher dis-
criminant (KFD) from training examples with noisy labels.
Natarajan et al. [34] theoretically studied binary classifica-
tion in the presence of random classification noise and pro-
vided two approaches to suitably modify any given surrogate

VOLUME 10, 2022 43437



R. Wang, M.-O. Pun: Robust Semisupervised Land-Use Classification Using Remote Sensing Data

loss function. Liu and Tao [35] presented a necessary
reweighting framework for classification in the presence of
label noise. Theoretical analyses were provided to assure that
the learned classifier will converge to the optimal noise-free
sample. Applying these methods to natural images is suc-
cessful, but their performance degrades when directly applied
to remote sensing images. The specificity of remote sensing
images causes this. Li et al. directed the label noise prob-
lem of remote sensing data based on the multifeature dic-
tionary learning-based collaborative representation classifier
(MDLCRC) [36], and a new RSSCoriented error-tolerant
deep learning (RSSC-ETDL) approach to mitigate the
adverse effect of incorrect labels in a remote sensing image
scene dataset was proposed [37]. Kang et al. [38] used the
newly defined robust normalized softmax loss (RNSL). In the
same year, they proposed a new deep metric learning loss
function, termed noise-tolerant deep neighborhood embed-
ding (NTDNE), which can accurately capture the semantic
relations among remote sensing scenes in a feature space [39].
These results show that the label noise problem has become
a focus in the remote sensing field.

C. UNCERTAINTY OF REMOTE SENSING IMAGE
The natural surface of the Earth is composed of a uniform
material. As a result, many pixels in remote sensing images
may cover multiple substances with different spectral prop-
erties [40], [41]. In addition, each pixel in remote sensing
images can exhibit spatial characteristics belonging to one
or more classes, which may interfere with land-use clas-
sification. One naive solution to the mixed pixel problem
is to decompose the multiclass classification problem into
multiple independent single-class classification problems
while ignoring the cross-class correlation. Unfortunately,
mixed pixels usually demonstrate nonlinear mixing of dif-
ferent classes, particularly in high-resolution remote sensing
images [42]. As reported by Stubenrauch et al. [43], on aver-
age, more than 50% of the Earth’s surface is covered by
clouds every day. Clouds and ‘‘cloud shadows’’ are symbiotic
in remote sensing images. Arguably, any classifier faces the
challenge of ‘‘clouds’’ and ‘‘cloud shadows‘’ when it is used.
In general, some commonly used methods, including band
grouping/thresholding methods [44]–[46], traditional image
segmentation methods [47]–[49], and deep learning-based
segmentationmethods [50]–[52] can lower the interference of
these factors but cannot be eliminated. Notably, these features
are complex and cannot be comprehensively characterized
with accurate labeling. Many classifiers are designed without
considering the uncertainty of remote sensing images. There-
fore, more robust classifiers need to be designed to overcome
the uncertainty of remote sensing images.

III. PROBLEM FORMULATION AND ASSUMPTIONS
Given a set of K equal-size remote sensing images with
Ntotal pixels each, the task of remote sensing image semantic
segmentation is to develop a classifier to produce a prediction
matrix Â ∈ RNtotal×NC for an input image, where NC is

the total number of classes. Furthermore, each element[
Â
]
i,j
≥ 0 represents the probability of the i-th pixel of the

input image belonging to the j-th class with

CN∑
j=1

[
Â
]
i,j
= 1, (1)

for i = 1, 2, . . . ,Ntotal and j = 1, 2, . . . ,CN .
The conventional supervised learning approach con-

structs Â by training on a large set of data sampleswith correct
labels. This data requirement can be an issue of concern
in practice when correctly labeled samples are not avail-
able. This study designs a robust semisupervised classifier
by exploiting imbalanced remote sensing datasets with both
accurate and weak labels. To facilitate the development of the
semisupervised classifier, we propose dividing the pixels of
the k-th image into two sets, namely, X (c)

k for those pixels
falling within the core area of the cluster with well-defined
labels and X (b)

k for those pixels with weak labels for k =
1, 2, . . . ,K . Pixels in X (b)

k are primarily in the boundary area
and potentially belong to multiple classes. Fig. 2 illustrates
a hypothetical example of three land-use classes. The pixels
were divided into pixels with well-defined and weak labels.
Note that pixels with weak labels are defined along each
boundary line between any two classes.

FIGURE 2. Dividing pixels with meaningful labels from those with weak
labels.

Before elaborating on our proposed classifier, we first
state the three assumptions necessary for establishing valid
semisupervised learning models [53].
• Smoothness assumption: Two geographically close pix-
els in a high-density region should have a strong spa-
tial correlation and subsequently, similar classification
labels of high probability [54].

43438 VOLUME 10, 2022



R. Wang, M.-O. Pun: Robust Semisupervised Land-Use Classification Using Remote Sensing Data

• Cluster assumption: If two pixels are in the same cluster,
they belong to the same class with a high probability.
Furthermore, if the spectral characteristics of two pixels
are similar, the probability of these two pixels possessing
identical classification labels should be high [55]–[57].

• Manifold assumption: Remote sensing data reside
roughly in a low-dimensional manifold. In other words,
samples are assumed to have similar spatial character-
istics in a small local proximity and therefore belong to
similar classes [58]–[60].

IV. PROPOSED SEMISUPERVISED CLASSIFIER
In this section, we propose a semisupervised classifier to per-
form robust land-use classification by effectively exploiting
weakly labeled and imbalanced remote sensing data with the
inherent mixed pixel problem.

A. TF-IDF-BASED WEIGHTING
We begin with the pixels with accurate labels in X (c)

k and
address the imbalanced data problem. Conventionally, cross
entropy is employed as the cost function to measure the
discrepancy between the true labels and the predicted values
in machine learning-based applications [61], [62]. For a given

pair of prediction matrices Â
(c)
k and its corresponding ground

truth A(c)
k generated with true labels, the cross entropy of Â

(c)
k

and A(c)
k is given by

HCE(Â
(c)
k ,A

(c)
k ) = −

Ntotal∑
i=1

CN∑
j=1

[
A(c)
k

]
i,j
· log

[
Â
(c)
k

]
i,j
. (2)

However, imbalanced training data will negatively impact
the classification decision boundary, and a strong bias toward
the more populated classes will exist. To address this prob-
lem, we propose a weighted loss function by exploiting the
TF-IDF algorithm originally developed for document search
and information retrieval [63]. Fig. 3 illustrates the decision
boundary before and after applying theweight adjustment in a
hypothetical example. As depicted in Fig. 3, the weighted loss
function usually focuses on the important data samples while
shrinking the decision boundary toward the center of gravity
of each class. Furthermore, the TF-IDF algorithm assigns
different weights to the contributions from different classes
in its loss function based on the frequency and importance of
the classes [64]. More specifically, the weighting coefficient
of a word in a set of files (also known as a corpus) in TF-IDF
is positively proportional to the frequency of its appearance
in one file but inversely proportional to the number of files
containing the word in the corpus. Thus, the TF-IDF algo-
rithm generates a larger weighting coefficient for a given
word if it appears frequently in one file but rarely in other
files. Inspired by the TF-IDF algorithm, we treat each class
in a set of remote sensing images as one word in a corpus.
If pixels corresponding to one class appear more frequently
in one image but rarely in other images, then a larger weight is
assigned to their contribution to the loss function. d (c)k,j denotes

FIGURE 3. The influence of adjusting weights for the decision boundary.

the total number of pixels in X (c)
k that belong to the j-th class;

that is ,

N (c)
k =

CN∑
j=1

d (c)k,j , (3)

where N (c)
k =

∣∣∣X (c)
k

∣∣∣ is the total number of pixels with

well-defined labels in the kth image.
Now, we define the importance of the samples that belong

to the jth class in the k-th image as follows:

ω̃k,j =
d (c)k,j

N (c)
k

log


K∑
k=1

N (c)
k

K∑
k=1

d (c)k,j

 . (4)

After normalizing ω̃k,j, the normalized weighting
coefficient for the samples that belong to the j-th class in the
k-th image can be expressed as

ωk,j =
ω̃k,j

CN∑
j=1

K∑
k=1

ω̃k,j

. (5)

Finally, we propose the following ICE approach as the
cost function for X (c)

k using the following TF-IDF-based
weighting coefficients:

HICE(Â
(c)
,A(c),W )

= −

K∑
k=1

N (c)
k∑
i=1

CN∑
j=1

ωk,j

[
A(c)
k

]
i,j
log

[
Â
(c)
k

]
i,j
, (6)

where

Â
(c)
=

{
Â
(c)
1 , Â

(c)
2 , . . . , Â

(c)
K

}
, (7)

A(c)
=

{
A(c)
1 ,A

(c)
2 , . . . ,A

(c)
K

}
, (8)

W =
{
ωk,j

}
. ∀k, j (9)

In the following, HICE, which is defined in Eq. (6),
is referred to as ICE. It is worth noting that the contributions
from pixels associated with the less populated classes, such
as ‘‘Urban land’’, are more heavily weighted in ICE com-
pared to those pixels from the more populated classes, such
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FIGURE 4. Schematic diagram of the decline in classifier diversity in unsupervised learning.

as ‘‘Agriculture land’’. Furthermore, ICE degenerates to the
conventional cross entropy if ωk,j = 1 for j = 1, 2, . . . ,NC
and k = 1, 2, . . . ,K .

B. NUCLEAR NORM-BASED COST FUNCTION
Next, we concentrate on the pixels with weak labels X (b)

k .
For data with accurate labels, the minimization
of HCE(Â

(c)
k ,A

(c)
k ) can effectively improve the classifica-

tion performance by reducing the discrepancy between Â
(c)
k

and A(c)
k . However, HCE is not a good performance metric for

data with weak labels, as its corresponding A(b)
k is prone to

errors. Fig. 4(a) illustrates a hypothetical example with three
classes of weakly labeled data. Fig. 4(b) shows the decision
boundary if the correct data labels are used. In contrast,
if the classifier is trained to minimize HCE, then the resulting
classifier may mistakenly categorize the lower two classes of
data samples into one, as shown in Fig. 4(c)].
Inspired by the observation that inconsistent labels arise

owing to themixed spectral characteristics of several land-use
classes, we propose to maximize the rank of the resulting pre-
diction matrix Â

(b)
k . For instance, we consider the following

two prediction matrices denoted by Â
(b)
1 and Â

(b)
2 , which are

given in Eq. (10):

Â
(b)
1 =

 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 , Â(b)
2 =

 0.8 0.1 0.1
0.8 0.1 0.1
0.8 0.1 0.1


(10)

Despite their similar appearances, their ranks are different,
that is, rank(Â

(b)
1 ) = 3, whereas rank(Â

(b)
2 ) = 1. As a result,

the land-use classifier outputting Â
(b)
2 can only identify the

first land-use class, whereas Â
(b)
1 is more advantageous as a

prediction matrix.
Unfortunately, the maximization of rank(Â

(b)
k ) is noncon-

vex. Thus, it is nontrivial to directly maximize the rank of
the prediction matrix. To address this problem, we propose to
maximize the nuclear norm of Â as follows:

‖Â
(b)
k ‖ν = trace

{√
Â
(b)H
k Â

(b)
k

}
. (11)

It is worth noting that the nuclear norm is essentially the
convex envelope of the matrix rank [65]. Nuclear norm-based
optimization has been used for matrix completion and robust
principal component analysis (PCA) [66]–[68]. Recall that
the nuclear norm of Â

(b)
k is the sum of its singular values,

and we can consider ‖Â
(b)
k ‖ν to be the approximation of

rank(Â
(b)
k ). Thus, the maximization of the nuclear norm of

Â
(b)
k can effectively increase the number of predicted classes

that can be identified in the remote sensing data, which can
be translated into classification performance improvement.
Furthermore, it has been shown that [69]

1
√
Q
‖Â

(b)
k ‖ν ≤ ‖Â

(b)
k ‖F ≤ ‖Â

(b)
k ‖ν, (12)

where Q = min
(
N (b)
k ,NC

)
and N (b)

k =

∣∣∣X (b)
k

∣∣∣ is the

cardinality of X (b)
k . Furthermore, ‖Â

(b)
‖F is the Frobenius

norm of Â
(b)
k and is defined as follows:

‖Â
(b)
k ‖F =

√√√√√N (b)
k∑
i=1

CN∑
j=1

∣∣∣∣[Â(b)
k

]
i,j

∣∣∣∣2. (13)

Thus, themaximization of ‖Â
(b)
k ‖ν effectively increases the

upper and lower bounds of ‖Â
(b)
k ‖F , as shown in Eq. (12).

We recall that ‖Â
(b)
k ‖F is inversely related to the entropy

of Â
(b)
k , which is given by

HE(Â
(b)
k ) = −

N (b)
k∑
i=1

CN∑
j=1

[
Â
(b)
k

]
i,j
log

[
Â
(b)
k

]
i,j
. (14)

Therefore, an increase in ‖Â
(b)
k ‖F leads to a reduction in

HE(Â
(b)
k ), i.e. the uncertainty of the prediction matrix Â

(b)
k is

reduced. Thus, maximizing ‖Â
(b)
k ‖ν improves the diversity

of Â
(b)
k while reducing the uncertainty of Â

(b)
k , which con-

tributes to the improvement in the classification accuracy.

C. THE ‘‘UNKNOWN’’ CLASS
Conventional classifiers are designed to adjust their deci-
sion boundaries to accommodate all pixels regardless of the
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confidence levels of the data labels. As a result, conven-
tional classifiers suffer from poor generalization capabilities,
as they are forced to accommodate data with noisy features.
Motivated by this observation, we propose the creation of
an additional artificial class called the ‘‘unknown’’ class to
handle data with weak labels, that is,X (b)

k . Therefore, weakly
labeled data with atypical spatial features can be classified
into this new class without overfitting the classifier, as shown
in Fig. 5. As shown in the later experimental results, the new
‘‘unknown’’ class can help expedite the training process by
preventing overfitting. With the additional ‘‘unknown’’ class,

the nuclear norm of Â
′(b)
k takes the following form:

‖Â
′(b)
k ‖ν = trace

{√
Â
′(b)H
k Â

′(b)
k

}
, (15)

FIGURE 5. Introduction of the ‘‘unknown’’ class for data with high
uncertainty.

where Â
′(b)
k ∈ RN (b)

k ×(NC+1) is the prediction matrix for the
NC + 1 classes. In the following, we use the nuclear norm

of Â
′(b)
k defined in Eq. (15) as the loss function for the weakly

labeled data in our proposed classifier.

D. SEMISUPERVISED LEARNING
In recent years, semisupervised learning has attracted wide
attention from scholars in the field of CV. The core idea
of semi-supervision is to use a small labeled data set to
define features and then use unlabeled data to enhance the
classifier’s ability to understand features. Many semisuper-
vised learning methods are proposed based on intelligent
data enhancement strategies such as RandAugment [70] or
AutoAugment [71], such as MixMatch [72] method, and
Unsupervised Data Augmentation [73]. Recently, there has
been widespread concern about the use of pseudo-marking
and consistent regularization. FixMatch [74] has achieved
state-of-the-art results on four benchmark data sets. The
above research has a guiding role in the application of semisu-
pervised learning in remote sensing. Semisupervised learning
is ideal for land use classification because of the low cost of
acquiring remote sensing images. The application of semisu-
pervised learning technology in satellite remote sensing land
classification is still in the development stage. Experiments
are only performed on some simple datasets and have not
been applied to actual scenes on a large scale, such as image

classification [75]–[79] and information extraction [80]–[83].
In large-scale scenarios, three assumptions of semisupervised
learning cannot be satisfied if unlabeled samples are added
blindly.

We used the logic of semisupervised learning to cope with
the noise of remote sensing data. We pre-circle out untrusted
regions in the data whose pixels will not be involved in the
cross-entropy calculation of the loss function but enter into
an unsupervised computational process. Our scheme satisfies
the three assumptions of semisupervised learning because the
information involved in semisupervised learning comes from
the same sample. The pseudocode is as shown in Algorithm 1.

Algorithm 1 Land Use Classifier Based on Semisupervised
Learning

Require: The dataset images X into two sets, namely X (c)

with well-defined labels A(c) and X (b) for those pixels
with weakly labels.

Require: Learning rate ε and initial parameter θ

Require: CN is the number of dataset classes
1: for t = 1, . . . .,T do
2: Sample a minibatch of St examples from the training

set {X1, . . . ,Xt }

3: Themaximum number of categories isCN+1: Â′t ←
f (Xt ; θ)

4: Divide the prediction matrix into two sets: Â′t =
Â′(c)t + Â′(b)t

5: Remove Unknown class: Â(c)
t ← Â′(c)t

6: Wt ←WEIGHT
(
X (c)
t

)
. via Eq.5

7: LICE← HICE

(
Â(c)
t ,A

(c)
t ,Wt

)
, via Eq.6

8: LNuN ←
∑K

k=1

[
1− 1√

N (b)
t

∥∥∥Â′(b)t

∥∥∥
ν

]
, N (b)

t is the

Num. of pixels with weakly labels in batch t .
9: L = LICE + λLNuN
10: Computr gradient extimate: ĝ←+∇θL
11: Apply update: θ ← θ − εĝ
12: end for

Fig. 6 shows a flowchart of the proposed semisupervised
classification framework. More specifically, the proposed
classification framework can be divided into three compo-
nents: inference, training, and data preprocessing. During the
inference process, the backbone of the proposed classifier
is trained with well-known semantic segmentation models,
such as FCN and DeepLabV3+, using our proposed cost
functions. The supervised and semisupervised learning mod-
ules share this backbone in the proposed classifier. For data
preprocessing, the proposed classifier defines the areas of
large uncertainty around each cluster with a width ofm pixels,
as inaccurate labeling mainly occurs in the boundary areas of
different land-use clusters. Note that the parameter m can be
adjusted according to the noise level of the given dataset. The
detailed structure of the training process is shown in Fig. 7.
For the data with accurate labels in X (c)

k , the following
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FIGURE 6. Flowchart for the proposed semisupervised classification framework.

FIGURE 7. Loss function design scheme and learning logic for semisupervised classification.

ICE-based cost function is used to evaluate the prediction
performance, as shown in Eq. (6):

LICE = HICE(Â
(c)
,A(c),W ). (16)

In contrast, for the data with weak labels in X (b)
k , the fol-

lowing nuclear norm-based cost function is utilized:

LNuN =

K∑
k=1

1− 1√
N (b)
k

‖Â
′(b)
k ‖ν

 . (17)

Note that the label information for weakly labeled data
is discarded in Eq. (17). Therefore, Eq. (17) represents a
cost function for unsupervised learning. In summary, the cost
function proposed by combining Eq. (16) and Eq. (17) can be

expressed as

L = LICE + λLNuN, (18)

where λ is a parameter designed to adjust the contribution
of LNuNorm to the cost function. The proposed cost function
is formulated to enhance the generalization capability of
the classifier by minimizing the negative impact due to the
weakly labeled data while expediting the training process
by adding an ‘‘unknown’’ class to include pixels of high
uncertainty.

V. RESULTS AND DISCUSSIONS
In this section, we show the effect of our scheme on the clas-
sifier through different experiments. Experiment 1 compares
the prediction results of different classifiers on cloud-cover
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FIGURE 8. Two approaches to add noise to the training set.

images, and demonstrates the improvement in terms of clas-
sification robustness. In Experiment 2, we consider a chaotic
dataset whose quality is closer to that of datasets in industrial
applications. Our experimental results prove that our scheme
can significantly improve the classifier’s forecast accuracy
and generalization ability.

A. EXPERIMENTS ON THE AIS DATASET
Experiment 1 is designed to show the improvement in terms
of classification robustness. The aerial image segmenta-
tion (AIS) dataset was used as the baseline dataset, and a
‘‘Damaged dataset’’ was created. Three classifiers are trained
in this experiment:

• When ‘‘deepLabeV3plus+cross-entropy’’ is used to
train on the baseline dataset, it is called the ‘‘Baseline’’
classifier.

• When ‘‘deepLabeV3plus+cross-entropy’’ is used to
train on the damaged dataset, it is called the ‘‘Damaged’’
classifier.

• When ‘‘deepLabeV3plus+our loss function’’ is used
to train on the damaged dataset, it is called ‘‘Our’’
classifier.

Implementation details: We use gray patches of size
512 × 512 as inputs. Furthermore, we utilize the Adam
optimizer with parameters of α = 0.0001 and β1 = 0.9
and β2 = 0.99. The training procedure follows the minibatch
strategy, and the batch size is 8. All the networks in the
experiments are implemented using the PyTorch platform and
trained with an NVIDIA GeForce RTX 3080TI GPU.

1) DATASET
The AIS dataset contains labels for buildings and roads in
Berlin, Chicago, Paris, Potsdam, and Zurich. This experiment
used the Zurich data as the baseline dataset. The Zurich
AIS dataset contains 364 samples, and we downsampled
them to 512 × 512 pixels. Finally, 14000 reliable samples
were adopted in this experiment. The 14000 samples were
divided as follows: 10000 samples were used for training
while 4000 for validation.

We altered the 40% training set to create the ‘‘Damaged’’
set. There are two ways to add noise to the training set,
as shown in Fig. 8. First, we randomly ‘‘damaged’’ the
labels of 170 × 170 pixels to simulate label noise. Second,
we randomly broke 170×170 pixels in the image to simulate
cloud cover. Fig. 9 shows the percentage of error samples in
the training set. There are 1300 samples with noisy labels,
1300 samples with noisy pixels, and 1400 samples with both
kinds of noise. The remaining samples are reliable.

FIGURE 9. The proportion of different types of samples in the dataset.

2) RESULTS
Twenty training epochs were conducted for each classi-
fier. Fig. 10 shows that the mean intersection over union
(mIoU) of the validation set on the ‘‘Baseline’’ classifier is
0.6159± 0.0052, but that of the ‘‘Damaged’’ classifier is
only 0.4328± 0.0089. This indicates that the degradation
in classifier performance is caused by noise. Our scheme
refined the mIoU to 0.5974± 0.0093, and it is shown that
our scheme can provide a better quality classifier. Note that
the accurate positioning of the error pixels is the key to the
good results. Fig. 11 shows the image classification results
on three classifiers. The classification effect of ‘‘Our’’ classi-
fier is similar to that of the ‘‘Baseline’’ classifier, while the
classification effect of ‘‘Damaged’’ classifier is the worst.
These classification effects were obtained on images without
noise information.
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FIGURE 10. The application performance of the three classifiers on the
validation set.

Some interesting classification results are shown in Fig. 12
in which noisy images are input into the three classifiers
to evaluate their robustness. The ‘‘Baseline’’ classifier and
‘‘Damaged’’ classifier could not correctly process the abnor-
mal features as they had to classify the abnormal pixels into
the building, background, and road categories. In contrast,

our scheme provides an ‘‘unknown’’ class that can be selected
for abnormal pixels. As a result, our scheme demonstrated
significantly improved robustness in classification.

B. EXPERIMENTS ON THE DeepGlobe DATASET
In this section, we validate our proposed semisupervised
classifier through extensive simulations using the DeepGlobe
LandCover Classification Challenge dataset.We compare the
classification performance of the four classifiers discussed
above.

1) Supervised CE: The conventional supervised clas-
sifier based on the cross-entropy function proposed
in [61], [62]. Note that we use this classifier as the
baseline to benchmark our proposed classifiers.

2) Supervised ICE: The supervised classifier based on
the proposed ICE function.

3) Semisupervised CE+NuN: The semisupervised clas-
sifier based on the cross-entropy function and the
nuclear norm.

4) Semisupervised ICE+NuN: The semisupervised clas-
sifier based on the proposed ICE function and the
nuclear norm.

FIGURE 11. Prediction results with noise-free images in the classifier.
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FIGURE 12. Prediction results with noisy images in the classifier.

FIGURE 13. Illustration of the different levels of labeling accuracy.

The following experiments were implemented using the
TensorFlow deep learning framework and performed on
a computer equipped with GeForce RTX TM 2080 Ti.
DeepLabV3+ was adopted as the backbone deep network,
while minibatch gradient descent (MBGD) was employed as
the optimizationmethodwith a batch size of 10 and a learning

rate of 0.0001. Finally, 20 training epochs were conducted for
each experiment.

1) DATASET
The dataset was originally designed for a multiclass segmen-
tation task to detect cities, agriculture areas, pastures, forests,
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FIGURE 14. Performance comparison of different methods.
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water sources, barren areas, and unknown areas. Similar to
all other remote sensing datasets, DeepGlobe contains a large
number of weakly labeled data. We preprocessed the Deep-
Globe data by first downsampling its original image of size
2448× 2448 to 512× 512 pixels.
Next, we discuss the selection of 7000 downsampled

images to create our training and test datasets. As illustrated
in Fig. 13(a), some images suffer from large labeling errors.
For instance, even though the pixels within the two boxed
areas in Fig. 13(a) have similar attributes, they were divided
and classified into two different classes, namely, ‘‘Water’’
and ‘‘Rangeland’’, in the corresponding labels. Because deal-
ing with large labeling errors is beyond the scope of this
work, we excluded such images with large labeling errors
from our datasets. In contrast, the weak labels in the boxed
areas in Fig. 13(b) are more negligible, while the anno-
tation in Fig. 13(c) is accurate. We included such images
with either weak or accurate labels in our data sets. More
specifically, we select 6500 images of 512 × 512 pixels and
use 5000 for training and 1500 for testing. Note that these
6500 images may contain weakly labeled pixels. In addition,
we manually chose 500 images with accurate labels to form
another test dataset for performance analysis. In the sequel,
this 500-image test set is referred to as the accurate-label
test set, whereas the 1500-image test set is reffered to as the
weak-label test set. It should be emphasized that the classes
contained in these 5000 training images are highly imbal-
anced, as shown in Table 1, which shows the percentages
of all land-use classes in the pixels in the selected training
data sets. Clearly, the ‘‘Agricultural land’’ class substantially
outnumbers the other classes.

TABLE 1. Percentages of land-use classes in pixels.

2) RESULTS
Next, we first investigate the classification results using the
weak-label test set. Fig. 14 shows that the performance of
‘‘supervised CE’’ is not satisfactory, as it failed to distin-
guish ‘‘Rangeland’’, which is colored pink, from ‘‘Agricul-
tural land’’, which is colored yellow; this may be caused
by the imbalanced data between these two land-use classes,
as shown in Table 1. In contrast, the proposed ‘‘supervised
ICE’’ can significantly improve the classification accuracy
of ‘‘Rangeland’’ by considering the imbalanced data prob-
lem. However, ‘‘supervised ICE’’ cannot properly classify
the boundary regions between two adjacent classes. This
shortcoming was overcome by the proposed semisupervised
learning method based on the nuclear norm. An inspection
of Fig. 14 suggests that ‘‘semisupervised CE+NuN’’ can

FIGURE 15. Magnified images for close-up inspection on the
classification of ‘‘Barren land’’.

FIGURE 16. Magnified images for a close-up inspection of the
classification of ‘‘Rangeland’’.

better handle the boundary regions with the ‘‘unknown’’ class
colored in black. Finally, Fig. 14 reveals that ‘‘semisupervised
ICE+NuN’’ can further improve the classification accuracy.
Because such boundary regions randomly appear in differ-
ent land classes, their unrepresentative spatial characteristics
confuse the learning process and slow down the convergence
process. Therefore, the proposed semisupervised learning
method can reduce the interference caused by these pixels by
classifying them into one new land class.

Fig. 15 magnifies the bottom area near the water body
of the image shown in the first column of Fig 14. From
the magnified image, we can see that the area immedi-
ately below the water body should not be classified as
‘‘Agricultural land.’’ Interestingly, the proposed ‘‘semisuper-
vised ICE+NuN’’ method classified this area as ‘‘Barren
land,’’ whereas ‘‘supervised CE’’ classified it as ‘‘Agricul-
tural land.’’ We believe the classification of ‘‘Barren land’’
is more accurate, as vastly different spatial features can be
observed between this area and its neighboring ‘‘Agriculture
land’’ even by a visual inspection.

Furthermore, we can observe from the results presented in
the second column of Fig 14 that the proposed ‘‘semisuper-
vised ICE+NuN’’ method has identified substantially more
‘‘Rangeland’’ areas than ‘‘supervised CE.’’ To validate this
observation, we magnified the center part of the image,
as shown in Fig. 16. First, we observe from the boxed
area labeled ‘‘Reference’’ that both ‘‘Supervised CE’’ and
‘‘Semisupervised ICE+NuN’’ classified this area as ‘‘Range-
land’’. This classification result also agrees well with the
label, as shown in Fig 14. In contrast, a visual inspection
suggests that the boxed area labeled ‘‘(a)’’ actually contains
very similar spatial features. However, ‘‘Supervised CE’’
classified this area as ‘‘Forest land’’, while ‘‘Semisuper-
vised ICE+NuN’’ classified this area as ‘‘Rangeland.’’ With
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FIGURE 17. Comparison of convergence rates.

TABLE 2. Object segmentation mIoU(%) on Data-set.

the information in the boxed area labeled ‘‘Reference,’’ we
believe ‘‘Rangeland’’ is a more appropriate land-use classifi-
cation for the boxed area labeled ‘‘(a)’’. Similar observations
can be made in the other figures.

Table 2 shows the mIoU performance of the four clas-
sifiers on the accurate-label test set. Thus, classifiers with
ICE can more effectively lessen the adverse effects caused
by imbalanced data than their counterparts with conventional
CE. For instance, the mIoU for ‘‘Barren land’’ was improved
from 43.13 (‘‘Supervised CE’’) to 56.74 (‘‘Supervised ICE’’)
by exploiting ICE. Similar observations can be obtained
for ‘‘semisupervised CE + NuN’’ and ‘‘semisupervised
ICE + NuN.’’ Furthermore, the proposed semisupervised
learningmethod helped further improve the recognition accu-
racy of the supervised learning-based classifiers. In particu-
lar, compared to the conventional ‘‘supervised CE’’ method,
the proposed ‘‘semisupervised ICE+NuN’’ demonstrated
impressive performance gains of the order of 10% for the
three least represented land-use classes, namely, ‘‘Range-
land’’, ‘‘Water’’, and ‘‘Barren land’’. In addition, the mIoU
performance for the three most represented classes is com-
parable for the four classifiers on the test dataset with more
accurate labels.

Fig. 17 shows the mIoU performance as a function of
the iteration number for the four classifiers under consider-
ation. An inspection of Fig. 17 reveals that the two proposed
semisupervised classifiers achieved faster convergence, as the

nuclear norm can remove the interference caused by the
unrepresentative features from the mixed pixels, particularly
the ambiguous features arising from the junction of multiple
classes. Using the unsupervised learning technique, the pro-
posed classifier can spend less time learning invalid or even
incorrect features, which shortens the training time without
overfitting the proposed classifier.

Finally, we compared the performance difference of
using different convolutional neural network (CNN) mod-
els, including U-Net, FCN-8s, DeepLabv3, FPN, and
DeepLab3+. The quantitative results shown in Table 3
indicate that DeepLab3+ generally exhibits the best perfor-
mance. In addition, regardless of the CNN model, the pro-
posed ‘‘semisupervised ICE+NuN’’ model outperformed
the conventional ‘‘supervised CE’’ model by 3% − 5%.
As shown in the experiments, the proposed ‘‘NuN’’ cost
function worked well with any existing CNN model..

C. DISCUSSIONS AND FUTURE WORK
It has been a long-standing problem that remote sensing
data suffer from much larger uncertainty than data in other
research areas, such as CV, which has become a major chal-
lenge for researchers applying machine learning techniques
to remote sensing data. In this work, we have made an ini-
tial attempt to open a new avenue for handling uncertainty
by recognizing that most pixels in remote sensing images
may exhibit characteristics of multiple land-use classes.
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FIGURE 18. Classification by the proposed semisupervised classifier in the presence of large labeling errors.
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FIGURE 19. The classifier has high classification accuracy for ‘‘water,’’ but its generalization is not good.
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TABLE 3. The application performance of the new loss function on different neural networks.

Thus, in lieu of forcibly classifying the pixel into one spe-
cific land-use class, it is more appropriate to classify the
mixed pixels into multiple classes using the proposed unsu-
pervised approach. Furthermore, if the pixels show unrepre-
sentative characteristics, we propose classifying the pixels to
an ‘‘unknown’’ class to accommodate these indistinguishable
pixels. Thus, the proposed semisupervised classifier analyzes
the uncertainty associated with each pixel before applying
unsupervised learning to pixels with high uncertainty. As a
result, our proposed semisupervised learning approach has a
better generalization capability, more robustness, and faster
convergence.

As discussed before, remote sensing images with large
labeling errors are beyond the scope of this work. In the
future, we plan to extend the current work to these images.
Furthermore, because our proposed semisupervised learning
approach can relax the stringent requirements for accurately
labeled data, it may be possible for the proposed approach
to further reduce its dependence on accurate labels. Fig. 18
shows some interesting observations derived from our exper-
iments on images with large labeling errors.

More specifically, the pixels in Fig. 18(a) belong to
‘‘Agriculture land,’’ ‘‘Rangeland,’’ and ‘‘Forest land.’’ How-
ever, the labels corresponding to ‘‘Rangeland’’ and ‘‘Forest
land’’ were largely mistaken. Similarly, the labels shown
in Fig. 18(b) also exhibit large errors because the features
of water, trees, and houses were ignored in the labels. These
large labeling errors may mislead the training of classifiers,
especially for ‘‘supervised learning,’’ if they are contained in
a training dataset. Interestingly, even though the labels were
largely mistaken, the proposed ‘‘semisupervised ICE+NuN’’
method was able to accurately identify the ‘‘water’’ pixels
colored in blue and the details in the top image. Furthermore,
for the natural environment shown in the middle image, tran-
sitional areas between ‘‘Forest land’’ and ‘‘Rangeland’’ were
correctly recognized. This suggests that the nuclear norm can
prevent the proposed classifier from overfitting, particularly
when the training dataset has a large domain difference and
imbalanced data.

Another interesting observation about the proposed
semisupervised classifier is shown in Fig. 19, in which the
class of ‘‘Water’’ was clearly recognized. Because the fea-
tures of ‘‘Water’’ are vastly different from those of other
land-use classes, the proposed classifier could accurately
identify ‘‘Water’’ even with limited information provided by
the dataset. However, Fig. 19 also shows that the proposed
classifier was not quite able to distinguish ‘‘Shadow’’ from
‘‘Water’’, as these two classes demonstrate very similar spa-
tial features that are difficult to differentiate even by visual
observation. This issue can be an interesting extension of this
study and can be further explored.

VI. CONCLUSION
In this study, we developed a semisupervised classifier using
a small set of remote sensing data with accurate labels
and remote sensing data with weak labels. A weighted
cross entropy-based cost function was proposed to circum-
vent the imbalanced data problem by utilizing the term
frequency-inverse document frequency (TF-IDF) algorithm
to weigh the contributions from imbalanced data of different
classes. In addition, a nuclear norm-based cost function was
developed to maximize the rank of the prediction matrix
derived from the weakly labeled data without requiring data
labels. Furthermore, an artificial class called ‘‘unknown’’
was created to alleviate the interference caused by weakly
labeled data with unrepresentative spatial features. Exten-
sive experiments were performed using the DeepGlobe Land
Cover Classification Challenge dataset and the AIS dataset.
The experimental results confirm the effectiveness of the
proposed semisupervised classifier.
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