
Invisible for both Camera and LiDAR: Security of
Multi-Sensor Fusion based Perception in

Autonomous Driving Under Physical-World Attacks
Yulong Cao?,§ Ningfei Wang?,† Chaowei Xiao?,‖,‡‡ Dawei Yang?,§ Jin Fang‡ Ruigang Yang††

Qi Alfred Chen† Mingyan Liu§ Bo Li¶
†University of California, Irvine, {ningfei.wang, alfchen}@uci.edu
§University of Michigan, {yulongc, ydawei, mingyan}@umich.edu
‖NVIDIA Research ‡‡Arizona State University ††Inceptio

‡Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application, China
¶University of Illinois at Urbana-Champaign, lbo@illinois.edu

Abstract—In Autonomous Driving (AD) systems, perception is
both security and safety critical. Despite various prior studies on
its security issues, all of them only consider attacks on camera-
or LiDAR-based AD perception alone. However, production AD
systems today predominantly adopt a Multi-Sensor Fusion (MSF)
based design, which in principle can be more robust against these
attacks under the assumption that not all fusion sources are (or
can be) attacked at the same time. In this paper, we present
the first study of security issues of MSF-based perception in AD
systems. We directly challenge the basic MSF design assumption
above by exploring the possibility of attacking all fusion sources
simultaneously. This allows us for the first time to understand
how much security guarantee MSF can fundamentally provide
as a general defense strategy for AD perception.

We formulate the attack as an optimization problem to
generate a physically-realizable, adversarial 3D-printed object
that misleads an AD system to fail in detecting it and thus
crash into it. To systematically generate such a physical-world
attack, we propose a novel attack pipeline that addresses two
main design challenges: (1) non-differentiable target camera
and LiDAR sensing systems, and (2) non-differentiable cell-
level aggregated features popularly used in LiDAR-based AD
perception. We evaluate our attack on MSF algorithms included
in representative open-source industry-grade AD systems in real-
world driving scenarios. Our results show that the attack achieves
over 90% success rate across different object types and MSF
algorithms. Our attack is also found stealthy, robust to victim
positions, transferable across MSF algorithms, and physical-
world realizable after being 3D-printed and captured by LiDAR
and camera devices. To concretely assess the end-to-end safety
impact, we further perform simulation evaluation and show that
it can cause a 100% vehicle collision rate for an industry-grade
AD system. We also evaluate and discuss defense strategies.

I. INTRODUCTION

Today, high-level (e.g., Level-4 [1]) self-driving cars, or
Autonomous Vehicles (AV) [2], are under rapid development.
Some of them, e.g., Google Waymo [3] and TuSimple [4], are
already providing services on public roads. To ensure correct
and safe driving, a fundamental pillar in the Autonomous
Driving (AD) system is perception, which leverages sensors
such as cameras and LiDARs (Light Detection and Ranging)

?Alphabetical ordering; The first four authors contributed equally.

to detect surrounding obstacles in real time. Due to the direct
impact on safety-critical driving decisions such as collision
avoidance, various prior works have studied the security of AD
perception under realistic physical-world attack vectors such
as adding stickers, posters, or paintings to traffic signs [5]–[9],
or shooting lasers to the LiDAR [10], [11].

All of these studies, however, are limited to attacks on a
single source of AD perception, i.e., camera- or LiDAR-based
AD perception alone [5]–[13]. By contrast, production high-
level AD systems such as Waymo, Pony.ai, and Baidu Apollo,
typically adopt a Multi-Sensor Fusion (MSF) based design
[14]–[17], which fuses the results from different perception
sources, e.g., LiDAR and camera, to achieve overall higher
accuracy and robustness [18]–[26]. In such a design, under
the assumption that not all perception sources are (or can
be) attacked simultaneously, there always exists a possible
MSF algorithm that can rely on the unattacked source(s) to
detect or prevent such an attack. This basic security design
assumption is believed to hold in general [27], [28], and MSF
is thus widely recognized as a general defense strategy against
existing attacks on AD perception [10], [27]–[29].

This paper presents a first study on the security property
of MSF-based perception in AD systems today. We directly
challenge the above basic security design assumption by
demonstrating the possibility of effectively and simultaneously
attacking all perception sources used in state-of-the-art MSF-
based AD perception, i.e., camera and LiDAR [18]–[26]. This
for the first time allows us to gain a concrete understanding of
how much security guarantee the use of MSF can fundamen-
tally provide as a general defense strategy for AD perception.
Specifically, we consider physical-world attack vectors for
high attack practicality, and target an attack goal with the
most direct safety consequence for autonomous driving: cause
a victim AV to fail in detecting a front obstacle.

Although prior works have designed successful physical-
world attacks on AD perceptions based only on camera or only
on LiDAR, we find that simply combining their designs does
not achieve our goal. First, we need to identify a physical-

176

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Yulong Cao. Under license to IEEE.
DOI 10.1109/SP40001.2021.00076

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
76

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

world attack vector effective for both camera and LiDAR,
which can not be satisfied by those popular ones used in
prior works. For example, adding stickers changes an object’s
texture (e.g., color) but not its shape; this can be effective
for camera [5]–[9] but not LiDAR. Conversely, laser shooting
has been shown to be effective for LiDAR-based AD percep-
tion [10], [11], but not for camera-based ones. Second, no
matter what attack vector we use, we need to further address
2 design challenges: (1) We need to differentiably synthesize
the physical attack impacts simultaneously and consistently
onto both camera images and LiDAR point clouds. For certain
attack vectors, e.g., differentiably modelling the impact of
lasers on camera images, this can be very challenging. (2)
To improve run-time performance, the state-of-the-art LiDAR-
based AD perception uses aggregated features of the 3D points
grouped at the level of 2D or 3D cells [15], [20], [30]–
[34]; however, their calculation is by nature non-differentiable
(§III-B), which makes the attack difficult to optimize.

Towards this end, we design a novel physical-world adver-
sarial attack method, MSF-ADV, which addresses the chal-
lenges above and thus fundamentally challenges the basic MSF
design assumption in AD perception. We employ adversarial
3D object as the attack vector, with the key observation that
different shapes of a 3D object can lead to both point position
changes in LiDAR point clouds and pixel value changes in
camera images. Thus, an attacker can leverage shape manip-
ulations to introduce input perturbations to both camera and
LiDAR simultaneously. To achieve the attack goal, the attacker
simply places such an object on the roadway; this can be
conveniently accomplished with modern 3D printing services
and an object type commonly expected on the roadway, e.g.,
a traffic cone but with a slightly worn or broken look.

To systematically generate effective adversarial 3D objects,
we adopt an optimization-based approach that starts with a
3D mesh of a normal object, e.g., a normal traffic cone, and
performs shape manipulation by changing its vertex positions.
Under this attack vector, we address design challenge 1 by
constructing differentiable 3D rendering functions to synthe-
size the attack-influenced point clouds and camera images. For
design challenge 2, we find that all commonly-used cell-level
aggregated features can be differentiably derived by the point-
inclusion property (§IV-D). Thus, we first design a differen-
tiable and accurate approximation for such property, and then
use it as a building block to differentiably compute the gradient
of the cell-level aggregated features during the optimization.
We also employ domain-specific designs for attack robustness,
stealthiness, and physical-world realizability.

We evaluate MSF-ADV with MSF algorithms included in 2
open-source full-stack AD systems, Baidu Apollo [15] and Au-
toware.AI [16], that have high representativeness in practice,
e.g., Apollo is ranked as the top 4 leading AD developers along
with Waymo, Ford, and Cruise [35]. We select 3 object types
and evaluate each on 100 real-world driving scenarios from
the KITTI dataset [36]. Our results show that the generated
adversarial objects achieve more than 91% success rate across
different object types and MSF algorithms. We also find that

our attack is (1) stealthy from the driver’s view based on a
user study, (2) robust to different victim approaching positions
and angles, with over 95% average success rates, and (3)
transferable across different MSF algorithms, with an average
transfer attack success rate of around 75%.

To understand the attack realizability in the physical world,
we 3D-print our adversarial objects, and evaluate them using
real LiDAR and camera devices. Using a vehicle with a
LiDAR mounted, we find that our 3D-printed adversarial
object can successfully evade LiDAR detection in 99.1% (107)
of the total 108 collected frames. Using a miniature-scale
experiment setting (§V-E2), we find that our adversarial object
has a 85-90% success rate to evade both LiDAR and camera
detection at 20 randomly-sampled positions.

To understand the end-to-end safety impact, we further eval-
uate our method using a production-grade AD simulator, and
find that our adversarial traffic cone can cause a 100% vehicle
collision rate for an Apollo AV across 100 runs. In contrast, the
collision rate with a normal traffic cone is 0%. Demo videos
are at our project website: https://sites.google.com/view/ca
v-sec/msf-adv. We also evaluate various existing DNN-level
defense strategies (e.g., input transformation and augmenting
training data), and discuss future defense directions. Our code
and data are released at our website [37].

In summary, this work makes the following contributions:
• We are the first to study security issues of MSF-based

AD perception and the first to challenge the basic MSF
design assumption in the AD context. We successfully
design and engineer a physical-world adversarial attack
aiming at generating adversarial 3D object to mislead a
victim AV to fail in detecting it and thus crash into it.

• We adopt an optimization-based approach that ad-
dresses two main design challenges: non-differentiable
target camera and LiDAR sensing systems, and non-
differentiable cell-level aggregated features used by Li-
DAR. We also design strategies to enhance the attack
robustness, stealthiness, and physical-world realizability.

• We evaluate on MSF algorithms included in representa-
tive open-source industry-grade AD systems in real-world
driving scenarios. Our attack is shown to achieve over
91% success rates across different object types and MSF
algorithms. Such high effectiveness can also be achieved
with (1) high stealthiness, (2) high robustness to victim
positions, (3) high transferability across MSF algorithms,
and (4) high physical-world realizability after being 3D-
printed and captured by LiDAR and camera devices.

• To understand the end-to-end safety impact, we further
evaluate the proposed attack on a production-grade simu-
lator, and show that our attack can cause a 100% vehicle
collision rate to an industry-grade AD system. We also
evaluate and discuss defense strategies.

While MSF is widely recognized as a promising and general
defense strategy for existing attacks on AD perception [10],
[27]–[29], [38]–[43], prior works have neither studied the
security of existing MSF algorithms in practical AD settings,
nor made attempts to understand whether the very basic

177

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

security design assumption for MSF can fail. In this paper,
we make the first attempt towards this direction, and we hope
that our findings and insights can inspire more future research
into this largely overlooked research perspective.

II. BACKGROUND

A. MSF-based AD Perception

In high-level (e.g., Level 4 [1]) AD systems, perception is
a critical module that detects surrounding objects in real time.
Due to its direct impact on safety-critical driving decisions
such as collision avoidance, AD perception in production high-
level AD systems such as Google Waymo, Pony.ai, and Baidu
Apollo predominantly adopts a Multi-Sensor Fusion (MSF)
based design [14]–[17]. In this paper, we call such design
MSF-based AD perception, or MSF for short. In this paper,
we focus on MSF designed for in-road obstacle detection, e.g.,
front cars, which is the most basic task for AD perception.

MSF design principle and basic assumption. In MSF-
based AD perception, the final object detection results are
obtained by fusing multiple perception sources such as camera
and LiDAR, with the goal of leveraging their strengths while
compensating their weaknesses to achieve overall higher ac-
curacy and robustness than those achievable by a single per-
ception source [18]–[26]. For example, LiDAR is a ranging-
based sensor by shooting lasers, which thus is more difficult
to capture the texture information (e.g., color) of an object
compared to cameras [18]. Camera images, on the other hand,
cannot directly provide the depth information of an object [19],
[25], which can be overcome by LiDARs. Thus, an MSF algo-
rithm can be designed to leverage both the depth information
from LiDAR point clouds and the texture information from
camera images to achieve higher object detection performance
than those using either camera or LiDAR alone [19], [20]. To
achieve such overall higher accuracy and robustness, the basic
design assumption is that there generally exists at least one
source that can provide the correct results. In this paper, we
are the first to challenge such assumption in the AD context.

Representative MSF algorithm design. In AD perception,
state-of-the-art MSF algorithms predominately use 2 percep-
tion sources: camera and LiDAR [18]–[24], [26]. Fig. 1 shows
an overview of a typical MSF-based AD perception design. In
industry AD systems, before running the MSF, the raw camera
and LiDAR inputs, i.e., camera images and LiDAR point
clouds, are usually first pre-processed [15], [16] to prepare
the camera- and LiDAR-side MSF inputs, which can improve
the run-time algorithm performance (detailed later).

In the MSF algorithm, state-of-the-art designs predomi-
nantly adopt DNN networks to process the LiDAR-side and
camera-side MSF inputs [15], [16], [18]–[24], [26], due to
the recent superior performance of deep learning in object
detection [44]. In this paper, we call them LiDAR perception
networks and camera perception networks inside the MSF
algorithm. Next, the processing results from these two net-
works are fused using (1) DNNs [18]–[24], or (2) hard-coded
matching and prioritization rules [15], [16]. Rule-based fusion
is usually a late fusion, i.e., applied to the end results of the

LiDAR perception
networks

Camera

ROI

+Fusion

LiDAR-side
MSF input

Camera-side
MSF input

Agg. feature
extraction

Camera perception
networks

Trans.

Images

MSF AlgorithmPre-Processing Detected objects
Point
clouds

Figure 1: Overview of MSF-based AD perception design.

two networks, while DNN-based one can be a late or early
fusion, i.e., at the intermediate perception results, which can be
fused more deeply and thus potentially lead to higher accuracy.
Meanwhile, rule-based fusion has two unique benefits. First,
it is more modular and thus can flexibility combine different
camera and LiDAR perception models [45]. Second, it is easier
to debug and interpret than DNNs [46], and also to hard-code
safety rules and measures [45]. In our attack design later in
§IV, we comprehensively consider both fusion designs.

When preparing the camera- and LiDAR-side MSF inputs,
typical pre-processing steps include data transformation such
as rotations and shifting, applying Region of Interest (ROI)
filter to remove unrelated input portions, and extracting ag-
gregated features from the raw input. These pre-processing
steps can largely reduce the sizes and dimensions of the MSF
algorithm inputs, which can thus greatly improve the run-time
algorithm performance [47]. Considering that the raw point
cloud data can include millions of 3D points per second [48],
such pre-processing is especially beneficial for LiDAR percep-
tion. Thus, many state-of-the-art LiDAR-based AD perception
model designs choose to use aggregated input features such
as average height and intensity of the 3D points grouped
at the level of 3D cells, or voxels [30]–[32], [49]. Some
state-of-the-art designs even choose to further aggregate the
features in such 3D cells to 2D cells in Bird’s-Eye View (BEV)
to further improve the real-time detection performance [34],
which is thus the most popularly adopted in industry-grade
AD systems [15], [20], [33], [34]. As detailed in §III-B, such
popular adoption of cell-level aggregated features for LiDAR
introduces a unique challenge to our attack design.

B. Physical-World Adversarial Attack
Recent works find that DNN models are generally vulner-

able to adversarial example, or adversarial attacks [50]–[56].
Some works further explored such attacks in the physical
world [5]–[9], [57]–[60]. In the AD context, previous works
have designed successful physical-world adversarial attacks
on the camera-based AD perception alone [5]–[9], [12], [13],
or the LiDAR-based one alone [10], [11]. However, none of
them have considered MSF-based AD perception, which is
predominantly adopted in industry AD systems today (§II-A)
and in principle can be more robust against these attacks (§I).
Also, as detailed later in §III-B, blindly combining these prior
designs cannot directly lead to successful attacks on MSF due
to various new and unique challenges.

III. PROBLEM FORMULATION AND DESIGN CHALLENGES

A. Attack Goal and Threat Model
Attack goal: Fundamentally defeat MSF design assump-

tion. In this paper, we target an attack goal with the most direct

178

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

safety impact on driving: fool the MSF-based AD perception
in the victim AV to fail in detecting a front obstacle and thus
crash into it. Even when the vehicle has a fail-safe Automatic
Emergency Brake (AEB) system, e.g., based on RADAR or
ultrasonic sensors, such a crash is still possible for two reasons.
First, today’s AEB systems are not perfect. For example, a
recent study shows that the ones in popular vehicle models
today fail to avoid crashes 60% of the time [61]. Second, even
if they can successfully perform emergency stop, they cannot
avoid being hit by rear vehicles that fail to yield on time. To
achieve this goal, in this paper we target physical-world attack
vectors in the AD context for high practicality and realism.

Due to the basic design assumption of MSF (§II-A), as long
as there still exists at least one perception source that is not
attacked, it is always possible for the unattacked source(s)
to correct the final fused perception results and thus defeat
our attack goal. Thus, in this paper we aim at designing an
attack that can effectively attack all perception sources used
in the MSF-based AD perception. This can enable our design
to fundamentally defeat the MSF design assumption and thus
most generally achieve our goal above. As the combination of
camera and LiDAR is most popularly adopted in state-of-the-
art MSF-based AD perception (§II-A), in this paper our design
needs to attack both camera and LiDAR simultaneously.

Threat Model. As the first study to achieve the attack goal
above, in this work we mainly focus on a white-box attack
setting, i.e., assuming that the attacker has a full knowledge
of the MSF algorithm used in the victim AD system. This is
the same assumption made in most prior adversarial attacks on
camera- or LiDAR-based AD perception [5], [6], [10], [62]. To
achieve this, the attacker may obtain a victim AV model, e.g.,
by purchasing or renting [63], and then reverse engineer its
perception module, which has been shown as possible on Tesla
Autopilot [64]. The attacker can also target the AVs using
open-source MSF-based AD perception algorithms [15], [16].
In the attack preparation time, we assume that the attacker can
collect camera images and LiDAR point clouds of a targeted
road where she plans to launch the attack.

B. Design Challenges

As described in §II-A, in state-of-the-art MSF algorithms,
the camera and LiDAR perception networks are DNN based.
Although no prior works consider attacking MSF, many
designed successful physical-world adversarial attacks on
camera- or LiDAR-based AD perception DNN models. How-
ever, we find that blindly combining these prior designs cannot
directly achieve our goal due to 3 unique challenges:

C1. Lack of a single physical-world attack vector effec-
tive for both camera- and LiDAR-based AD perception.
To achieve our attack goal, we need to find physical-world
attack vectors for both camera- and LiDAR-based perception
networks in MSF. However, so far none of the attack vectors
used in previous physical-world adversarial attacks in the
AD context have shown effectiveness in affecting both. For
camera-based AD perception, previous works predominately
consider adding stickers/posters [5], [6], painting [8], [9],

or changing brightness [12], [13], which can only change
the texture of an obstacle but not its shape and thus can
barely affect the LiDAR point clouds. On the LiDAR side,
LiDAR spoofing [10], [11], which shoots lasers to LiDAR, has
shown to be effective in the AD context. Although lasers can
also affect camera inputs [40], no prior work has studied its
effectiveness for fooling camera-based AD perception models.
One possible solution is to use separate attack vectors for
them, e.g., using stickers for camera and laser shooting for
LiDAR. However, this not only adds up the attack deployment
costs and thus lowers the realizability and stealthiness, but also
requires precise synchronizations across the attack processes.
Thus, it is highly desired to identify one single attack vector
that can effectively attack both at the same time.

C2. Need to differentiably synthesize physically-
consistent attack impacts onto both camera and LiDAR. To
systematically generate adversarial inputs, prior works gener-
ally adopt optimization-based approaches, which have shown
both high efficiency and effectiveness [6], [60]. Since adversar-
ial attack generation typically takes thousands of optimization
iterations [65], [66], it is almost impossible in practice to
physically drive vehicles on the target road to obtain the attack-
influenced camera images and LiDAR point clouds every time
the adversarial inputs are updated in an iteration. Thus, we
need to digitally synthesize the impacts of the adversarial
stimulus from the physical world onto both camera images
and LiDAR point clouds, and such synthesizing needs to be
differentiable to enable effective optimization. As discussed in
C1, no single attack vector has been studied for both camera-
and LiDAR-based AD perception so far in prior works. Thus,
no matter what attack vector we identify to address C1, we
need to design a new differentiable synthesizing function for
at least one of the perception sources, which can be quite
challenging for certain physical-world attack vectors, e.g.,
differentiably modelling the impact of lasers on camera inputs
from different distances and angles. Meanwhile, since such
attack impacts come from the same physical-world stimulus,
the synthesized impacts to the camera images and the LiDAR
point clouds need to be physically consistent, e.g., conforming
to their different mounting positions in the AV.

C3. Need to handle non-differentiable pre-processing
steps in AD perception. As introduced in §II-A, in indus-
try AD systems, images and point clouds are usually pre-
processed before fed into the MSF algorithm. In particular,
state-of-the-art LiDAR-based AD perception models popularly
use aggregated features of 3D points grouped at level of 2D
or 3D cells (§II-A). To calculate such cell-level aggregated
features, the necessary first step is to calculate whether an
input point is inside a cell or not. In this paper, we call
it a point-inclusion property. By nature, such property is
discontinuous, i.e., 0 and 1 for outside and inside a cell. This
causes the calculation of any cell-level aggregated features
non-differentiable with regard to the LiDAR point clouds,
which thus makes our optimization difficult to be effective. So
far, no prior works have considered a general design to handle
such non-differentiable pre-processing steps for LiDAR.

179

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

IV. ATTACK DESIGN: MSF-ADV
In this paper, we are the first to address all the 3 challenges

in §III-B by designing a novel physical-world adversarial at-
tack method, MSF-ADV, which thus can fundamentally defeat
the MSF design assumption in AD perception.

A. Design Overview

To address the challenges in §III-B, our MSF-ADV method
has the following novel designs:

Adversarial 3D object: physically-realizable and stealthy
attack vector for MSF-based AD perception. To address C1,
we identify adversarial 3D object as the physical-world attack
vector against MSF-based AD perception. Our key insight is
that different shapes of a 3D object can lead to not only point
position changes in LiDAR point clouds but also pixel value
changes in camera images. Thus, the attacker can leverage
shape manipulations of such an object to introduce adversarial
input perturbations simultaneously to both camera and LiDAR
perception networks in the MSF algorithm. To achieve the
attack goal, the attacker simply places such an object in the
roadway to trick the victim AV to crash into it.

Beside satisfying C1, such an attack vector also has 2 other
advantages. First, it is easily realizable and deployable in the
physical world. For example, the attacker can construct it
digitally in a 3D mesh and 3D-print it, which is convenient
today through online services [67]. Second, it can achieve
high stealthiness by mimicking a normal traffic object that
can legitimately appear in the middle of the road, e.g., a traffic
cone or barrier, but with a worn or broken look, which is not
uncommon in the real world as shown in Fig. 2. In our design
(§IV-E), we also constrain the degree of the shape changes
from the normal object to achieve high stealthiness. Note that
although it is possible to manipulate the object texture (e.g.,
color) together with the shape in our design, we intentionally
choose to not consider it in this paper as it can greatly harm
stealthiness and also incur additional printability issues, which
is a common challenge for physical-world adversarial attacks
using stickers/posters [5], [68], [69].

Causing road safety threats. To make such an object both
easy to deploy and able to cause severe crashes, the attacker
can choose smaller objects such as a rock or traffic cone but
fill it with granite or even metal to make it harder and heavier.
For example, a 0.5 cubic-meter rock or a 1-meter high traffic
cone [70] filled with some aluminum can easily weigh over
100 kg, which can trip the victim AV to lose control, damage
the chassis, or break the windshield glass if bounced up when
driving at a high speed. Besides causing damages by the crash
itself, the attackers can also exploit the semantic meaning of
certain road object types such as traffic cones. For example,
the attacker can design an AV-specific attack by placing nails
or glass debris behind an adversarial traffic cone object so that
failing to detect it can lead to tire blowout of a targeted AV.
Here, the safety damages are not directly caused by the traffic
cone crash itself, and thus in this case the adversarial traffic
cone can be small and lightweight like normal ones to make
it easier to 3D-print, carry, and deploy.

Figure 2: Real-world traffic objects with worn or broken
looking shapes, which can be mimicked by our physical-world
attack vector: adversarial 3D object with shape manipulations.

Optimization-based adversarial 3D object generation.
To systematically generate adversarial 3D objects, we adopt
an optimization-based approach similar to prior works [5]–
[11]. We start with a 3D mesh of a normal 3D object, e.g.,
a normal traffic cone, and then introduce shape manipulations
by changing its vertex positions. To address C2, due to the
choice of adversarial 3D objects as the attack vector, we
can conveniently leverage existing 3D rendering techniques
in computer graphics to simulate the functionalities of the
physical equipment, i.e., camera and LiDAR, and thus system-
atically synthesize the attack-influenced camera images and
LiDAR point clouds. Specifically, to enable the end-to-end
optimization process, we perform differentiable constructions
of these rendering processes, and use the relative positions
to the 3D object to ensure the physical consistency with the
corresponding camera and LiDAR mounting positions.

With the synthesized raw camera images and LiDAR
point could, next we design the differentiable approximation
function for the non-differentiable pre-processing step (non-
differentiable cell-level aggregated feature calculation) to en-
able the end-to-end optimization. To address this, our key
insight is that all the commonly-used cell-level aggregated
features can be differentiably derived by the point-inclusion
property (detailed later in §IV-D). Thus, we first design a
novel and accurate differentiable function to approximate the
calculation of the point-inclusion property, and then use it as
a building block to achieve differentiable computations of the
pre-processing steps for LiDAR. In the optimization process,
we also have other domain-specific designs, e.g., for attack ro-
bustness, stealthiness, and physical-world realizability, which
will be detailed in the following sections.

B. MSF-ADV Methodology Overview

In this section, we provide an overview of our MSF-ADV
method, and will detail its components in later sections.

Problem formulation. We formulate the attack generation
process as the following optimization problem:

min
Sa

Et∼T [La(t(Sa);Rl,Rc,P,M) + λ · Lr(Sa, S)] (1)

where PCa = Rl(t(Sa), PC) (2)
IMGa = Rc(t(Sa), IMG,C) (3)
F a = P(PCa, IMGa) (4)

La(t(Sa);Rl,Rc,P,M) = O(M(F a)) (5)
subject to ∆(Sa, S) ≤ ε (6)

180

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

Data Flow
Back-Propagation

Robustness (§IV-E)

Yaw rotation

5◦ 10◦ 15◦

Pos. shifting

Sa

LiDAR rendering

Rays

Ray casting

Camera rendering

NMR

Rendering (§IV-C)

PCa

IMGa

LiDAR pre-processing

Agg. features

Camera pre-processing

ROI

Pre-Processing (§IV-D)

F a

F a

MSF Algorithm

Camera
perception
networks

LiDAR
perception
networks

+Fusion

LiDAR

Camera

∑ La

Realizability (§IV-E)

Surface smoothing
Lr(S

a, S)

Stealthiness (§IV-E)

PGD

Control
ℓ∞

Gradient

t(Sa)

Adversarial
3D object

Target road

ImagePoint cloud
PC
IMG

Figure 3: Overview of the optimization-based adversarial 3D object generation in MSF-ADV.

S is the original benign object and Sa is the adversarial
one. We use vertex-face (v-f) meshes to represent them, i.e.,
S = (v,f) and Sa = (va,fa). In Eq. (1), the optimizing
parameter is the adversarial object Sa, and we only change its
vertices va. The objective function includes: (1) an adversarial
loss La, which is designed to achieve our attack goal by
misleading the MSF algorithm M(·) to fail in detecting Sa,
and (2) a realizability loss Lr(·), which is designed to improve
smoothness of the Sa surface to benefit both the printability
and stealthiness (§IV-E). To improve the robustness of Sa in
the physical world, we apply Expectation over Transformation
(EoT) [60] by introducing a set of 3D transformation T to Sa

and optimize the expectation of their objective function values
in Eq. (1). λ is a balancing hyper-parameter.

In Eq. (2) and Eq. (3), Rl(·) and Rc(·) are the differentiable
LiDAR and camera rendering functions respectively (§IV-C).
They generate the attack-influenced point clouds PCa and
images IMGa given the corresponding backgrounds of the
target road (PC and IMG). PCa and IMGa are then fed into
the differentiable pre-processing approximation function P(·)
to obtain the attack-influenced MSF input features F a (§IV-D).
F a is fed into MSF algorithm M(·) in Eq. (5), and O(·) is
designed to extract the output features related to the object’s
confidence score of the adversarial object. To achieve high
stealthiness, in Eq. (6) we limit the shape deformation between
S and Sa within a threshold ε by using a distance metric ∆(·)
(e.g., Lp distance metric: ∆(Sa, S) = ||Sa − S||p).

Optimization process overview. Fig. 3 overviews our opti-
mization process. As shown, given a 3D object Sa initialized
with S, we first apply 3D transformations (e.g. rotation and po-
sition shifting) T to generate multiple samples t(S) to improve
the robustness of the adversarial object against environment’s
variation. Next, each one of them, along with the LiDAR
point clouds (PC) and camera image (IMG) background
from the target road, are fed into the rendering functions
(Rl(·),Rc(·)), pre-processing approximation functions (P(·)),
and the MSF algorithm (M(·)) to calculate La. Additionally,
the realizability loss Lr(Sa, S) is added to La(·) together
using Eq. (1) to construct our loss function. To solve it, we use
Projected Gradient Descent (PGD). Specifically, we compute

Cell-level Aggregated Features Used in

Occupancy [15], [16], [30], [34], [49], [73]
Count [15], [16]
Height (min/max/mean) [15], [16], [20], [24], [33]
Intensity (min/max/mean) [15], [16], [20], [30], [33], [34], [49]
Density [20], [24], [33]

Table I. Summary of commonly-used cell-level aggregated fea-
tures in state-of-the-art LiDAR-based object detection models.
Our novel soft point-inclusion property calculation (§IV-D)
can be used to differentiably derive all of them.

its gradients with respect to the vertex positions va of Sa

and constrain the gradients with a stealthiness threshold ε. We
then update Sa using these gradients. We iteratively apply this
process until Sa cannot be detected by the MSF algorithm.

C. Differentiable Rendering

In this section, we detail the differentiable rendering func-
tionsRl(·) andRc(·) in Eq. (2) and Eq. (3). To ensure physical
consistency, we define Sa in the LiDAR coordinate system,
which is convenient as it is by nature 3D. For camera ren-
dering, we then use a calibration matrix C to transform Sa

from the LiDAR coordinate system to the camera coordinate
system. C can be obtained by measuring the relative positions
between the camera and the LiDAR of AV. To achieve differ-
ential rendering, we leverage existing differentiable ray-casting
methods [71] for LiDAR and NMR [72] for camera.

D. Pre-Processing Step Approximation

In this section, we detail the construction of the differen-
tiable pre-processing function P(·). Most of the pre-processing
steps such as ROI, rotation, and position shifting (§II-A)
can be directly constructed differentiably using projective and
affine transformations. However, such construction is espe-
cially challenging for the calculation of cell-level aggregated
features such as cell occupancy and the mean height of the
points inside a cell, due to the discontinuity of the point-
inclusion property as discussed in C3 (§III-B). However, such
features are commonly used in state-of-the-art LiDAR-based
AD perception as summarized in Table I, for achieving high

181

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

run-time performance (§II-A). This thus makes it necessary to
address this to ensure the generality of our attack method.

To address this, we find that as long as we can obtain the
point-inclusion value of each 3D point to a given cell, all
the commonly-used features in Table I can be mathematically
calculated in closed form. Thus, we first design an accurate and
differentiable approximation of the point-inclusion property
calculation, or a soft point-inclusion calculation, and then use
it as a building block to differentiably derive the features.

Building block: Soft point-inclusion calculation. Given a
point PCi with coordinate (ui, vi, wi) from the point cloud
PC and a 3D cell cm of length L, width W , and height H ,
the direct point-inclusion value of PCi for cm, denoted as
PI(PCi, cm), is 1 if PCi is inside cm, and 0 if not. To
differentiably approximate this function, we estimate the point-
inclusion probability of the point among the 8 cells closest to
it by calculating the interpolation of it to these 8 cell center
positions. Fig. 4 (a) illustrates these 8 cells, which are indexed
as m = 1...8. The center position of a cell cm is denoted as
(um, vm, wm). These 8 center positions form a cuboid that
encloses PCi. We can then calculate the interpolation of this
point to these center positions using trilinear interpolation [74]:

softPI(PCi, cm) =(1− d(um, ui)

L
) · (1− d(vm, vi)

W
)

· (1− d(wm, wi)

H
)

(7)

where d(u1, u2) = |u1−u2| and
∑8
m=1 softPI(PCi, cm) = 1.

Thus, this is similar to calculating the probabilities of whether
PCi is inside each of these 8 cells. Fig. 4 (b) illustrates the
calculation process and the example calculation for PCi at
(0.8, 0.7, 0.1) when L = W = H = 1 (i.e., each cell is a
cube) and the center coordinate of c5 is the origin (0, 0, 0). The
calculation results are the numbers without underline at the 8
center positions. In Fig. 4 (c), the interpolation value at the
center position of each cell is then used as the point-inclusion
probability for such cell. As shown, since PCi is inside c7,
it is the closest to the center of c7 at (1, 1, 0), and thus the
interpolation value is the highest for c7. This thus is able to
correctly assign the highest point-inclusion probability to c7.

Approximation accuracy improvement. In Fig. 4 (b),
while the point-inclusion probability is indeed the highest for
c7, the probability value is only 0.504 and thus still has a
non-negligible gap to the ground-truth value 1. We find that
the cause of this gap is at the d(u1, u2) function in Eq. (7).
As shown in Fig. 5, the ground-truth function for d(u1, u2)
when L = W = H = 1 is 0.5 + 0.5 · sign(|u1 − u2| − 0.5),
since if the distance between the point and the cell center
at any dimension is over 0.5, it is outside of cell and thus
(1 − d(u1, u2)) should be 0 in Eq. (7). Since sign(x) is not
differentiable when x = 0, such ground-truth function cannot
be directly used in softPI(·). Using d(u1, u2) = |u1 − u2| as
in classic trilinear interpolation is differentiable, but its curve
has a gap to the ground truth as shown in Fig. 5 so that it is
more difficult for the optimized Sa to succeed. To address this,

we use tanh(·) to differentiably and accurately approximate
sign(·). For example, for the u dimension, it becomes:

d(u1, u2) =
L

2
+
L

2
· tanh(µ · (| u1 − u2 | −

L

2
)) (8)

For the v and w dimensions of PCi we replace L with W
and H . Fig. 5 shows the curve of Eq. (8) when L = 1. As
shown, the difference between Eq. (8) approximation and the
ground truth is much smaller. In this paper, we call SoftPI(·)
using d(u1, u2) = |u1 − u2| and Eq. (8) trilinear and tanh
approximation respectively. The numbers with underline in
Fig. 4 (b) and (c) are the results with tanh approximation. As
shown, with tanh approximation the point-inclusion probabil-
ity for c7 becomes 1.0, which is directly the ground-truth value
and thus much more accurate than trilinear approximation.

To more concretely show the benefit of tanh approximation,
Fig. 6 shows the calculation results for the count feature in
Table I based on softPI(·) using real-world point cloud data.
The count feature calculates the number of points in a cell
(derivation of it from softPI(·) is described later). In Fig. 6,
the count values are visualized using a gray-scale heatmap
in BEV. Fig. 6 (a) and (c) shows the count values calculated
using trilinear and tanh approximations respectively, and (b)
and (d) shows their differences to the ground-truth count value.
As shown, the count values using trilinear approximation have
clear differences to the groundtruth, while the differences for
the ones using tanh approximation is almost invisible.

Derivation of cell-level aggregated features. With an
accurate SoftPI(·), we can then differentiably approximate all
the cell-level aggregated features in Table I as follows:
• Count and density. The count feature calculates the

number of points in a cell. With softPI(·), we can
differentiably derive the count value as CNT(cm) =∑

PCi∈PC softPI(PCi, cm). The density feature calculates
the density of points in a cell. Thus, we can directly calculate
it by dividing CNT(·) by the cell size.
• Occupancy. The occupancy feature calculates whether

a cell has points or not. With CNT(·) above, it can be
calculated as sign(CNT(·)). Note that since the sign(·) is not
differentiable, we approximate it using sign(x) = x during the
backward pass of the optimization.
• Height and intensity. The max/min/mean height features

calculate the maximum, minimum, and the average height
of the points inside a cell. Thus, the max and min height
features are directly maxPCi∈PC softPI(PCi, cm) · wi and
minPCi∈PC softPI(PCi, cm) · wi. The mean height feature
can be calculated as

∑
PCi∈PC softPI(PCi,cm)·wi

CNT(cm)+ε , where ε is
small number to prevent division by zero. The max/min/mean
intensity features can be calculated similarly by replacing wi
with the intensity value of PCi.

The calculations above are performed for 3D cells. To obtain
features for 2D cells, we just need to add an aggregation
of these 3D cell features in one dimension, e.g., the vertical
dimension for BEV 2D cells (§II-A), into these calculations.

182

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

PCi

1 2

34

5 6

78

0.1

0.1

Trilinear approximation
Tanh approximation

(a) 8 cells & formed cube
u

v

w

O
(0,0,0)

(1,0,0)

(0,1,0)

(1,1,0)

(0,1,1)
(0,0,1)

(1,0,1)

0.504

0.126

0.014

0.006

0.024 0.054

0.216

0.056

1.0

0.0

PCi = (0.8, 0.7, 0.1)

1 2

34

5 6

78

0.0

0.0

0.0

0.0

0.0

0.0

(b) Soft point-inclusion calc.

0.006

0.0560.024

0.014

0.216 0.504

0.126

0.054

1.00.0

0.0

0.0

0.0

0.00.0

0.0

c7

c1 c2

c3

c4

c5

c6

c8
PCi

(c) Result assigned to 8 cells
Figure 4: Illustration of the soft point-inclusion calculation with trilinear and tanh
approximations. PCi is a point in PC, and c1 to c8 are the 8 3D cells closest to PCi.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x = |u1 � u2|

d
d1 = 0.5 + 0.5 · sign(x � 0.5)

d3 = 0.5 + 0.5 · tanh(x � 0.5)
d2 = x

Figure 5: Line d1 is the ground truth,
while d2 and d3 are trilinear and tanh
approximation. As shown, the tanh
one is much closer to the ground truth.

(a) Trilinear (b) Trilinear vs GT (c) Tanh (d) Tanh vs GT

Figure 6: Accuracy benefit of tanh approximation over trilin-
ear approximation for the count feature (number of points per
cell). Count values are visualized using a gray-scale heatmap.
GT denotes the ground-truth count value.

E. Objective Function Design

Adversarial loss La. For the adversarial loss La in Eq. (1),
similar to prior attacks on object detection [5], [6], we extract
and minimize the confidence value (which reflects the con-
fidence that the region contains an object) of the regions of
Sa. As introduced in §II-A, the fusion process of the LiDAR
and camera perception networks in the MSF algorithm can
be DNN-based or rule-based. For the former, we directly
extract the confidence values in the MSF output [18]–[24].
For the latter, since the rule-based fusion logic is not directly
differentiable, we extract the confidence values in the outputs
of the LiDAR and camera perception networks separately, and
minimize the sum of them. This is because if we can prevent
Sa from being detected in the outputs of both the LiDAR and
camera perception networks, Sa will not appear in the MSF
output no matter what the rule-based logic is.

Realizability loss Lr(·). To realize our attack goal in §III-A,
Sa needs to be 3D-printed and placed on top of the road
surface in the physical world. To facilitate this, we design the
realizability loss Lr(·) in our objective function to (1) improve
the printability of Sa at 3D printers by maximizing its surface
smoothness using a Laplacian loss [75], and (2) prevent the
generation of Sa that is underneath the road surface. The
detailed loss formulations are in Appendix A.

Stealthiness designs. Our optimization process has two
designs for improving the stealthiness of Sa. First, the realiz-
ability loss above can improve its surface smoothness, which
can thus allow it to look normally in practice. Second, we solve
Eq. (6) by using Project Gradient Descent (PGD) with L∞
distance constraint during the gradient update step in Fig. 3,
which thus ensures that the per-dimension moving distance
for each vertex in S is smaller than ε. We can then use ε to
control how similar Sa looks compared to the benign one S,
and thus the smaller ε is, the stealthier Sa is.

Attack robustness improvement. To achieve the end-to-
end attack success in our setting, it is ideal if Sa can be contin-
uously undetected by the MSF algorithm when the victim AV
is approaching the object, until their distance is smaller than
the brake distance [76] so that it is too late to brake to avoid the
crash. Thus, we need to improve the robustness of Sa against
different victim approaching distances and angles of the target
road. To achieve this, we implement Transformation T via
random yaw-dimension rotations and ground-plane position
shifting of Sa, which is illustrated in Fig. 3.

V. ATTACK EVALUATION

A. Evaluation Methodology and Setup

MSF algorithm selection. In our evaluation, we target
MSF algorithms included in open-source industry-grade AD
systems to ensure high practicality and realism of our eval-
uation results. In particular, we select the ones included in
2 open-source full-stack AD systems, Baidu Apollo [15] and
Autoware.AI [16], due to their (1) representativeness among
industry-grade AD systems today, as Apollo has been recently
ranked among the top 4 leading industrial AD developers
along with Waymo, Ford, and Cruise [35], and Autoware is
adopted by the USDOT in their AV fleet [77]; (2) practicality,
since both systems can be readily installed on real vehicle
models [78], [79] for driving on public roads. In particular,
Apollo has been providing self-driving taxi services in China
for months [80]; and (3) ease to experiment with, since they
are the only full-stack AD systems that are open-sourced.

Both AD systems use rule-based fusion in their MSF
algorithms, i.e., the LiDAR and camera perception networks
are separated DNN models, and their individual perception
outputs are fused based on hard-coded matching and prior-
itization rules. As described in §II-A, such design has high
modularity and is easy to debug, interpret, and hard-code
safety rules/measures [45]. These can greatly benefit system
development in industry, which might be the reasons why
it is adopted in both Apollo and Autoware.AI. As described
in §IV-E, for such fusion type, our optimization objective is to
make our adversarial object undetected in both the outputs of
the LiDAR and camera perception models to allow our attack
to succeed no matter what rule-based fusion logic is used.

Due to such modular fusion designs, the MSF algorithms in
both Apollo and Autoware.AI allow different combinations of
LiDAR and camera perception models. Thus, in our evaluation

183

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

we also evaluate our attack against different such combinations
to understand the generality of our attack. In this paper, we
call each such combination an MSF combination and use +©
to denote such combination operation. In particular, we select
2 different models for LiDAR and 2 for camera, which forms
4 MSF combinations in total. On the LiDAR side, the LiDAR
perception model in Apollo is also included in Autoware.AI.
Thus, we choose 2 models in different Apollo versions that
have substantially different DNN designs: one from the latest
version, v5.5, denoted as A5-L, and another from an older
version, v2.5, denoted as A2-L. At the DNN design level,
A5-L differs greatly from A2-L with 43.9% more deep layers
and 65.0% more trainable parameters. On the camera side,
we select the one from the latest version of Apollo, denoted
as A5-C, and the pre-trained YOLO v3 [81], denote it as Y3,
which is included in the latest version of Autoware.AI.

3D object type selection. Considering the supported object
types for the LiDAR and camera models, we experiment with
3 types of objects for the above 4 MSF combinations: (1) a
traffic cone of size 0.5 m × 0.5 m × 1.0 m, for A5-L +©A5-C
and A2-L +©A5-C, (2) a bench of size 0.6 m × 0.5 m × 1.5
m, for A5-L +©Y3 and A2-L +©Y3, and (3) a toy car of size
0.6 m × 0.7 m × 1.6 m (for kids to sit inside), for all 4 MSF
combinations. We intentionally avoid large objects like cars
since they are much harder to 3D-print and deploy. Among the
3 object types, we consider traffic cone as the most attractive
for attacker since it is much more common to appear on the
roadway than the other two and thus the most stealthy. Thus,
majority of our experiments are focused on traffic cone.

Attack scenario selection. For each object type, we select
100 real-world driving scenarios from the KITTI dataset [36]
in which such object in benign case can be 100% detected by
the MSF combinations. Each scenario is one frame of sensor
inputs including the camera image, the LiDAR point cloud,
and the calibration matrix. These scenarios has high diversity
with different types of objects (e.g., cars, trucks, traffic lights)
and roads (e.g., local, high-way, to rural roads).

Object placement. For most experiments, we place the
benign and adversarial objects 7 meters (m) in front of the
victim. We choose 7 m because it is the braking distance [76]
when the vehicle speed is 25 mph, almost the lowest one
in normal driving. Since such distance is larger for higher
vehicle speeds, 7 m represents the smallest distance at which
the object has to be detected by the victim to avoid a crash in
normal driving scenarios. In §V-D, we also evaluate our attack
among different victim distances and angles. More detailed
attack parameter settings are in Table VIII in Appendix.

B. Attack Effectiveness

In this section, we evaluate the effectiveness of our attack
on the attack scenarios described in §V-A.

Evaluation metrics. Given an MSF combination and an
attack scenario, we render our generated 3D adversarial object
into the background point cloud and image, and test whether
it can be detected by the MSF combination. We determine our
attack as success if and only if the adversarial 3D object is

undetected by both the LiDAR and camera models in such
MSF combination. Under this criterion, the successful attacks
can generally defeat any rule-based fusion logic that can be
applied to fuse the outputs of these two models. Thus, the
calculated success rate is a lower bound when a specific fusion
logic is used, e.g., the ones in Apollo and Autoware.AI. We
perform evaluation on 100 scenarios and report success rate.

Results. The results for the 4 MSF combinations are shown
in Table II. For all object types and all MSF combinations,
success rates are at least 91%, and those for traffic cone and
bench are all 100% among 100 driving scenarios. This shows
that MSF-ADV is an effective method. Among these results,
the 100% success rates for traffic cone is especially important,
since it is the most attractive object type among the three from
the attacker’s view due to its small size and the ability to
disguise as a normal traffic object in the middle of the road.
Note that our method can achieve 91% attack success rates
even for the toy car of which the object type (car) has been
heavily explored in training data of the model. Among the 4
MSF combinations, A5-L +©A5-C has the lowest attack success
rates, which shows that the models from the latest version of
Apollo are the most robust among the 4.

Stealthiness. We also measure the stealthiness of our object
using the average per-vertex ∆`p distances and the LPIPS
(Learned Perceptual Image Patch Similarity) metric [82].
Table II shows the results with stealthiness parameter ε = 2
cm (§IV-E). As shown, our attack only needs to move each
vertex by 3.4 cm on average (∆`2) to achieve at least 91%
success rates on all MSF combinations. For LPIPS, we use
the official implementation from [82] to measure the LPIPS
value between the driving image with benign object rendered
and the same image with the adversarial one rendered at the
same location. As shown, the average LPIPS value is 0.10
across the 3 object types. This is at the same level as those
achieved in latest GAN-based image restoring methods [83],
which are generally considered as indistinguishable for human.
In Table III, we further evaluate our attack under different
ε values on A5-L +©A5-C using traffic cone. As shown, the
attack success rates are still over 93% even when the average
moved distance per vertex (∆`2) is as small as 1.5 cm.

Attack stealthiness user study. To more directly evaluate
the attack stealthiness, we also conduct a user study for
traffic cone with 105 participants from Amazon Mechanical
Turk [84]. The results show that the generated adversarial
traffic cone is generally viewed (1) as innocent as the original
benign cone, and (2) less suspicious than certain benign ones
with broken shapes. More details are in Appendix B.

Effectiveness under different attack settings. We also
perform evaluation under different attack parameter settings.
We find that our attack is most sensitive to µ, which show that
the differentiable approximation design in §IV-D is critical to
the attack success. More details are in Appendix C.

Printability. We also evaluate the printability of our attack
using commercial printability checking tool and geometry met-
rics such as watertightness [85], [86], self-intersection [87],
and curvature [87]. Our results show that our generated objects

184

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

MSF Comb. A5-L +©A5-C A5-L +©Y3 A2-L +©A5-C A2-L +©Y3

Object Type Traffic cone Toy car Bench Toy car Traffic cone Toy car Bench Toy car

Success Rate 100% 91% 100% 93% 100% 96% 100% 97%

∆`1 5.92 5.95 5.93 5.97 5.93 5.63 5.90 5.61

∆`2 3.28 3.46 3.39 3.37 3.43 3.34 3.30 3.25
Dist.
(cm)

∆`∞ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

LPIPS 0.06 0.02 0.20 0.04 0.07 0.17 0.20 0.06

Table II. Attack success rate and average vertex perturbation distance of MSF-ADV on different MSF combinations in 100
driving scenarios. A5-L, A5-C: LiDAR and camera models in Baidu Apollo v5.5. A2-L: LiDAR model in Apollo v2.5. Y3:
YOLO v3. All objects can be 100% detected by each MSF combination in the benign case.

∆`p Dist. (cm)Stealthiness
Level (cm)

Succ.
Rate ∆`1 ∆`2 ∆`∞

LPIPS

ε = 2.0 100% 5.92 3.28 2.00 0.06
ε = 1.0 93% 2.84 1.51 1.00 0.05
ε = 0.5 76% 1.38 0.54 0.50 0.05

Table III. Stealthiness evaluation results of MSF-ADV on MSF
combination A5-L +©A5-C with the traffic cone object under
different stealthiness levels of ε (§IV-E).

are 100% printable, and our printability improvement designs
in §IV-E substantially reduce the printing difficulties from
58.9% to 74.3%. Detailed are in Appendix D.

Transferability. We also evaluate the attack transferability
among the 4 MSF combinations with the toy car object. We
find that the transfer attack among them is generally effective,
with success rates around 75% on average.

C. Comparison with Baseline Attack Methods

While our attack shows high effectiveness in the previous
section, it is unclear how much of it is due to the specific
designs in MSF-ADV. To understand this, in this section we
compare our method with possible baseline attack methods.

Evaluation methodology. We consider 2 baseline attack
methods: (1) Gaussian noise based shape perturbation, denoted
as GN, and (2) Genetic algorithm [88] based attack generation,
denoted as GA. GN is used to understand whether the success
of our attack is due to our optimization-based design (§IV), or
simply due to the nature of that level of shape perturbations.
GA still uses our objective function design in §IV-E as fitness
function, but does not need differentiability, which is thus
used to understand whether our differentiable approximation
function designs in §IV-D are actually useful.

Experimental setup. We perform comparison with our
attack on A5-L +©A5-C MSF combination with the traffic cone
object using the same setup in §V-A. We implement GN and
GA using the corresponding standard Python libraries [89],
[90]. For GN, we apply a Gaussian noise with µ = 0 and
σ = 2.1 cm to each vertex dimension to generate a similar
level of perturbation as MSF-ADV with ε = 2 cm. For GA, we
set the population size to 50, a common value used in genetic
algorithm based adversarial attacks [91], [92]. We configure
it to use 2 cm as the per-dimension perturbation bound for
each vertex, the same as ε in MSF-ADV. To achieve a fair

∆`p Dist. (cm)
Attack
Method

Success
Rate ∆`1 ∆`2 ∆`∞

GN 8% 21.8 3.35 10.3
GA 9% 2.85 1.84 2.00

Ours 100% 5.92 3.28 2.00

Table IV. Comparison be-
tween MSF-ADV and base-
line attack methods in attack
success rate and object pertur-
bation degrees. GN: Gaussian
noise. GA: genetic algorithm.

0.6

1.8

1.0

1.4

2000150010005000

F
it

n
e

s
s

Number of Trials

GA

MSF-ADV

Figure 7. Fitness values of GA
and MSF-ADV during the op-
timization process. The curve
for MSF-ADV stops at 1000
since it can already succeed
for all scenarios at that point.

comparison, we run GA using similar CPU and GPU resources
as MSF-ADV, and ensure that it runs longer than our method.

Result. Table IV summarizes the attack success rates of GN,
GA, and our method, and the corresponding shape perturbation
degrees. As shown, for GN, the average moved distance per
vertex is 3.35 cm (∆`2), which is larger than those generated
by our method (3.28 cm). However, only 8% of the ones from
GN succeed, which is a magnitude lower than ours (100%).
This thus shows that our high attack effectiveness is mainly
due to our optimization-based design, instead of the nature of
a similar-level shape perturbation. For GA, we stop it after
it generates 2000 adversarial objects for each attack scenario,
which is twice the number for our method (1000). However,
the success rate is only 9%, which is also a magnitude lower
than ours. Fig. 7 shows the fitness value trend during the
optimization process, which is averaged over the 100 attack
scenarios. As shown, the fitness value decrease for GA is much
slower than ours: its fitness value drop after 2000 trials is
achieved after only 133 trials using our method, which is 15×
more efficient. This thus concretely shows that benefit of our
differentiable approximation function designs in §IV-D, which
allows the use of gradient-based optimizations to significantly
improve both the attack efficiency and effectiveness.

D. Attack Robustness

In this section, we evaluate our attack robustness against
different victim approaching positions and angles.

Evaluation methodology. We still use the attack scenar-
ios in §V-A for evaluation. To synthesize different relative
positions between the victim and the object when the victim

185

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

Y = (-0.1 m, 0.1 m)

X = (5 m, 15 m) (15 m, 25 m) (25 m, 35 m)

w/o EoT 80.3% 79.2% 79.9%

w/ EoT 96.3% 95.5% 96.6%

Table V. Average success rate on A5-L +©A5-C with traffic
cone in different victim approaching distance ranges.

is approaching the object, we render the object at different
locations ahead of the victim in both the camera and LiDAR
frames given an attack scenario.

Experimental setup. As described in our attack design
(§IV-A), the adversarial object is placed in the middle of the
traffic lane in which the victim is driving. In this section, X
and Y denote the relative distance between the victim and
the object in the longitudinal (i.e., forward and backward) and
lateral (i.e., left and right) directions respectively. For X , we
consider 3 distance ranges from 5 to 35 m, which correspond
to the brake distances for speed from ∼20 to 55 mph [76].
For Y , the deviations to the center of the lane usually need to
be within 0.1 m for smooth and safe driving [93], [94]. Thus,
we consider Y ∈ (−0.1 m, 0.1 m). For each position range,
we randomly sample 20 different positions.

Results. Table V shows the average attack success rates for
A5-L +©A5-C with traffic cone in the 3 position ranges over
the 100 evaluation scenarios (§V-A). As described in §IV-E,
we use EoT to improve robustness. As shown, this improves
the average success rates in all position ranges by 20.5% on
average. Overall, with EoT the average attack success rates are
over 95% across different position ranges, which shows a high
robustness of our attack against different victim approaching
positions and angles at common driving speeds.

E. Physical-World Attack Realizability Evaluation

While the results in prior sections show high effectiveness
and robustness of our attack, the experiments are performed by
digitally rendering the objects into camera and LiDAR inputs.
Thus, it is unclear whether such high effectiveness can still be
achieved after the adversarial object is 3D-printed and placed
in the physical world. Thus, in this section we evaluate such
physical-world realizabilty of our attack.

1) Real Vehicle based Experiments: At the early stage of
this project, we had access to a real vehicle equipped with a
high-end Velodyne HDL-64E LiDAR, and used it to perform
physical-world experiments for LiDAR models. Unfortunately,
later we lost the access to it and only have such real vehicle
based experiments for the LiDAR-side evaluation. In this
section, we report these results for LiDAR side, and will detail
in the next section the physical-world experiments for both
LiDAR and camera using a miniature-scale experiment setup.

Evaluation methodology and setup. In this experiment, we
3D-print the adversarial object and conduct the experiment by
using the vehicle mentioned above to collect its LiDAR point
clouds on the real road. Fig. 8 (a) shows the vehicle and road.
We selected a rarely-used road and no other vehicles passed by
during this experiment. Since this experiment was performed

(a) Road & car w/ LiDAR

(b) Benign and adv. cubes (c) Benign case (d) Adversarial case

Figure 8: Physical-world experiment settings and evaluation
results for LiDAR-side physical-world attack realizability. We
use a Velodyne HDL-64E LiDAR mounted on a real vehicle.
The adversarial cube is 3D-printed at 1:1 scale.

at the early stage of this project, the selected object type was
a 75cm cube, and the targeted model was A2-L, the latest
version of the Apollo LiDAR model at that time. Fig. 8 (b)
shows the box of the same size used as the benign cube, and
the 3D-printed adversarial cube. This setup mimics the attack
scenario by placing an adversarial rock-shaped object (§IV-A).

Results. We manually drive the vehicle around the cube and
collect traces in front of it and on the left of it. In total, there
are 99 LiDAR frames with the benign cube, and A2-L is able
to correctly detect it in 84.8% (84) frames. In comparison, we
find that the adversarial cube is detected in only 0.9% (1) of
the 108 LiDAR frames including it. Fig. 8 (c) and Fig. 8 (d)
show examples of the frames and detection results for the
benign and adversarial cubes respectively. These results show
that our attack is still effective in the physical-world setting
for the LiDAR side of MSF. Experiment videos and images
are at https://sites.google.com/view/cav-sec/msf-adv.

2) Miniature-Scale Experiments: Since we lost the ac-
cess to the experiment vehicle, in this section we design a
miniature-scale experiment in our lab environment to perform
physical-world experiments for both LiDAR and camera.

Evaluation methodology. In this experiment, we still 3D-
print the adversarial object and obtain its point clouds and
images using physical LiDAR and camera devices like in
the actual physical-world attack settings. However, the main
difference is that the adversarial object and the road are set
up in a miniature scale as shown in Fig. 9. As shown, the
adversarial object is 3D-printed at 1:6.67 scale and placed on
a miniature-scale straight road created by printing a real-world
high-resolution BEV road texture on multiple A4 papers and
concatenating them together. Here, the obtained point clouds
of the object and road are scaled up accordingly following
the physical rule of LiDAR to obtain the point clouds in real-
world scale. The benefit of such miniature-scale setup is that
it can not only obtain physical-world point clouds and images
following the same physical rules of LiDAR and camera,
but also more easily fit into the budget of a university-level
research lab (e.g., 3D-printing our 1-meter high traffic cone at
1:1 scale requires industry-grade 3D printers [95]).

Experimental setup. We use an iPhone 8 Plus back camera

186

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

3D-Printed
Traffic Cone

Road
Texture

iPhone
Camera

VLP-16
LiDAR

Foam

Figure 9: Miniature-scale experiment
setup with camera and LiDAR. Road
and traffic cone are at 1:6.67 scale.

Figure 10: Visualization of the LiDAR and camera perception results for A5-L +©A5-C
in miniature-scale experiments.

A5-L +©A5-C A2-L +©A5-C (transfer attack)

Benign detection rate 19/20 (95%) 16/20 (80%)
Attack success rate 18/20 (90%) 17/20 (85%)

Attack success rate when
benign can be detected

18/19 (94.7%) 14/16 (87.5%)

Table VI. Evaluation results for A5-L +©A5-C and A2-L +©A5-
C at 20 randomly-sampled positions in miniature-scale exper-
iments. Results for A2-L +©A5-C is a transfer attack since the
adversarial traffic cone is generated for A5-L +©A5-C.

and a Velodyne VLP-16 LiDAR to collect images and point
clouds as shown in Fig. 9. For the adversarial object, we gener-
ate the adversarial traffic cone mesh using the image and point
cloud collected in our miniature-scale setup as the background.
We 3D-print the benign and adversarial traffic cones with 380
um precision at 1:6.67 scale. The road size, traffic cone size,
and the camera and LiDAR positions are chosen to represent
the scenario where these sensors are installed on a car driving
on a standard 3.6-meter wide highway road [96].

In the experiment, we try 20 different positions on the
miniature road, which are randomly sampled in a 6.0 cm ×
6.0 cm area at the road center and ∼45 cm far from the camera
and LiDAR. We choose this area because we find the highest
detection rate of the benign cone in this area. In real-world
scale, this represents the scenario where the adversarial cone
is roughly at the road center and 3-3.5 m far from the camera
and LiDAR on the victim. Since the object type is traffic cone,
we consider A5-C on camera side, and the VLP-16 versions
of A5-L and A2-L in Apollo, which has the same model
architecture as their corresponding HDL-64 versions [97].

Results. Table VI shows the results. As shown, for A5-
L +©A5-C, the benign traffic cone can achieve 95% detection
rate at the 20 random positions. However, after we place the
adversarial one at exactly these 20 positions, the detection rate
is only 10%, leading to a 90% success rate. Specifically, at the
19 positions that the benign cone can be successfully detected,
the attack success rate is around 95%. Fig. 10 visualizes
the LiDAR and camera perception results of the benign and
adversarial cones. More images and dynamic moving videos
are at https://sites.google.com/view/cav-sec/msf-adv.

Since this adversarial cone is generated for A5-L +©A5-C,
we also evaluate it against A2-L +©A5-C to understand whether
such attack effectiveness can transfer. As shown, the success
rate of such a transfer attack is very similar: the success rate
among the 20 positions is 85%, and that among the positions

where the benign cone can be detected is 87.5%. These results
thus show that our generated adversarial objects can still be
effective against both LiDAR and camera in a physical-world
environment, and such effectiveness can transfer.

VI. END-TO-END ATTACK SIMULATION EVALUATION

To more concretely understand the end-to-end safety con-
sequences, we further evaluate on a concrete attack scenario
using a production-grade AD simulator.

Evaluation methodology and metrics. We perform an end-
to-end attack evaluation on Baidu Apollo using LGSVL sim-
ulator [98]. LGSVL is an open-source Unity-based simulator
designed for testing and development of industry-grade AD
systems, and has already supported Apollo. In our evaluation,
we use a map of a single-lane road in LGSVL, and set up
Apollo to control a vehicle to drive along this lane. To launch
our attack, we imported the 3D mesh of our adversarial traffic
cone into Unity, set its physical properties, and then re-build
the simulator and the map. We control the position of this
adversarial cone to set it to the lane center, and LGSVL
will provide Apollo with the raw camera and LiDAR inputs
with the adversarial objects using its simulation engine. As
described in §IV-A, crashing into such an adversarial traffic
cone can lead to severe safety damages as the attacker can fill
it with denser materials such as granite or metal, or put nails
or glass debris behind it. Considering such concrete attack
scenarios, we directly use the vehicle collision rate with the
adversarial cone to evaluate the attack effectiveness.

Experimental setup. We evaluate on Apollo v5.0, the latest
Apollo version supported by LGSVL so far [98]. We use
the default camera and LiDAR device configurations in this
support. The LiDAR and camera models in Apollo v5.0 are
the same as those in the latest version, Apollo v5.5. Thus,
we directly use the adversarial traffic cone generated in §V
for this evaluation. The vehicle speed is set to 30 km/h. For
both benign and adversarial scenarios, we perform 100 runs
of experiments and each lasts around 20 seconds to allow the
vehicle to arrive at the traffic cone placement position and
finish executing the driving decision.

Results and demo videos. The results show that our
adversarial traffic cone can always fool the Apollo system
in the entire trip across the 100 runs, leading to a 100%
vehicle collision rate. We inspect the experiment log and find
that the adversarial cone evades both the camera and LiDAR
perception pipelines at every frames before fusion, which thus
fundamentally defeats the basic design assumption of using

187

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

Benign
traffic cone

Adversarial
traffic cone

LGSVL Apollo

Benign object

Detect the
cone and stop

LGSVL Apollo

ADV object

Not detected
and hit the cone

Unable to detect
traffic cone and

crash into it

LGSVL LGSVL

Detect traffic
cone and stop

Apollo Apollo

Figure 11: Screenshots of Apollo and LGSVL in the end-to-
end attack evaluation with benign and adversarial traffic cones.
Across 100 runs, the crash rate is 100% for adversarial case,
and 0% for benign case.

MSF for defense. In contrast, in the benign case, Apollo is al-
ways able to correctly detect the benign cone and stop in front
of it to avoid collision (i.e., 0% crash rate). Across different
runs, the vehicle driving trajectories differ slightly due to the
simulation randomness and sensor messaging delay/dropping,
but our attack shows a high robustness against such trajectory
variances when the victim is approaching.

Fig. 11 shows the key screenshots on both the LGSVL and
Apollo sides during the simulation. As shown, in the benign
case, the victim can detect the traffic cone and successfully
make a stop decision to decrease its speed to 0 km/h. However,
in the adversarial case, the victim cannot detect the traffic
cone even when it is right in front of it. Thus, it maintains
the original speed and directly crashes into it. We also record
short demo videos from the simulation, available at [37].

VII. LIMITATIONS AND DEFENSE DISCUSSION

A. Limitations of Our Study

End-to-end physical-world evaluation. In this work, our
attack is designed with a practical attack model (§IV-A)
and evaluated on real-world driving dataset and miniature-
scale physical-world settings (§V-E). However, we did not
perform an end-to-end attack evaluation on a real AV in
the physical world due to the cost and safety considerations.
As a best effort, we evaluate such end-to-end attack impacts
using a production-grade AD simulator (§VI). Note that AD
companies such as Waymo also heavily rely on simulation-
based evaluations when developing and testing AD systems
for safety and budget considerations [99].

Attack generality evaluation. In our evaluation, we target
the MSF algorithms used in representative industry-grade AD
systems such as Baidu Apollo [15], which generally adopt a
rule-based fusion design. As introduced in §II-A, there also
exists another type of fusion design: DNN-based fusion [18]–
[24]. Thus, it is still unclear how effective MSF-ADV can
be for DNN-based MSF algorithms. Note that this is not a
limitation of our attack methodology: as described in §IV-E,
our design is generally applicable to both fusion designs.

Also, since rule-based fusion design is more preferable for
the system development in the industry (§V-A), our current
evaluation results can potentially lead to more impacts to
AD systems in practice. Thus, we left the evaluation of MSF
algorithms with DNN-based fusion as future work.

B. Defense Discussion

1) DNN-Level Defense: Our attack exploits vulnerability in
DNNs used in MSF, and thus a direct defense direction is to
secure these DNNs. In the recent arms race between adversar-
ial attacks and defenses, various defense/mitigation techniques
have been proposed, e.g., input transformation [100]–[102],
adversarial training [65], and certified robustness [103], [104].
However, almost all of them focus on image classification
models under digital-space attacks, instead of object detection
models under physical-world attacks. To the best of our
knowledge, no prior works has considered defending against
adversarial 3D objects in MSF context.

Experiment methodology. In this case, as a best effort
to understand the effectiveness of existing defenses in our
attack setting, we perform experiments mainly on two easily-
adaptable defense strategies: (1) camera/LiDAR input trans-
formation without model re-training, for which we evalu-
ate 4 popular methods: bit-depth reduction [100], median
smoothing [100], JPEG compression [102], and autoencoder
reformation [101]; and (2) augmenting training data, denoted
as AUG, which re-trains the model with adversarial inputs
mixed in training dataset [12], [50], [105]. AUG is only
applied to YOLO v3 (Y3) since Apollo does not release
training dataset for its models. Additionally, we also explored
adversarial training [106] for Y3, but different from the
standard adversarial training, we only applied 2 steps PGD
attack to approximate the solutions of inner maximal problem
for efficiency due to the complexity of our attack pipeline (e.g.,
rendering, pre-processing, and attacking two models together)
caused by our problem settings and evaluated system. Such a
strategy has been adopted in some recent works to improve
efficiency of adversarial training [106], [107]. More details
are in Appendix E. Note that we do not evaluate certified
robustness [103], [104] since its designs today focus on small
2D digital-space perturbations (e.g. `2=0.5 on ImageNet [108],
[109]), and their extensions to either 3D space or physical-
world attacks are still open research problems.

Results. Fig. 12 shows the results for the 4 input trans-
formation based defenses on our attack on A5-L +©A5-C for
traffic cone. For each method, we explore different parameters
to explore the trade-off between benign detection rate and
attack success rate. As shown, with the decrease of the Li-
DAR/camera input quality (left to right for all the x-axes), the
attack success rate will eventually increase for all 4 methods
since the input quality becomes so low that both camera and
LiDAR models cannot detect the object even in the benign
case. For some methods, the attack success rate first decreases
before such increase, which is likely because the input quality
reduction disrupts our adversarial shape perturbations. Overall,
median smoothing achieves the highest defense effectiveness

188

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

R
a

te
 (%

)

0

100

12345 10203060 50 40708090 C A-1 A-2 A-3

Bit-Depth JPEG Compression Rate Autoencoder Arch.

Benign detection rate Attack success rate

252015105

Median Smoothing Kernel Size

80
60
40
20

30 35

Figure 12. Evaluation results of 4 DNN input transformation based defense methods for our
attack on A5-L +©A5-C with traffic cone object. Benign detection rates mean detected by
either LiDAR or camera. Attack success rate means that both LiDAR and camera fail to
detect. For all x-axes, values from left to right mean higher to lower camera/LiDAR input
quality (e.g., more smoothing or compression). Detailed setup in Appendix E.

Y3 test Benign Attack
set mAP det. rate succ. rate

Original 44% 100% 100%
AUG 32% 100% 69%

Table VII. Results of augmenting
training data (AUG) for our at-
tack on A5-L +©Y3 compared to
original model for bench object.
Detailed setup in Appendix E.

by decreasing the attack success rate to 66% without affecting
the benign detection rate. Note that it is known that all these
methods can be bypassed by adaptive attacks [110]–[113].
Thus, an interesting future work is to explore the effectiveness
of these methods under adaptive attack designs of MSF-ADV.

Table VII shows the results for AUG. For a fair comparison,
the original model in the table is also newly-trained using the
same setup. As shown, AUG is able to decrease the attack
success rate to 69% with 100% benign detection rate. Our
preliminary exploration of adversarial training with 2-step
PGD does not show higher effectiveness: even with 900 epoch
of training, the attack success rate is only reduced to 95% with
100% benign detection rate. The potential reason of the lower
effectiveness is that 2 steps PGD is not enough to generate
effective adversarial objects during training. Compared to
some prior works [106], [107], this suggests that our attack
poses more challenges in balancing the trade-off between
efficiency and effectiveness in adversarial training. We plan
to systematically investigate this in the future.

Overall, the most effective defense found in these exper-
iments can only decrease the attack success rate to 66%,
which is not quite enough to render this attack vector practi-
cally unexploitable. Leveraging the analysis insights, we plan
to explore more effective defense designs by exploring (1)
other input transformation considering the success of medium
smoothing, and (2) more efficient and effective adversarial
training designs for our attack. As certified robustness can
provide strong theoretical guarantees, we also plan to explore
the extensions of it to 3D space and physical-world attacks.

2) Fuse More Perception Sources: At MSF algorithm level,
one defense direction is to fuse more perception sources,
e.g., more cameras/LiDARs sharing an overlapped view but
mounted at different positions, assuming that our attack may
be more difficult to optimize if the fused camera/LiDAR
perception results are from very different viewing angles and
positions. Also, we may consider including RADAR into MSF,
which is less preferred in state-of-the-art MSF designs (§II-A)
but may help improve their security. Note that this cannot
fundamentally defeat our attack since RADAR point clouds
may also be affected by shape manipulations and their state-of-
the-art object detection algorithms are still DNN-based [114].
Nevertheless, including RADAR may make it more difficult
to attack if the RADAR perception model is more robust. We
leave a systematic exploration of these to future work.

VIII. RELATED WORK

Autonomous Driving (AD) system security. Since AD
systems heavily rely on sensors, prior works have studied
sensor attacks in AD context such as spoofing/jamming attacks
on camera [40], [115], LiDAR [10], [29], RADAR [40],
ultrasonic [40], and IMU [116]. In comparison, these works
mainly focus on vulnerabilities at sensor level, while we
focus on those at the higher autonomy software level, i.e.,
the “brain” of AD systems. At such level, prior works have
studied the security of camera/LiDAR object detection [5],
[6], [9], [10], [117] and tracking [118], localization [119], lane
detection [120]–[122], traffic light detection [123], and end-to-
end AD [12], [13]. However, so far all of them only consider
attacks on camera or LiDAR perception alone, while we are
the first to study the security of MSF-based AD perception
and address the corresponding design challenges (§III-B).

Adversarial attacks. Various adversarial attacks have
been proposed to generate adversarial attacks in the digital
space [12], [50]–[56], [66], [85], [105], [124]–[127]. In com-
parison, we focus on physical-world attack vectors. Multiple
prior works have designed and evaluated adversarial attacks in
the physical world [5]–[9], [57]–[60]. However, none of them
have considered MSF-based AD perception, and as described
in §III-B, blindly combining their designs cannot directly
achieve our goal due to various unique design challenges.

IX. CONCLUSION

This paper presents a first study on the security issues of
MSF-based AD perception, that challenges the basic design
assumption for MSF as a defense strategy in AD context. We
design a novel attack method, MSF-ADV, with adversarial 3D
object as the attack vector, and address design challenges in
non-differentiable target camera and LiDAR sensing systems
and non-differentiable computation of cell-level aggregated
features for LiDAR. We perform evaluations on MSF algo-
rithms included in industry-grade AD systems using real-world
driving scenarios. Our results show that our attack achieves
over 90% success rates across different object types and
MSF algorithms, while being stealthy, robust, transferable and
physical-world realizable. In simulation evaluation, our attack
can cause 100% vehicle collision rate. We also evaluate and
discuss defenses. Considering the critical role of perception for
safe AV driving, we hope that our findings and insights can
help the community develop effective defenses in practice.

189

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLDGMENTS

We would like to thank Nicolas Papernot, Junjie Shen,
Ziwen Wan, Takami Sato, Junze Liu, Xinyang Zhang, Xi Lu,
Yu Stephanie Sun, Joshua Garcia, Pengchuan Zhang, Hongge
Chen, Dan Luo, Benjamin Emerson Dolan, and the anonymous
reviewers for valuable feedback on our work. This research
was supported in part by the NSF under grants CNS-1850533,
CNS-1929771, CNS-1932464, and CNS-2012001, USDOT
under Grant 69A3552047138 for the CARMEN UTC, the
ARO under contract W911NF1810208, and grant from Open
Philanthropy and Good Ventures Foundation.

REFERENCES

[1] S. O.-R. A. V. S. Committee et al., “Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-Road Motor
Vehicles,” SAE International: Warrendale, PA, USA, 2018.

[2] “40+ Corporations Working On Autonomous Vehicles,”
https://www.cbinsights.com/research/autonomous-driverless-vehicl
es-corporations-list.

[3] “Waymo has launched its commercial self-driving service in Phoenix
- and it’s called ‘Waymo One’,” https://www.businessinsider.com/way
mo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12.

[4] “UPS joins race for future of delivery services by investing in self-
driving trucks,” https://abcnews.go.com/Business/ups-joins-race-futur
e-delivery-services-investing-driving/story?id=65014414.

[5] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer,
A. Prakash, T. Kohno, and D. Song, “Physical Adversarial Examples
for Object Detectors,” in WOOT, 2018.

[6] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen, “Seeing
isn’t Believing: Practical Adversarial Attack Against Object Detectors,”
ACM CCS, 2019.

[7] J. Lu, H. Sibai, and E. Fabry, “Adversarial Examples that Fool
Detectors,” arXiv preprint arXiv:1712.02494, 2017.

[8] Y. Zhang, P. D. Hassan Foroosh, and B. Gong, “CAMOU: Learning
A Vehicle Camouflage For Physical Adversarial Attack On Object
Detections In The Wild,” in ICLR, 2019.

[9] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter:
Robust Physical Adversarial Attack on Faster R-CNN Object Detector,”
in ECML PKDD, 2018.

[10] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on LiDAR-based
Perception in Autonomous Driving,” in ACM CCS, 2019.

[11] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao, “Towards Robust
LiDAR-based Perception in Autonomous Driving: General Black-box
Adversarial Sensor Attack and Countermeasures,” in Usenix Security,
2020.

[12] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated White-
box Testing of Deep Learning Systems,” in SOSP, 2017, pp. 1–18.

[13] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated Testing of
Deep-Neural-Network-Driven Autonomous Cars,” in ICSE, 2018.

[14] “Waymo Tech,” https://waymo.com/tech/.
[15] “Baidu Apollo,” http://apollo.auto.
[16] “Autoware.AI,” https://www.autoware.ai//.
[17] “Pony.ai Tech,” https://www.pony.ai/en/tech.html.
[18] D. Frossard and R. Urtasun, “End-to-end Learning of Multi-sensor 3D

Tracking by Detection,” in ICRA 2018. IEEE, 2018, pp. 635–642.
[19] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep Continuous Fusion

for Multi-Sensor 3D Object Detection,” in ECCV, 2018.
[20] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-View 3D Object

Detection Network for Autonomous Driving,” in CVPR, 2017.
[21] D. Xu, D. Anguelov, and A. Jain, “PointFusion: Deep Sensor Fusion

for 3D Bounding Box Estimation,” in CVPR, 2018, pp. 244–253.
[22] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-Task Multi-

Sensor Fusion for 3D Object Detection,” in CVPR, 2019.
[23] X. Du, M. H. Ang, and D. Rus, “Car Detection for Autonomous

Vehicle: LIDAR and Vision Fusion Approach Through Deep Learning
Framework,” in IROS, 2017.

[24] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3D
Proposal Generation and Object Detection from View Aggregation,” in
IROS, 2018, pp. 1–8.

[25] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan, “Accurate
Monocular 3D Object Detection via Color-Embedded 3D Reconstruc-
tion for Autonomous Driving,” in CVPR, 2019, pp. 6851–6860.

[26] X. Du, M. H. Ang, S. Karaman, and D. Rus, “A General Pipeline for
3D Detection of Vehicles,” in ICRA 2018. IEEE, 2018, pp. 3194–3200.

[27] R. Quinonez, J. Giraldo, L. Salazar, and E. Bauman, “SAVIOR:
Securing Autonomous Vehicles with Robust Physical Invariants,” in
USENIX Security, 2020.

[28] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “RoboADS:
Anomaly Detection against Sensor and Actuator Misbehaviors in
Mobile Robots,” in DSN. IEEE, 2018, pp. 574–585.

[29] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and Dazzle:
Adversarial Optical Channel Exploits against LiDARs for Automotive
Applications,” in CHES. Springer, 2017, pp. 445–467.

[30] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner,
“Vote3deep: Fast Object Detection in 3D Point Clouds using Efficient
Convolutional Neural Networks,” in ICRA, 2017.

[31] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018, pp. 4490–4499.

[32] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast Encoders for Object Detection from Point Clouds,”
in CVPR, 2019, pp. 12 697–12 705.

[33] J. Beltran, C. Guindel, F. M. Moreno, D. Cruzado, F. Garcia, and
A. De La Escalera, “Birdnet: a 3D Object Detection Framework from
Lidar Information,” in ITSC. IEEE, 2018, pp. 3517–3523.

[34] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in CVPR 2018, 2018, pp. 7652–7660.

[35] “Navigant Research Names Waymo, Ford Autonomous Vehicles,
Cruise, and Baidu the Leading Developers of Automated Driving Sys-
tems,” https://www.businesswire.com/news/home/20200407005119/en
/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles.

[36] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision Meets Robotics:
The KiTTi Dataset,” IJRR, 2013.

[37] “Our Project Website,” https://sites.google.com/view/cav-sec/msf-adv.
[38] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient Sensor Fusion,” in

DATE. IEEE, 2014, pp. 1–6.
[39] W. Xu, C. Yan, W. Jia, X. Ji, and J. Liu, “Analyzing and Enhancing

the Security of Ultrasonic Sensors for Autonomous Vehicles,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 5015–5029, 2018.

[40] C. Yan, W. Xu, and J. Liu, “Can You Trust Autonomous Vehicles:
Contactless Attacks against Sensors of Self-driving Vehicle,” DEF
CON, vol. 24, no. 8, p. 109, 2016.

[41] J. Petit and S. E. Shladover, “Potential Cyberattacks on Automated
Vehicles,” IEEE ITS, vol. 16, no. 2, pp. 546–556, 2014.

[42] Y. Man, M. Li, and R. Gerdes, “GhostImage: Perception Domain
Attacks against Vision-based Object Classification Systems,” arXiv
preprint arXiv:2001.07792, 2020.

[43] V. Chandrasekaran, B. Tang, N. Papernot, K. Fawaz, S. Jha, and X. Wu,
“Rearchitecting Classification Frameworks For Increased Robustness,”
in arXiv:1905.10900, 2019.

[44] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object Detection with
Deep Learning: A Review,” IEEE NNLS, pp. 3212–3232, 2019.

[45] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of
Autonomous Driving: Common Practices and Emerging Technologies,”
IEEE Access, vol. 8, pp. 58 443–58 469, 2020.

[46] L. Chi and Y. Mu, “Deep Steering: Learning End-to-End Driving Model
from Spatial and Temporal Visual Cues,” arXiv, 2017.

[47] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
Learning for 3D Point Clouds: A Survey,” 2019.

[48] “Velodyne Alpha Prime,” https://autonomoustuff.com/product/velodyn
e-vls-128/.

[49] D. Z. Wang and I. Posner, “Voting for Voting in Online Point Cloud
Object Detection,” in Robotics: Science and Systems, 2015.

[50] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” in ICLR, 2015.

[51] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in Euro S&P, 2016.

[52] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating
Adversarial Examples with Adversarial Networks,” ArXiv, 2018.

[53] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially
Transformed Adversarial Examples,” ICLR, 2018.

190

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

[54] C. Xiao, R. Deng, B. Li, F. Yu, M. Liu, and D. Song, “Characterizing
Adversarial Examples based on Spatial Consistency Information for
Semantic Segmentation,” in ECCV, 2018, pp. 217–234.

[55] C. Xiao, X. Pan, W. He, J. Peng, M. Sun, J. Yi, M. Liu, B. Li, and
D. Song, “Characterizing Attacks on Deep Reinforcement Learning,”
arXiv, 2019.

[56] H. Qiu, C. Xiao, L. Yang, X. Yan, H. Lee, and B. Li, “Seman-
ticAdv: Generating Adversarial Examples via Attribute-conditioned
Image Editing,” in ECCV. Springer, 2020, pp. 19–37.

[57] J. Li, F. Schmidt, and Z. Kolter, “Adversarial Camera Stickers: A
Physical Camera-based Attack on Deep Learning Systems,” in ICML,
2019, pp. 3896–3904.

[58] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
Patch,” in arXiv:1712.09665, 2017.

[59] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling Automated Surveil-
lance Cameras: Adversarial Patches to Attack Person Detection,” in
CVPR Workshops, 2019, pp. 0–0.

[60] A. Athalye and I. Sutskever, “Synthesizing Robust Adversarial Exam-
ples,” in International Conference on Machine Learning (ICML), 2018.

[61] “Does your car have automated emergency braking? It’s a big
fail for pedestrians,” https://www.zdnet.com/article/does-your-car-have-
automated-emergency-braking-its-a-big-fail-for-pedestrians/, 2019.

[62] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust Physical-World Attacks
on Deep Learning Visual Classification,” in CVPR, 2018.

[63] “Avis will Service Waymo’s Self-driving Minivans,”
https://www.theverge.com/2017/6/26/15873236/avis-waymo-googl
e-self-driving-cars-vans.

[64] “Experimental Security Research of Tesla Autopilot,”
https://keenlab.tencent.com/en/whitepapers/Experimental Securit
y Research of Tesla Autopilot.pdf.

[65] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
Deep Learning Models Resistant to Adversarial Attacks,” in ICLR,
2018.

[66] N. Carlini and D. A. Wagner, “Towards Evaluating the Robustness of
Neural Networks,” in IEEE S&P, 2017.

[67] “3D Printing Online,” https://formlabs.com/software/.
[68] K. Eykholt, “Designing and Evaluating Physical Adversarial Attacks

and Defenses for Machine Learning Algorithms,” Ph.D. dissertation,
2019.

[69] B. Huang and H. Ling, “SPAA: Stealthy Projector-based Adversarial
Attacks on Deep Image Classifiers,” ArXiv, 2020.

[70] “Traffic Cone,” https://en.wikipedia.org/wiki/Traffic cone.
[71] “Intro to Rendering, Ray Casting,” https://ocw.mit.edu/courses/electri

cal-engineering-and-computer-science/6-837-computer-graphics-fall
-2012/lecture-notes/MIT6 837F12 Lec11.pdf.

[72] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D Mesh Renderer,” in
CVPR, June 2018.

[73] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural
network for real-time object recognition,” in IROS, 2015, pp. 922–928.

[74] “Tri. Interpolation,” en.wikipedia.org/wiki/Trilinear interpolation.
[75] S. Li, X. Xu, L. Nie, and T.-S. Chua, “Laplacian-Steered Neural Style

Transfer,” in ICMR, 2017, pp. 1716–1724.
[76] “Brake Distance,” http://www.csgnetwork.com/stopdistcalc.html.
[77] “Carma Platform,” https://github.com/usdot-fhwa-stol/carma-platform.
[78] “Autoware Self-driving Vehicle on a Highway,” https://www.youtube

.com/watch?v=npQMzH3j d8.
[79] “Baidu launches their open platform for autonomous cars–and we

got to test it,” https://technode.com/2017/07/05/baidu-apollo-1-0-auto
nomous-cars-we-test-it/.

[80] “Baidu Launches Public Robotaxi Trial Operation,”
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/
en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html.

[81] “YOLOv3 Darknet,” https://pjreddie.com/darknet/yolo/.
[82] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The

Unreasonable Effectiveness of Deep Features as a Perceptual Metric,”
in CVPR, 2018.

[83] Y. Jo, S. Yang, and S. Joo Kim, “Investigating Loss Functions for
Extreme Super-Resolution,” in CVPR Workshops, 2020, pp. 424–425.

[84] “Amazon Mechanical Turk,” https://www.mturk.com.
[85] T. Tsai, K. Yang, T.-Y. Ho, and Y. Jin, “Robust Adversarial Objects

against Deep Learning Models,” in AAAI, 2020.
[86] “FormLabs,” https://formlabs.com/software/.
[87] “Curvature,” https://en.wikipedia.org/wiki/Gaussian curvature.

[88] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[89] “Adding Gaussian Noise,” https://pytorch.org/docs/stable/tensors.html.
[90] “Genetic Algorithm,” https://pypi.org/project/geneticalgorithm/.
[91] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh,

and M. B. Srivastava, “Genattack: Practical Black-box Attacks with
Gradient-free Optimization,” in GECCO, 2019.

[92] Y. Feng, B. Wu, Y. Fan, L. Liu, Z. Li, and S. Xia, “CG-ATTACK:
Modeling the Conditional Distribution of Adversarial Perturbations to
Boost Black-Box Attack,” 2020.

[93] R. Alika, E. M. Mellouli, and E. H. Tissir, “Optimization of Higher-
Order Sliding Mode Control Parameter using Particle Swarm Opti-
mization for Lateral Dynamics of Autonomous Vehicles,” in IRASET.
IEEE, 2020, pp. 1–6.

[94] S. Dominguez, A. Ali, G. Garcia, and P. Martinet, “Comparison of
Lateral Controllers for Autonomous Vehicle: Experimental Results,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2016, pp. 1418–1423.

[95] “LARGE-FORMAT 3D PRINTER FOR INDUSTRIAL APPLICA-
TIONS,” https://bigrep.com/bigrep-one/.

[96] AASHTO, Policy on Geometric Design of Highways and Streets (7th
Edition), 2018. [Online]. Available: https://app.knovel.com/hotlink/toc
/id:kpPGDHSE12/policy-geometric-design/policy-geometric-design

[97] “Apollo Models,” https://github.com/ApolloAuto/apollo/tree/r5.5.0/mo
dules/perception/production/data/perception/lidar/models/cnnseg.

[98] “LGSVL Simulator,” https://www.lgsvlsimulator.com/.
[99] “Inside Waymo’s Secret World for Training Self-Driving Cars,”

https://www.theatlantic.com/technology/archive/2017/08/inside-way
mos-secret-testing-and-simulation-facilities/537648/.

[100] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in NDSS, 2018.

[101] D. Meng and H. Chen, “MagNet: a Two-Pronged Defense against
Adversarial Examples,” in ACM CCS, 2017, pp. 135–147.

[102] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A Study of the
Effect of JPG Compression on Adversarial Images,” arXiv, 2016.

[103] L. Li, X. Qi, T. Xie, and B. Li, “SoK: Certified Robustness for Deep
Neural Networks,” arXiv preprint arXiv:2009.04131, 2020.

[104] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
Robustness to Adversarial Examples with Differential Privacy,” in IEEE
S&P.

[105] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing Properties of Neural Networks,” in
ICLR, 2014.

[106] H. Zhang and J. Wang, “Towards Adversarially Robust Object Detec-
tion,” in ICCV, 2019, pp. 421–430.

[107] E. Wong, L. Rice, and J. Z. Kolter, “Fast is Better than Free: Revisiting
Adversarial Training,” ICLR, 2020.

[108] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified Adversarial
Robustness via Randomized Smoothing,” ICML, 2019.

[109] G. Yang, T. Duan, E. Hu, H. Salman, I. Razenshteyn, and J. Li,
“Randomized Smoothing of All Shapes and Sizes,” ICML, 2020.

[110] N. Carlini and D. Wagner, “MagNet and ”Efficient Defenses against
Adversarial Attacks” are not Robust to Adversarial Examples,” arXiv,
2017.

[111] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang, “Interpretable
Deep Learning under Fire,” in USENIX Security, 2020.

[112] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial Example
Defense: Ensembles of Weak Defenses are not Strong,” in USENIX
WOOT, 2017.

[113] Y. Sharma and P.-Y. Chen, “Bypassing Feature Squeezing by Increasing
Adversary Strength,” ICLR Workshop, 2018.

[114] L. Wang, J. Tang, and Q. Liao, “A Study on Radar Target Detection
based on Deep Neural Networks,” IEEE Sensors Letters, pp. 1–4, 2019.

[115] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky, O. Drokin, and
Y. Elovici, “Phantom of the ADAS: Phantom Attacks on Driver-
Assistance Systems,” in IACR, 2020.

[116] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and Delivered: Fabricating
Implicit Control over Actuation Systems by Spoofing Inertial Sensors,”
in USENIX Security, 2018, pp. 1545–1562.

[117] “Model Hacking ADAS to Pave Safer Roads for Autonomous Ve-
hicles,” https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model
-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/, 2020.

[118] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei,
“Fooling Detection Alone is Not Enough: Adversarial Attack Against
Multiple Object Tracking,” in ICLR, 2019.

191

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

[119] J. Shen, J. Y. Won, and Q. A. Chen, “Drift with Devil: Security of
Multi-Sensor Fusion based Localization in High-Level Autonomous
Driving under GPS Spoofing,” in Usenix Security, 2020.

[120] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Hold
Tight and Never Let Go: Security of Deep Learning based Automated
Lane Centering under Physical-World Attack,” ArXiv, 2020.

[121] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “De-
ployability Improvement, Stealthiness User Study, and Safety Impact
Assessment on Real Vehicle for Dirty Road Patch Attack,” in AutoSec
Workshop at NDSS, 2021.

[122] H. Liang, R. Jiao, T. Sato, J. Shen, Q. A. Chen, and Q. Zhu, “End-
to-End Analysis of Adversarial Attacks to Automated Lane Centering
Systems,” in AutoSec Workshop at NDSS, 2021.

[123] K. Tang, J. Shen, and Q. A. Chen, “Fooling Perception via Location:
A Case of Region-of-Interest Attacks on Traffic Light Detection in
Autonomous Driving,” in AutoSec Workshop at NDSS, 2021.

[124] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a
Simple and Accurate Method to Fool Deep Neural Networks,” in
CVPR, 2016, pp. 2574–2582.

[125] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu, “MeshAdv: Adversarial
Meshes for Visual Recognition,” in IEEE CVPR, 2019.

[126] C. Xiang, C. R. Qi, and B. Li, “Generating 3D Adversarial Point
Clouds,” in CVPR, 2019, pp. 9136–9144.

[127] K. Lee, Z. Chen, X. Yan, R. Urtasun, and E. Yumer, “ShapeAdv:
Generating Shape-Aware Adversarial 3D Point Clouds,” ArXiv, 2020.

[128] “Understanding Accuracy, Precision, and Tolerance in 3D Print-
ing,” https://formlabs.com/blog/understanding-accuracy-precision-toler
ance-in-3d-printing/.

[129] “User Study: Anomalous Traffic Cone Survey,” https://drive.google.c
om/file/d/1EqtQL6m1ZPNOQGs6pbAM25WFT8D58EC2/view.

[130] “Mesh Simplification,” http://graphics.stanford.edu/courses/cs468-10-
fall/LectureSlides/08 Simplification.pdf.

[131] “Pillow (PIL Fork),” https://pillow.readthedocs.io/en/stable/.
[132] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,

L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial Training for
Free!” in NIPS, 2019, pp. 3358–3369.

[133] D. Hendrycks, K. Lee, and M. Mazeika, “Using Pre-Training can
Improve Model Robustness and Uncertainty,” ICML, 2019.

[134] T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini, and Z. Wang,
“Adversarial Robustness: From Self-Supervised Pre-Training to Fine-
Tuning,” in CVPR, 2020, pp. 699–708.

[135] “COCO Dataset,” http://cocodataset.org/.

APPENDIX

Parameter Value

PGD initial point (§IV-E) 0.01
PGD constraint (§IV-E) 0.02
Tanh approximation parameter µ (§IV-D) 100
Preventing division by zero ε (§IV-D) 10−7

X sample range (§IV-E) (5, 35)

Y sample range (§IV-E) (−0.3, 0.3)

yaw sample angles (§IV-E) (−5◦, 5◦)

Learning rate (§IV-E) 0.001

Lr(·) coefficient λ (§IV-E) 20

Height loss coefficient β1 (Appendix A) 0.001

Precision of 3D printer used in §V-E 0.38mm

Table VIII. Detailed settings for attack parameters in §V.

A. Realizability loss Lr(·) in §IV-E

To realize our attack goal in §III-A, Sa needs to be 3D-
printed and placed on top of the road surface in the physical
world. To facilitate this, we design the realizability loss Lr(·)
in our objective function to (1) improve the printability of Sa

by 3D printers, and (2) prevent the generation of Sa that is
underneath the road surface. Our formulation of Lr(·) is in
Eq. (9), where the first and second parts are for achieving (1)

and (2) respectively. The first part is a Laplacian loss [75],
where V a is the vertex set of Sa, and for vai ∈ V a, Γ(vai)
denotes the set of connected neighboring vertices of vai . Since
our attack generation is performed by only moving the vertex
positions in the benign object S (§IV-A), there is always a
corresponding vertex vi in the vertex set V of S that vai is
moved from. The distance between vai and vi is denoted as
∆v = vai − vi. Thus, the first part in Eq. (9) penalties the
differences between the position change of each vertex in Sa

and those of its neighboring vertices. This can thus improve the
smoothness of the surface of Sa, which can lower the precision
requirements of the 3D printer [128] and thus improve the
printability of Sa. We also use a popular mesh simplification
method, Quadric Edge Collapse Decimation (QECD), as an
optional post-processing step to further improve printability.

In the second part, zai and zi denotes the height values of vai
and vi. This part minimizes the distance between the lowest
height among all vertices in Sa and that in S, which thus
penalties the moving of the vertices in Sa towards under the
road surface. β1 is a hyper-parameter for this part in Eq. (9).

Lr(Sa, S) =
∑

va
i ∈V

a

∑
va
q∈Γ(va

i)

∥∥∆va
i −∆va

q

∥∥2

2

+ β1 · ‖ min
va
i ∈V

a
zai − min

vi∈V
zi‖22

(9)

B. Attack Stealthiness User Study

In this section, we conduct a user study to evaluate the
stealthiness of the adversarial 3D objects. We go through the
IRB process and our study is determined as the IRB Exempt,
due to not involving collection of any Personally Identifiable
Information (PII) or target any sensitive population.

Evaluation methodology. In this study, we select traffic
cone as the evaluation target due to its high attractiveness
for the attacker (§V-A). We evaluate 4 red traffic cone with
different shapes: the benign shape (Benign) the adversarial
shape generated by MSF-ADV (Adv), and two benign but
broken shapes similar to Fig. 2 (Benign B1 and B2). We
consider Benign B1 and B2 since our attack is designed to
mimic benign traffic objects with a broken look (§IV-A). We
randomly select two images (S1, S2) from KITTI and render
these shapes into these two images at two different positions
(near or far way from the victim AV, denoted as N or F)
to generate four realistic driver’s scenario (S1-N, S1-F, S2-N,
S2-F) on the roadway for each shape.

For each of the 4 rendered images above, we ask whether
the red traffic object in the image is a valid traffic cone. Note
that the driving images are selected by ensuring no extra red
object. Images of them are on our website [37]. Among the 4
rendered images, we also ask in which one the red traffic object
has the most anomalous shape compared to a normal traffic
cone. “No Anomaly” option is included to avoid randomly
picking from the participants. To understand the distribution
of the participant’s background, we also ask for demographic
information and background information related to driving.

Evaluation setup. We use Amazon Mechanical Turk [84]
to perform the user study. In total, we collected results from

192

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

V
a

li
d

 T
ra

ffi
c

C
o

n
e

 (
%

)

0

20

100

40

80

60

Benign
Benign B1
Benign B2
Adv

S1-N S1-F S2-N S2-F Overall

(a) Validity of the traffic cone

A
n

o
m

a
lo

u
s

S
h

a
p

e
 (

%
)

0

10

20

30

40

50

60 Benign
Benign B1
Benign B2
Adv
No Anomaly

S1-N S1-F S2-N S2-F Overall

(b) Most anomalous shape

Figure 13: User study results of the attack stealthiness. (a)
shows the ratio of users thinking a given object is a valid
traffic cone; (b) shows the selection ratios for traffic cones with
the most anomalous shape. S1 and S2: 2 different real-world
driving images; N and F: near and far rendering positions.

105 participants (55.24% male and 44.76% female) with 35.3
average age. We confirmed that all of them have driving
experience by asking them the age when first licensed and
the weekly driving mileage. All the benign objects, including
Benign B1 and B2 can be correctly detected by the latest
Apollo MSF combination (A5-L +©A5-C) while Adv cannot.
The full survey is available at [129].

Results. Fig. 13 (a) shows the ratio of users thinking that
the given traffic cone object is a valid traffic cone. As shown,
Benign and Adv have similar ratios (around 60%) and are
higher than Benign B1 and B2 since the broken shapes may
be more obvious than that of Adv after our surface smoothing
and PGD-based perturbation bounding (§IV-E). Note that
even for Benign there are around 40% users thinking that
it is invalid. This might be because the rendered color and
shading inevitably have infidelity compared to the real-world
background images. Fig. 13 (b) shows the selection ratios for
the cone object with the most anomalous shape. As shown,
Benign B1 and “No Anomaly” are the most popular choices
across and Adv is always the lowest. The results show that
our generated adversarial traffic cone is generally viewed at
least as innocent as the original benign cone, and also less
suspicious than certain benign ones with broken shapes.

C. Attack Effectiveness under Different Attack Settings

In this section, we perform experiments to understand how
sensitive our attack is to different attack parameter settings.

Experimental setup. We target 5 key attack parameters in
Table VIII to perform experiments: µ, λ, β1, Learning rate,
and PGD initial. For each parameter, we experiment with
values that are one magnitude higher or lower than the default
value. The experiments are performed on A5-L +©A5-C with
traffic cone. The results are averaged over 20 attack scenarios
randomly selected from the 100 scenarios in §V-A.

Results. Table IX shows the results. As shown, our attack
is most sensitive to µ. Considering that µ is used in our
differentiable approximation of the point-inclusion calculation
(Eq. (8) in §IV-D), these results show that our differentiable
approximation design is critical to the attack success. Different
learning rates, λ, and PGD initial are also shown to impact the
results, but such impacts are limited to when the values are
above or below a certain magnitude.

D. Printability Evaluation

To perform our attack, the adversarial objects generated
digitally need to be (1) printable by today’s 3D printers, and
(2) the easier to be printed the better, e.g., requiring less
printing precision and thus printable by cheaper 3D printers.
In this section, we evaluate such printability of our attack.

Evaluation metrics. To evaluate whether it is printable or
not, we first use PreForm, a commercial printability checking
tool [86] that can determine whether their 3D-printing service
can print a given 3D mesh. We also leverage the object
watertightness [85] as another metric, which measures whether
the object mesh could hold water if filled. Thus, any 3D object
needs to be watertight to have a volume and thus can validly
exist (and thus 3D-printed) in physical world. This is the most
basic metric for any object meshes to be printable.

For whether the object is easy to print, we use the self-
intersection ratio and curvature. Self-intersection ratio mea-
sures the percentage of the object mesh’s 2D faces that have
intersections with its other faces. High self-intersection ratio
means the mesh need to be printed by a higher precision printer
with higher cost. The second metric we use is the curvature of
the object, which measures how smooth the object surface is.
The more smooth the surface is, the less printing precision is
required and thus the easier to print. We calculate this metric
using the average per-vertex Gaussian curvature value.

Experimental setup. As described in §IV-E and Ap-
pendix A, our design includes two methods to improve the
printability: the Laplacian loss (LP) in Lr(·) in Eq. (9), and
QECD [130] as an optional post-processing step. Thus, in
our experiment we evaluate the printability of our adversarial
objects with and without these two methods. We use the same
scenario and parameter settings as §V-B.

Results. Table X shows the evaluation results for A5-
L +©A5-C using traffic cones. As shown, with or without using
any printability improvement methods, the objects generated
by our method are all watertight and determined as printable
by the PreForm software since our attack method only manipu-
lates the vertex positions of the benign object without changing
the original vertex connection relationships.

For the two metrics on whether the object is easy to print,
both the self-intersection ratio and the average curvature value
are greatly reduced by applying either LP or QECD. LP alone
is particularly cost-effective: it is able to substantially reduce
the self-intersection ratio by 74.3% and the curvature value
by 58.9% without hurting the attack success rate. However,
QECD alone hurts self-intersect ratio, curvature value and
attack success rate. The decrease of the attack success rate
is because QECD is a mesh simplification method that may
slightly change the object shape, which thus may interfere
with the originally well-optimized shape of the adversarial
object. Combining QECD and LP together achieves the highest
reduction in both metrics, with only 0.46% self-intersection
ratio and 0.67 curvature value. Note that, the average curvature
for the benign traffic cone object is 0.72. Thus, both LP
alone and the combination achieve a similar level of surface

193

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

µ λ β1 Learning rate Initialization

Key attack parameters 10 100 1000 2.0 20.0 200.0 0.01 0.001 0.0001 0.01 0.001 0.0001 0.1 0.01 0.001

Attack success rate 75% 100% 60% 100% 100% 65% 100% 100% 100% 75% 100.0% 100% 45% 100.0% 100%

Table IX. Attack success rate for A5-L +©A5-C with traffic cone under different attack parameter settings. Descriptions of these
attacker parameters are in Table VIII. Gray cells are default settings.

Printable? Easy to Print?Technique
used PreForm Watertight Self-intersect Curvature

Success
Rate

None 100% 100% 88.73% 1.68± 1.56 100%

LP 100% 100% 14.43% 0.69± 0.65 100%

QECD 100% 100% 38.96% 1.42± 1.30 90%

LP + QECD 100% 100% 0.46% 0.67± 0.50 92%

Table X. Printability evaluation results of MSF-ADV on A5-
L +©A5-C with traffic cone. LP: Laplacian loss in Eq. (9).

smoothness comparable to a normal real-world object, which
thus are printable enough in practice. While the combination
reduces the self-intersection ratio compared to LP alone, it
incurs 8% success rate decrease due to the use of QECD.
Thus, there exists a trade-off. If the attacker does not care
about the printing cost, they can choose to use LP alone to
better ensure the attack success; otherwise, they can combine
it with QECD to reduce the printing costs.

E. Details of the DNN-Level Defenses Evaluated in §VII-B1

We describe the details of the defense methods.
Bit-Depth reduction [100]. We follow the setting in prior
work [100]. We reduce the bit depth for the image input and
the LiDAR point cloud. For a camera image, it consists of
RGB channel with 8-bit depth (0-255) for each of them. For a
LiDAR point cloud, each point has 4 fields: x, y, z, i, where
x, y, and z represents the 3D position, and i is intensity. Each
field is a floating point with 32-bit. We use the formulation:
round(x∗(2bit−1))

(2bit−1) to reduce the bit-depth. In our experiments,
we evaluate 5 different bit-depths ranging from 5-bits to 1-bit
for both camera and LiDAR inputs. Higher bit-depth number
means higher input quality after the bit-depth reduction.
Median smoothing [100]. We follow the setting in prior
work [100] and apply the median smoothing to both LiDAR
and camera inputs by taking a median around each LiDAR
point or camera pixel with a different kernel size. We evaluate
7 different kernel sizes ranging from 5 to 35. Larger the kernel
size means higher smoothness and lower input quality.
JPEG compression [102]. We follow the setting in [102]
and apply the JPEG only to images since JPEG compression
is specific to images. Our attack is successful only when
it succeeds for both camera and LiDAR models, therefore,
securing the camera model alone is still an effective defense
strategy. We use Python Image Library (PIL) [131] to control
the compression quality with argument “quality”. We use 9
values from 10 to 90 with step 10 to explore the defense
effectiveness at different compression rates. Lower values
means higher compression rates and thus lower image quality.

Autoencoder reformation [101]. Autoencoder reformation is
a part of MagNet defense [101]. We apply it only on image
since it is designed for camera-based adversarial examples.

We evaluate 4 different autoencoder architectures, denoted
as C, A-1, A-2, and A-3. C is the same architecture in the
MagNet paper [101] for the CIFAR-10 dataset. Since the input
size in our setting is much larger than that in CIFAR-10, we
also evaluate 3 other architectures, A-1, A-2, and A-3, by
adding 1, 2, 3 average pooling layers to C. From C, to A-3, the
latent space dimension size decreases, which thus means more
compression and lower input quality. All the autoencoder are
trained with real-world images in KITTI dataset [36](§V).
Adversarial training (AT) [106]. Since Apollo does not
release the training dataset for its models, we can only evaluate
this method on Y3 (YOLO v3). Since our attack needs to
succeed for both camera and LiDAR, a secure camera model is
still an effective defense strategy. We adapt our method to the
state-of-the-art adversarial training-based method for camera-
based object detection [106]. We follow their algorithm but
change the attack in the training loop to ours. Since our attack
is performed by adding an object instead of perturbing an
existing one, an additional challenge is how to assign ground-
truth bounding boxes and labels to our adversarial objects. To
address this, we render benign object to the same position and
use its detection results as ground-truth results for adversarial
one. In AT, we only use bench object to perform experiment.

While adversarial training can be highly robust, it is known
to be expensive and nearly intractable for large-scale prob-
lems [107], [132]. In our case, this problem further exacerbates
as the cost of our attack is higher than 2D digital-space attacks.
Thus, we employ an acceleration method found in a recent
work [107] that allows a much smaller number of PGD steps
(instead of a full optimization cycle) in each training iteration
by randomly initializing the adversarial inputs. Specifically, we
use a PGD with 2 step and randomly initialize the adversarial
mesh during each training iteration. Besides, we train our
model from a pre-trained Y3 model, which can converge much
faster and also improve robustness [133], [134]. We use the
original Y3 training set COCO [135]. We train the model for
over 900 epoch, and the model converges after ∼83 epoch.
Augmenting training data (AUG) [12], [50], [105]. Prior
works show that re-training the model with adversarial inputs
mixed in the original training data can improve the model
robustness [12], [50], [105]. Same as for adversarial training,
this method is only applied to Y3, and we use the same method
as in adversarial training to generate the adversarial inputs and
their ground-truth bounding boxes and labels. We use same
COCO training dataset and the number of training epoch. In
this case, the model converges at ∼48 epoch.

194

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 29,2024 at 08:22:22 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T22:04:48-0400
	Preflight Ticket Signature

