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Automatic Detection of Algal Blooms Using
Sentinel-2 MSI and Landsat OLI Images

Dandan Xu , Yihan Pu, Mengyuan Zhu, Zhaoqing Luan , and Kun Shi

Abstract—Algal bloom is a serious global issue for inland waters,
posing poses a serious threat to aquatic ecosystems. The timely
and accurate detection of algal blooms is critical for their control,
management and forecasting. Optical satellite imagery with short
revisit times has been widely used to monitor algal blooms in marine
and large inland waters. However, such images typically are of
coarse resolution, limiting their utility to map algal blooms in small
inland waters. We developed a new method to map the spatial
extent of algal blooms using sentinel-2 multispectral instrument
(MSI) and Landsat operational land imager (OLI) images with
higher spatial resolution but lower temporal resolution based on
the concept of local indicator of spatial association. The mapping
results was applied to measure the duration and frequency of algal
blooms in Lake Taihu from 2017 to 2020. Our results show that the
developed methodology is able to extract the spatial distribution
of moderate algal blooms using near-infrared and red-edge bands
(bands 6, 7, 8, and 8a of sentinel-2 MSI images or band 5 of Landsat
OLI images) by comparison with MODIS FAI data (R2 = 0.888
for sentinel-2 MSI and R2 = 0.85 for Landsat OLI, P < 0.05).
However, the temporal resolution of combined Landsat OLI and
sentinel-2 MSI images (i.e., up to 2–3 days) is insufficient to monitor
algal blooms during the summer time in Lake Taihu due to cloud
effects and rapid algal change. Our research has benefits for the
management of small inland waters with complex water conditions.

Index Terms—Algal bloom, cyanobacteria, spatial
autocorrelation, sentinel-2 multispectral instrument (MSI),
Landsat operational land imager (OLI).
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I. INTRODUCTION

INLAND waters, including rivers and lakes, provide various
ecosystem services, regulate microclimate, maintain biodi-

versity, and supply habitat for flora and fauna [1]. They are
closely tied to human populations as water supplies for drinking,
aquaculture, industry and tourism [2], [3]. However, around the
world, algal blooms of high intensity and duration in inland
waters are being frequently reported [4]–[6]. The causes for
this phenomenon include nutrient enrichment from agricultural,
industrial and urban runoff [7], [8], hydrological alteration from
dam construction [4], and climate change [1], [6]. Algal blooms
disrupt ecological equilibrium and food webs [1], [3], [7], [9]–
[11], and threaten freshwater systems for drinking, irrigation,
fishing and recreation [2], [12]–[14].

It is increasingly beneficial to detect algal blooms accurately
and timely to control, manage, and forecast them in inland waters
[15], [16]. Algal blooms are generally characterized by very
complex temporal variability due to their capacity to replicate
quickly and migrate vertically within the water column [3,]
[11], [12]. Field monitoring with few observations, including
conventional ship and station-based investigations, are unable
to adequately sample the occurrence, frequency, spatial extent
and magnitude of algal blooms in inland waters [1], [5], [12],
[14], [17], 18]. However, satellite imagery with diverse spatial
and temporal resolutions has great potential for timely and accu-
rate algal bloom monitoring at large spatial extents, frequency,
drifting rates and occurrence duration [6], [19], [20].

Landsat series, moderate resolution imaging spectroradiome-
ter (MODIS) and medium resolution imaging spectrometer
(MERIS) are the most commonly used satellite products for
monitoring the spatial extents and temporal dynamics of algal
blooms in inland waters [1], [6]. Previous studies have demon-
strated the frequent mapping capacity of MODIS and MERIS
products in both marine and large inland waters globally, due
to their high temporal resolution (often with 1–3 days revisits)
[12], [15], [17], [21]–[29]. However, their spatial resolution is
too coarse for algae monitoring for small inland waters. Landsat
series, with a much higher spatial resolution (30 m) and longest
earth observation records (since the 1980s), ensure the long-
term algae monitoring in inland waters, especially small water
bodies [6], [30], [31]. However, Landsat’s utility for mapping
the temporal variability of algal blooms is seriously limited
by the long revisit intervals (16 days) [1]. Other imagery with
high spatial resolution explored by previous studies, including
RapidEye, HJ-1, SPOT-4/5, SPOT-6/7, and Worldview-2 [2],
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[4], [30], [32]–[36], are restricted by their cost for continuous
monitoring of algal blooms [23]. Among all, the two latest
generation of multispectral sensors on board of Landsat 8 and
sentinel-2 are both promising for detailed water quality and
constituent analysis in inland waters due to their fine spatial
resolution (10–30 m), improved spectral configuration in visible
and near-infrared (NIR) wavelength regions, and high radiomet-
ric sensitivity [3], [6], [14], [30], [31], [33], [37]–[39]. A few
studies have demonstrated the good performance of sentinel-
2 multispectral instrument (MSI) or Landsat operational land
imager (OLI) images for monitoring algal blooms in inland
waters [35]–[37], [39]. Moreover, the combination of sentinel-2
MSI and Landsat OLI would generate images with high fre-
quency of overpass (up to every 2–3 days), improved spectral
band configuration, and fine spatial resolution (10–30 m) with
global availability [37], which meets the essential criteria for
continuous monitoring of algal blooms [23]. Therefore, it is
worth testing whether the combination of sentinel-2 MSI and
Landsat OLI images have the potential to extract the frequency
and duration of algal bloom outbreaks in inland waters.

Methods applied for algal bloom extraction from sentinel-2
MSI, Landsat OLI and other optical images with high spatial
resolution are often based on a given threshold of estimated
Chlorophyll-a (Chla) or various spectral indices [e.g., floating
algae index (FAI), normalized difference chlorophyll index,
maximum chlorophyll index (MCI), NIR to red ratio] [13], [14],
[30], [34], [40], [41], which were originally applied to ocean
color data [4], [18], [20], [23], [24], [35], [42]–[46]. However,
the applications of such methods are often limited to the specific
spectral band configurations and affected by complex water
conditions of inland waters [turbidity, shallow depth, high con-
centrations of color dissolved organic matter (CDOM) and total
suspended matter (TSM)] [13]. The algorithms for Chla estima-
tion and most indices require visible bands due to the absorption
characteristics of Chla [18], [47]. However, turbid waters have
similar spectral signals as cyanobacterial scums in red and green
bands [10], [48], which challenges the discrimination of algal
bloom in different water conditions regarding to the degree of
turbidity. Therefore, such threshold methods sometimes tend
to give a false positive detection of algal blooms [47], [49],
[50]. Due to the complexity of inland waters, previous studies
need to adjust the thresholds of Chla or spectral indices for
different locations based on published studies, experience, visual
identification of algal bloom pixels and field sampling [6], [14],
[38]; these approaches lack the capacity to be applied to other
locations and often need to be calibrated to ensure cross-sensor
and temporal consistency [30], [38]. Therefore, it is important
to develop a new method for algal bloom mapping to maintain
temporal consistency and avoid illogical classification results.

Reflectance-classification methods can be sufficient for map-
ping algal blooms with the spectral bands located in visible
and NIR wavelength regions [47]. Few research applied clas-
sification algorithm (artificial neural network [2]) to estimating
algal scums with such bands. Spectral bands in red-edge and
NIR regions show much better results for the discrimination of
algal blooms in inland waters than visible bands (e.g., red-edge
band used for MCI algorithm [23] and NIR band used for FAI

algorithm [51]), which are robust to detect high-conentration
algal blooms under the influence of turbidity, CDOM and TSM.
High-conentration algal blooms form scums, patches, thin films
or thick mats on the water surface [i.e., severity levels by visual
cyanobacteria index (VCI)] [52], which were presented as sur-
face clusters in inland waters. Classification methods integrat-
ing spatial autocorrelation have high potential to capture such
algal blooms characterized by surface clusters to avoid illogical
results using threshold methods. The local indicators of spatial
association (LISA) is a method for capturing spatial clusters with
the potential to extract relatively homogeneous land cover types
for environmental and ecological research [53]. Several studies
have indicated that it could improve temporal consistency and
accuracy of land cover classification while preserving spatial
consistency [54]. Zhang et al. successfully monitored river
plume in Lake Taihu using LISA [55]. High-concentration algal
blooms have similar spectral characteristics as land vegetation
in red-edge and NIR wavelength regions [1], resulting distinct
higher reflectance than turbid water [40], [56]. However, it is not
explored whether NIR band and red-edge bands have different
performance in classifying high-concentrated algal blooms. For
these reasons, it is worth exploring the potential of classification
algorithms based on the concept of LISA to extract the spatial
extent of algal blooms with different spectral bands in the
wavelength regions of red-edge and NIR.

Therefore, this article aims to test the potential of LISA with
sentinel-2 MSI and Landsat OLI imagery to monitor the spatial
extent, frequency and occurrence duration of algal blooms in
inland lakes. The specific objectives are: to develop an automatic
method for mapping algal blooms with batch processing capac-
ity based on the LISA concept; to evaluate the performance of
different spectral bands for mapping algal blooms, and to inves-
tigate the occurrence frequency and duration of algal blooms by
combing the mapping results from sentinel-2 MSI and Landsat
OLI images.

II. MATERIALS AND METHODS

A. Study Area

Lake Taihu is the third-largest freshwater lake in China,
with 2338 km2 of open water and a water storage volume of
4.4 × 109 m3 (see Fig. 1) [57]–[60]. It is a shallow inland
eutrophic lake with a maximum depth of 2.6 m and average
depth of 1.9 m [57]–[60]. It is a drinking water source for more
than 40 million people and plays an important role in aqua-
culture, tourism and flood control [8], [58], [59]. However, the
large population, urbanization, industrial development, intensive
agriculture and tourism activities caused hypereutrophic and
experienced algal blooms in Lake Taihu since 1990s [61]–[63].
During the past 20 years, more than 25% area of the whole
lake has been frequently covered by floating algae in spring
and summer due to eutrophication [62]–[65]. A very severe
cyanobacterial bloom occurred in May 2007, depriving more
than 2 million people from drinking water for 8 days (May 30th
to June 6th) [60]. This event attracted the government’s attention,
and the Jiangsu hydrology and water resources investigation
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Fig. 1. Sample sites in the study area (Lake Taihu, China). The background
image is from sentinel-2 MSI acquired on August 17, 2019, composed of near-
infrared, red, green bands in red, green, and blue color tons. The pink color
within the lake area shows algal bloom outbreaks.

bureau have been conducting daily inspections of algal bloom
area from April to October every year since 2009 [59].

Lake Taihu is divided into six management sections (see
Fig. 1). Depending on the lake’s hydrodynamics and intensity
of human activities, cyanobacteria blooms occurred mainly in
section 1 (Meiliang and Zhushan Bays), section 2 (Gonghu
Bay), and section 6 (see Fig. 1) [48], [59], [66], [67]. Section 3,
including Zhenhu, Guangfu, Xukou, and Dongshan Bays (see
Fig. 1), is typically dominated by macrophytes with three types
of aquatic vegetation, including emergent (Phragmites commu-
nis and Zizania latifolia), submerged vegetation (Elodea nuttal-
lii, Potamogeton crispus, Myriophyllum spicatum, Potamogeton
maackianus, Ceratophyllum demersum, and Vallisneria spiralis)
and floating-leaved vegetation (Eichhornia crassipes, Lemna
minor, Nymphoides peltata, and Trapa bicornis) [57]. Section
4 (East-Taihu Bay) is a submerged vegetation region with good
water quality and a productive fishery. Section 5 was originally
dominated by floating-leaved vegetation [66], but now affected
by algal blooms as well due to wind effects and the algal blooms
from section 6 [60]. Therefore, researches also integrate sections
5 and 6 together and interpret it as northwest lake, central lake
and southwest lake [13], [57], [58].

Lake Taihu was selected for this article due to the high
frequency of algal bloom outbreaks, despite not being a small
inland water body; a condition ideal for testing our method.
Nevertheless, its frequency of algal outbreaks and size are both
suitable to compare mapping results from sentinel-2 MSI and
Landsat OLI images with MODIS FAI data.

B. Remotely Sensed Images

A total of 34 sentinel-2 MSI and 11 Landsat OLI images
of high quality from 2017 to 2020 were downloaded from

the United States Geological Survey (USGS) website1 for this
study (see supplementary material A for image acquiring dates).
Landsat OLI images were already geometrically and atmospher-
ically corrected (i.e., level 2 product). Sentinel-2 MSI images
were previously geometrically corrected (i.e., level 1 product)
when downloaded. The spatial resolutions of the sentinel-2 MSI
images are 10, 20, and 60 m (i.e., the bands used for algal
bloom mapping are near-infrared bands and red-edge bands with
spatial resolution of 10 m and 20 m) and the spatial resolution
of Landsat OLI image is 30 m. All the sentinel-2 MSI images
were then radiometrically and atmospherically corrected via
Sen2cor toolbox from SNAP software provided by European
Space Agency, and resampled to a spatial resolution of 20 m
using bilinear interpolation [68]. All the images were projected
at universal transverse mercator Zone 51N, WGS1984. Thirty
cloud-free MODIS images (see supplementary material A for the
image acquiring dates) were used to calculate FAI to validate the
mapping results from sentinel-2 MSI and Landsat OLI images.

C. Methodology

After preprocessed sentinel-2 MSI bands (i.e., NIR, SWIR1,
and red-edge bands) and Landsat bands (i.e., NIR and SWIR1),
LISA were conducted on all single bands to identify the signifi-
cant, high value clusters, integrate the extraction results among
bands and interpret the severity level of algal blooms (see Fig. 2).
All steps were coded in a Python script (see supplementary
materials) following a detailed workflow (see Fig. 2).

1) Preprocessing of sentinel-2 MSI/Landsat OLI Single
Bands: Pre-processing steps included clipping the bands to the
study area, raster conversion to NumPy array in python script
and standardization of the NumPy array for both sentinle-2 and
Landsat OLI

P =

∑
(ρ− ρ̄)2

std (ρ)
(1)

where P is the standardized reflectance of each pixel; ρ is
reflectance of each pixel for a single band; ρ̄ and std(ρ) are
the average reflectance and standard deviation of all pixels for
the single band.

Red-edge, NIR and SWIR1 bands were selected for mapping
algal blooms in this article for three reasons. First, turbid water
has a strong influence on mapping algal blooms using spectral
bands within the visible range (see Fig. 3; spectra downloaded
from the USGS spectra library). Second shortwave infrared
(SWIR2) band was not selected as it has been shown previously
in Lake Taihu, it cannot distinguish algal blooms and open water
[69]. Finally, algal blooms have higher reflectance in red-edge,
NIR, and SWIR1 bands than turbid and open water (see Fig. 3).

2) Spatial Autocorrelation Analysis: Following all prepro-
cessing steps, spatial autocorrelation was performed for each
standardized NumPy array. During the spatial autocorrelation
analysis, eight adjacent pixels (Pj) were selected as spatial
neighbors for the pixel Pi (see Fig. 2) to calculate spatial
autocorrelation index Ii [(2); built using to the concept of Local

1[Online]. Available: https://earthexplorer.usgs.gov/

https://earthexplorer.usgs.gov/


8500 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Methodology flowchart (NIR: Near-infrared band; SWIR1: first shortwave infrared band; Red-edge bands of sentinel-2 MSI images: bands 5, 6, 7,
and 8a).

Moran’s Index] with spatial weight (Wij) 0.125 for each neighbor
(i.e., equal weight for eight neighbor pixels with the total weight
for the spatial lag variable of 1) (see Fig. 2)

Ii =
(n− 1)Pi

∑
j WijPj∑

j P
2
j + P 2

i

(2)

where Pi is the standardized reflectance of one pixel on a single
band (see Fig. 2), Pj is one of the eight spatial neighbors of Pi (see
Fig. 2), Wij is the spatial weight (see Fig. 2), and n is the number
of spatial neighbours (8). Ii is the Local Moran’s index that
refers to the spatial association between a given pixel (Pi) and
its spatial lag variable (

∑
j WijPj) which was calculated using

the spatial neighbors and their corresponding spatial weight.

Z score is the value of standard normal distribution, which is
the test statistic for the significant test of Local Moran’s index,
Ii [i.e., spatial autocorrelation index, (3)].

P value was calculated using the corresponding test statistic Z
for the analysis of Local Moran’s Index using the python package
“scipy.stats” [command line st.norm.sf(abs(Z))×2]. The High-
High clusters were high values significantly clustered spatially
in a single spectral band [i.e., the first “High” means Pi is
significantly high on the standardized array; the second “high”
means the value of its spatial lag variable (

∑
j WijPj) was

significantly high as well]. The high-high clusters were selected
from the results of spatial autocorrelation according to three
criteria (see Fig. 2): Ii > 0 (i.e., either high values or low values
are clustered together), or the value in the standardized array
is larger than zero (i.e., separate the high values clusters from
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Fig. 3. Spectral characteristics of water in different conditions (spectra downloaded from USGS spectral library version 72 algal blooms (measured in Arkansas
River, Leadville, Colorado, USA); coastal seawater (surface Chla of 7.609 ug·L-1); open ocean (surface mean Chla of 2.97 ug·L-1); turbid water (water mixed with
montmorillonite of 0.50 g·L-1); and highly turbid water (water mixed with montmorillonite of 1.67 g·L-1).

low value clusters) for each band; or P value ≤ 0.05 (i.e., select
statistically significant high value clusters out) where Z is the
test statistic from standard normal distribution, Ii is the spatial
autocorrelation index from (2), N is the total number of pixels
for a single band, Wij is the spatial weight for each neighbor, P
is the standardized reflectance from (1), P̄ is the average value
of the standardized array calculated by (1).

3) Severity, Frequency, and Duration of Algal Blooms: Af-
ter the high-high clusters were extracted from each band, the
extracted area and spatial extent were compared among NIR,
red-edge, and SWIR bands of sentinel-2 MSI and Landsat OLI
images separately. The severity levels of algal blooms were
determined based on area and spatial extent extracted from NIR,
red-edge, and SWIR bands. The extracted area of algal blooms
from those bands of both satellite images were validated using
the FAI data calculated from MODIS images with the spatial
resolution of 250 m (i.e., paired up MODIS images with sentinel-
2 MSI or Landsat OLI image based the criteria of the same
acquiring date) [70]. After mapping the severity of algal blooms,
the mean values of the surface reflectance of moderate and severe
algal blooms from all the spectral bands of Landsat OLI and
sentinel-2 MSI images were calculated. These mean reflectance
values were used to form the spectral profiles of both Landsat
OLI and sentine-2 images for moderate and severe algal blooms.

To analyze the frequency and duration of algal blooms, high
temporal resolution remote images are required. However, only

2https://crustal.usgs.gov/speclab/QueryAll07a.php

34 sentinel-2 MSI images and 11 Landsat OLI images with
limited cloud cover were available for mapping. Therefore, we
visualized 93 sentinel-2 MSI and 32 Landsat OLI images during
2017–2020 (i.e., all images acquired by both satellites including
those with clouds) to collect a time series dataset with algal
bloom occurrence information. The extracted algal bloom areas
from the 34 sentinel-2 MSI images and 11 Landsat OLI images
were added into the time series dataset, while zero areas of
algal blooms were added to the dataset on dates when algal
blooms were not observed in the images. For images with high
cloud cover with known (observed) algal blooms, the area of
algal blooms was recorded as missing in the time series dataset.
The interpolation method (na.approx) in the “zoo” package of R
software was used to fill missing data. The frequency, occurrence
period and duration of algal blooms were then analyzed based
on the time series dataset from 2017 to 2020.

4) Validation by In Situ Measured Chla Data: In situ measured
Chla data in Lake Taihu were used to validate the frequency, oc-
currence period and duration of algal bloom outbreaks extracted
from both sentinel-2 MSI and Landsat OLI images. In situ data
were collected at all 32 sites in Lake Taihu (see Fig. 1) during
February, May, August, and November, and s collected at 14
sites (including eight sites in sections 1 and 3 sites in sections 2
and 3 sites in the northern part of section 6; Fig. 1) for the other
months during 2017–2019. Chla pigments were extracted using
90% ethanol at 80 °C from the collected water samples. Chla
concentrations were calculated from the absorption coefficients
at 665 and 750 nm.

Z =
Ii −

(− 1
N−1

)
√√√√ 8×W 2

ij×
⎛
⎝N−

∑
(P−P̄)4

(
∑

(P−P̄)2)
2

⎞
⎠

N−1 −
27×W 2

ij×
⎛
⎝2×

⎛
⎝

∑
(P−P̄)4

(
∑

(P−P̄)2)
2

⎞
⎠−N

⎞
⎠

(N−1)×(N−2) − (
1

N−1

)2

(3)

https://crustal.usgs.gov/speclab/QueryAll07a.php
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Fig. 4. Sample algal bloom extraction results from sentinel-2 MSI images. (a) Extractions from band 5 (a1), and bands 6, 7, 8, 8a, and 11 (a2) are from an image
acquired on April 29, 2017. (b) Extractions from band 5 (b1), and bands 6, 7, 8, 8a and 11 (b2) are from an image acquired on June 8, 2017. (c) Extractions from
band 5 (c1), and bands 6, 7, 8, 8a, and 11 (c2) from an image acquired on August 17, 2019. (d) Extractions from band 5 (d1), and bands 6, 7, 8, 8a and 11 (d2) of
image acquired on May 3, 2020.

Fig. 5. Comparison of algal bloom extraction among different bands. (a). Error bar graph for extracted algal bloom area of NIR, red-edge bands and first shortwave
infrared band of sentinel-2 MSI and Landsat OLI images acquired during 2017–2020. (b) Comparison between the area of algal bloom extraction from NIR and
red-edge bands of sentinel-2 MSI images acquired during 2017–2020 (the blue dashed line is 1:1).

III. RESULTS

A. Extraction of Algal Blooms From Sentinel-2 MSI and
Landsat OLI Images

Among all NIR, red-edge, and SWIR1 bands from sentinel-2
MSI images, the extracted area of high–high clusters in band
5 was the largest, covering both algal bloom regions and turbid
water areas (see Fig. 4; more example extractions in supplemen-
tary material b), which is significantly different from the area
extracted from other bands (ANOVA P < 0.05). All the other
red-edge bands (6, 7, and 8a) showed similar performance for
algal bloom extraction as the NIR band (sentinel-2 MSI band
8; Fig. 4); also shown by an ANOVA and Tukey HSD test
(P > 0.05, Fig. 5). More algal blooms extracted from bands
8, 7, and 6 are near the boundary of the spatial extents of
the algal blooms from band 8a (see Fig. 4). The extraction
from SWIR1 band shows the spatial extents of algal blooms
with the highest density [see Fig. 4(a1), (a2), (d1), and 4(d2)].

The extraction from NIR band (Landsat OLI) covers the algal
bloom region, while the extraction from SWIR1 band only
captures highly dense blooms (see Fig. 6). Landsat OLI images
captured two severe bloom events [see Figs. 6(a) and 6(b)],
which are consistent with the results from two extractions of
the largest algal blooms from 2017 to 2020 [see Fig. 5(a)].

Algal bloom extraction from NIR and SWIR1 of Landsat OLI
imagery is similar to the results from sentinel-2 MSI imagery by
comparing images from the same date [see Fig. 4(d) and 4(d2);
and Figs. 6(d) and (d1)]. The extraction results were compared
for Landsat OLI and sentinel-2 MSI data acquired on similar
dates (Landsat images acquired on May 11, 2017, May 27, 2017,
December 21, 2017, April 28, 2018, November 9, 2019, May
3, 2020 paired with sentinel-2 MSI images acquired on April
29, 2017, May 29, 2017, December 20, 2017, May 4, 2018,
November 5, 2019, May 3, 2020). Only the extraction area of
both images acquired on the same date (May 3, 2020) is near
the 1:1 line [see Fig. 7(a)]. This is because the area and spatial
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Fig. 6. Sample algal bloom extraction results from Landsat OLI images. (a) Extraction from NIR and SWIR1 band (a1) of image acquired in May 11, 2017.
(b) Extraction from NIR and SWIR1 band (b1) of image acquired in November 3, 2017. (c) Extraction from NIR and SWIR1 band (c1) of image acquired in April
28, 2018. (d) Extraction from NIR and SWIR1 band (d1) of image acquired in 2020-05-03.

Fig. 7. Comparison of algal bloom extraction from the NIR band and first shortwave infrared (SWIR1) band between Landsat OLI and sentinel-2 MSI images.
(a) Comparison of band 8a, band 8 of sentinel-2 MSI images and NIR of Landsat OLI images. (b) Comparison of SWIR1 bands of Landsat OLI and sentinel-2
MSI images (the blue dashed line is 1:1).

extent of algal blooms changes rapidly even within one or two
days (see Fig. 8) and Landsat images captured larger algal bloom
than sentinel-2 MSI images due to the acquisition dates. The
extraction area from the SWIR1 band from both satellite images
is similar [see Fig. 7(b)].

B. Validation of the Extracted Algal Bloom With MODIS FAI
Data

The FAI value of the extracted algal bloom area from SWIR1
band is significantly higher than that from NIR band [P < 0.05;
Fig. 9(a)]. FAI of the extracted area from NIR band is also sig-
nificantly higher than that of the unextracted area from MODIS
data with FAI larger than −0.004 [P < 0.05; Fig. 9(a)], and this
FAI threshold (> −0.004) was considered as the threshold for

mapping algal blooms from MODIS images in Lake Taihu [71].
The extracted algal bloom from the NIR band was considered
to be level 1 (L1; interpreted as moderate algal bloom in this
study), while that from SWIR1 was level 2 (L2; interpreted
as severe algal bloom in this study) and the unextracted area
with FAI larger than −0.004 was marked as level 0 (L0). After
the FAI values of the three severity levels were extracted [see
Fig. 9(a)], moderate and severe algal bloom thresholds were
calculated based on the criteria of “median + 1.5×interquartile
range” of L0 and L1 to avoid statistical outliers [see Fig. 9(a)].
The two thresholds were then used to extract moderate and
severe algal bloom regions from MODIS FAI images to validate
the extractions from sentinel-2 MSI and Landsat OLI images
(i.e., both satellite images were paired with MODIS images
based on the same acquisition date). The extracted moderate and
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Fig. 8. Comparison of algal bloom occurrence on similar acquisition dates from Landsat OLI and sentinel-2 MSI images. (a) Algal bloom extraction from NIR
and SWIR1 bands (a1) of Landsat image acquired in May 27, 2017. (b) Algal bloom extraction from band 6, 7, 8, 8a, and 11 (b1) of sentinel-2 MSI image acquired
in May 29, 2017. (c) Algal bloom extraction from NIR and SWIR1 band (c1) of Landsat image acquired in December 21, 2017. (d) Algal bloom extraction from
bands 6, 7, 8, 8a, and 11 (d1) of sentinel-2 MSI image acquired in December 20, 2017.

Fig. 9. Validation of algal bloom extraction from sentinel-2 MSI and Landsat images based on MODIS derived FAI. (a) Error bar graph of FAI of unextracted
area with FAI larger than −0.004 (L0), extracted area from NIR band (L1), extracted area from first SWIR1 band (L2). (b) Validation of extracted algal bloom
area from sentinel-2 MSI band 8a with the area of MODIS FAI larger than 0.03. (c) Validation of extracted algal bloom area from Landsat OLI NIR with the
area of MODIS FAI larger than 0.0018. (d) Validation of extracted algal bloom area from sentinel-2 MSI band 11 with the area of MODIS FAI larger than 0.276.
(e) Validation of extracted algal bloom area from Landsat OLI SWIR1 with the area of MODIS FAI larger than 0.219.

severe algal blooms from both satellite images are significantly
correlated with the MODIS FAI, but were underestimations
compared to MODIS (see Fig. 9; see the comparison of extracted
spatial extents of algal blooms from both satellite images and
MODIS images in the supplementary material D). The spectral

characteristics of the extracted moderate and severe algal blooms
also indicates that the severe algal blooms show significantly
high reflectance in both NIR (including bands 6, 7, 8, and 8a for
sentinel-2 MSI images) and SWIR1 bands for both sentinel-2
MSI and Landsat OLI images (see Fig. 10). Oyama, et al. [52]’s
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Fig. 10. Spectral characteristics of severe algal blooms, algal blooms, turbid water and open water in Lake Taihu extracted from sentinel-2 MSI and Landsat OLI
imagery. (a) Spectra extracted from the sentinel-2 MSI images, (b) Spectra extracted from the Landsat OLI images.

research using Landsat ETM+ in Japan indicates that FAI in the
range 0–0.1 represents moderate algal blooms (level 3 and level
4 of VCI characterized by surface scums or thin film), which is
consistent of our extraction from NIR bands. However, Oyama
et al. [52]’s findings show that FAI is unable to identify level 5
(thick surface mat) and level 6 (hyperscum) of cyanobacterial
blooms. Therefore, the extraction results of SWIR1 might only
represent severe algal blooms with high surface scum density
instead of a severe algal bloom in ecological context.

C. Temporal and Spatial Dynamics of Algal Blooms During
2017–2020

Multiple algal blooms were detected throughout the study
period using both remote sensing platforms and with variable
severity, duration (see Fig. 11) and spatial extent (see Fig. 6).
During 2017 to 2020, the largest bloom outbreak occurred in
2017; the largest detected by both satellites was 361.37 km2 on
May 11, 2017 with five large algal bloom outbreaks detected in
2017 [see Fig. 11(a)]. The smaller bloom during July 28, 2017
to August 17, 2017 with an extracted maximum area of 70.61
km2 was detected with low confidence due to cloud-obscured
images [see Fig. 11(a)]. Hence, this algal bloom may have been
larger.

The mildest outbreaks of algal bloom in the study period were
detected in 2018 [see Fig. 11(b)]. The largest bloom outbreak
lasted more than two months with a maximum area of 64.32
km2. Two other smaller and briefer blooms were detected that
year [see Fig. 11(a)]. In 2019, three algal blooms were detected,
and five algal blooms were detected in 2020; all milder than in
2017 [see Fig. 11(c) and (d)].

Moderate algal blooms can cover up to 15% of the area of
the largest section of Lake Taihu (section 6: 1367 km2) and
severe blooms cover up to 2.5% of its area [see Fig. 12(a) and
(b)]. The smallest section (see section 1: 193.63 km2) had a
greater percentage area of moderate and severe blooms [see
Fig. 12(a) and (b)] than the larger sections (section 2: 174.44
km2, section 3: 239.83 km2, and section 5: 228.21 km2). Sections
3 and 5, regions originally dominated by aquatic vegetation, had
the mildest algal bloom outbreaks compared to the other three,
but were nevertheless subject to some algal bloom outbreaks
[see Fig. 12(a) and (b)]. The in situ measured Chla also show

section 1 and 6 have high concentration of Chla, section 2 has
moderate concentration of Chla, and section 5 and 3 have low
concentration of Chla, which is consistent with the estimate
cover percentage of moderate algal blooms (Fig. 12c and 12b).
Section 2 had few severe algal blooms [see Fig. 12(b) but had
many blooms of lesser severity [see Fig. 12(a)] likely due to
serious anthropologic pollution. Section 4 was not included for
algal bloom extraction in this article because it is dominated by
submerged vegetation and anthropologic disturbance from both
dynamic land cover changes and fisheries.

IV. DISCUSSION

A Advantages and Limitations of LISA for Algal Bloom
Mapping

This qualitative approach, based on the concept of LISA,
automatically extracts algal blooms from satellite images. Most
remote sensing classification methods (e.g., threshold methods
based on spectral indices, decision trees, pixel-based classifica-
tion, objected oriented classification, and machine learning) re-
quire training samples to develop classification rules and criteria
or post classification solutions to improve classification accuracy
[33], [42], [72]. However, methods that rely on human judgment
lack temporal consistency for images acquired on different
dates. Previous studies have also shown that spatial weights
(i.e., important parameters for spatial autocorrelation analysis)
improve the temporal consistency for remote sensing classifica-
tions [54]. This method eliminates inconsistency found in other
pixel-based classification methods as it correlates each pixel
with its neighbors. Another advantage of the autocorrelation
method comes from automation and batch processing. Dynamic
algal blooms require rapid monitoring with the ability to rapidly
batch-process high data volumes. We found that this automatic
method has the capacity to extract algal bloom information
from both sentinel-2 MSI and Landsat OLI images with high
accuracy, temporal consistency and batch processing ability. It
is particularly effective at extracting spatial extents that have
been affected by similar phenomena as neighboring pixels [55].
It is also effective at distinguishing relatively homogeneous land
cover types with higher (high–high clusters) or low (low–low
clusters) spectral reflectance and is suitable for extracting algal
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Fig. 11. Temporal dynamics of the extracted area of algal blooms in Lake Taihu in (a) 2017, (b) 2018, (c) 2019, and (d) 2020. In each panel, the graphs show the
extracted area of algal blooms from band 8a of sentinel-2 MSI and NIR band from Landsat OLI images (red dots and line) and band 11 of sentinel-2 MSI and first
SWIR1 band of Landsat OLI images (blue line and dots).

Fig. 12. Algal bloom outbreaks in different sections of Lake Taihu. (a) Extracted area of moderate algal blooms from the all cloud-free images divided by the
area of the sections. (b) Extracted area of severe algal blooms from all the cloud-free images divided by the area of the sections. (c) In situ measured Chla from
different sections in Lake Taihu.

blooms from waters using the NIR wavelength region [see Figs. 3
and 10].

The limitation of this approach is that it is difficult to dis-
tinguish algal blooms from other land cover types that also
have significantly higher reflectance than open water. This
included islands, bridges, aquatic vegetation and river plumes

[55]. Therefore, it needs to use the unique spectral signals among
spectral bands for various land cover types in the Lake Taihu
area. For this reason, selection of spectral bands for extracting the
spatial extents of algal blooms is very important (see “C. Algal
Bloom Extraction Among Spectral Bands” in the section of “IV.
DISCUSSION”). The effects of other land cover types with
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high reflectance values were minimized with accurate surface
water extraction that masked those features, retaining only open
water regions. We have previously shown that the SWIR2 band
performs well to map open surface water with high turbidity
or algal bloom coverage, but with islands, bridges and aquatic
vegetation excluded [69].

We were careful to identify the error sources in our method,
including sensitivity to image quality and spatial resolution that
reduced extraction accuracy from both image platforms. Cloud
cover is the main image quality issue for bloom extraction as
clouds with high reflectance can be extracted as algal blooms
[see Fig. 4(b) and (b2)]. Thin clouds were only extracted from
bands in the red-edge and NIR wavelength region [see Fig. 4(b1)
and (b2)], while thick clouds were extracted by all the studied
bands at the red-edge, NIR and SWIR1 wavelength regions
(Supplementary C). If both algal blooms and thick cloud cover
were present in the images, bands in the red-edge and NIR
wavelength region extracted both moderate algal blooms and
thick cloud while SWIR1 bands only extracted thick clouds and
severe algal blooms (supplementary material C: sentinel-2 MSI
image acquired in August 17, 2017 and Landsat OLI image
acquired in September 8, 2020). Hence, our results point to ways
to manage this error source using a diversity of bands and image
platforms.

Another image quality issue that might affect extraction ac-
curacy using spatial analysis is “salt and pepper” effects [69].
However, this was not found in our study because Landsat OLI
and sentinel-2 MSI images with geomatics and atmospheric
correction have high image quality that overcome the issue.
Spatial resolution of satellite images also impacts the extraction
area, mainly at the edge or boundary between algal blooms
and water. Different spatial resolution may result in variable
homogeneity, which affects spatial autocorrelation. As well, the
extracted areas were not uniform due to different pixel sizes.
Hence, the spatial extent of the extracted algal blooms from
sentinel-2 MSI and Landsat OLI images acquired in the same
date [May 3, 2020, Figs. 4(d2) and 6(d1)], calculated different
algal bloom areas [see Fig. 7(a)]. This was caused by differing
spatial resolution.

B. Comparison of Landsat OLI and Sentinel-2 MSI Images

It is a challenge to compare the extraction results of algal
blooms from sentinel-2 MSI images and Landsat OLI images.
Algal blooms change dramatically over a few hours; therefore,
images acquired even on adjacent dates may not be comparable
(see Fig. 8). Indeed, the principal reason for nonuniform of algal
bloom cover on similar dates (see Fig. 8) is aquatic management;
the salvaging of algal blooms. Salvaged algal blooms amounted
to 45.97 million tons in May 2017 for instance, affecting the
detected intensity and comparison between image platforms.
During the study period in 2017–2020, most Landsat OLI images
captured more intense and larger algal bloom outbreaks than
sentinel-2 MSI images, especially when images were on similar
dates (see Fig. 7). However, the comparison of the two satellite
images from the same dates show the opposite; the extracted
bloom area from NIR region of sentinel-2 MSI is larger than

that of Landsat OLI image [see Figs. 4(d2) and 6(d1); NIR band
of Landsat OLI image extracted 95.93 km2; NIR band and band
8a of sentinel-2 MSI images extracted 122.92 and 114.32 km2,
respectively). This suggests that, in addition to the effects of
spatial resolution, inconsistent results may stem from sensor
design (i.e., wavelength position and band width) for NIR bands
in Landsat-8 and sentinel-2 MSI satellites (see Fig. 10).

Compared to MODIS images based on FAI thresholds, the ex-
tractions of algal blooms were underestimated on both sentinel-2
MSI and Landsat OLI platforms (see Fig. 9). However, the
spatial extent of the extracted moderate and severe algal blooms
was consistent with the extractions from MODIS FAI images
(see supplementary D). One reason for the underestimation is
the large gap in spatial resolution of both satellite images and
MODIS. Because images with coarse spatial resolution have
issues with mixed pixels, the threshold of FAI may need to
be set lower to detect and map algal blooms. This may also
be the reason for lower FAI thresholds of Landsat OLI images
than sentinel-2 MSI images (see supplementary D). Regardless,
these effects and the difference in transit time of MODIS and
the other two satellites contribute to the inconsistency of algal
bloom extractions.

C. Algal Bloom Extractions Among Spectral Bands

Previous studies on Lake Taihu indicate that visible bands
are highly influenced by turbidity [69]. This can make them
unsuitable for water mapping as water-leaving radiance is dom-
inated by particulate scattering properties instead of absorption
in highly turbid water [73]. The spectral characteristics from the
USGS library show that reflectance of visible bands varies with
water turbidity (see Fig. 3). Turbid water has higher reflectance
in the visible wavelength region (see Fig. 3), which influences
algal bloom extraction from visible bands. The spectral signals
from both sentinel-2 MSI and Landsat OLI images also suggest
that there is not much separation between turbid water and
algal blooms in the visible wavelength region (see Fig. 10).
Oyama et al. [3] indicated that cyanobacterial blooms and water
are indistinguishable in three visible bands. Even though the
reflectance of algal blooms in band 5 of sentinel-2 MSI images
is higher than that in turbid water, its capacity for algal bloom
extraction is much lower than in the NIR and SWIR1 wavelength
regions [see Fig. 10(a)]. This is because turbid water also has
high reflectance in band 5 [see Fig. 10(a)], and its reflectance
varies across suspended sediment concentrations.

Research has also shown that algal bloom reflectance reaches
its maximum at around 700 nm (band 5 wavelength range in
sentinel-2 MSI images: 698–713 nm) due to the high concen-
tration of phytoplankton in the water column and surface algal
scum [2]. However, sediment resuspension is a common event
in Lake Taihu due to its shallow depth and flat lakebed, result-
ing in consistent, year-round turbidity (average and maximum
concentration of suspended particular matter is over 50 and
300 mg·L−1). This results in high reflectance of turbid water
in band 5 (see Fig. 10) [63], [74], [75].

Except in the visible bands and band 5 of sentinel-2 MSI,
the turbid water in Lake Taihu have similar spectral signals as
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clear open water (see Fig. 10), where reflectance decreases with
increasing wavelength [76]. Therefore, water with low re-
flectance clusters in NIR, SWIR1 and SWIR2 bands (see
Fig. 10), have often been used for water mapping studies [40],
[77]. Becker et al. [78] also found that the NIR region is
superior to the visible region for mapping algal blooms in water.
Algal blooms have significantly higher reflectance in NIR and
SWIR1 regions than clear or turbid waters. They do not differ
significantly in the SWIR2 band (see Fig. 10). Thus, SWIR2 has
little potential to extract algal blooms from water, consistent with
previous research [69]. Both moderate and severe algal blooms
have significantly higher reflectance than turbid or clear water
in NIR and part of the red-edge wavelength regions (bands 6,
7, 8a, and 8 for sentinel-2 MSI images and NIR for Landsat
OLI images; Fig. 10). Therefore, the extraction results from
those bands captured the majority of the spatial extent of algal
bloom outbreaks (see Figs. 4 and 6). The extracted algal bloom
area from those bands was slightly different due to different
wavelength regions, band widths and spatial resolutions (see
Figs. 5 and 10). Oyama et al. [3] also showed that lake water
and algal blooms are distinguishable in the NIR region but not
the SWIR2 region. In the SWIR1 wavelength region, eutrophic
water has large reflectance gaps compared to clear or turbid water
(see Fig. 10); thus, only severe algal blooms were detectable (see
Figs. 4 and 6). Previous research indicated that both SWIR1
and SWIR2 bands are able to distinguish cyanobacterial blooms
and macrophytes, but are unable to discriminate cyanobacterial
blooms and lake water [3]. Lake Taihu, as a shallow fluvial lake,
is characterized by the coexistence of phytoplankton and macro-
phytes [79]. In this article, the severe algal blooms extracted from
the SWIR1 band had similar reflectance in SWIR2 as turbid and
clear water and algal blooms (see Fig. 10). This suggested that
the extracted severe algal blooms might not be misclassified
macrophytes.

D. Monitoring Algal Blooms Using Images With Long
Revisiting Intervals

It is a challenge to analyze the duration and frequency of
algal bloom outbreaks using optical satellite images with long
revisiting intervals and cloud effects. Therefore, we visibly
checked all images, including those obscured by cloud, for algal
bloom occurrence. sentinel-2 MSI, with two satellites (A and
B), has a revisiting interval of five days. A continuous dataset
of algal bloom outbreaks from 2017 to 2020 can be created by
adding Landsat OLI results. The interpolation data for missing
algal bloom values due to cloud cover may not represent the true
bloom area, but the temporal dataset, with interpolation values,
can predict the duration and frequency of bloom outbreaks.
Previous studies have also used satellite images (e.g., MERIS)
to identify dates of cyanobacterial bloom occurrence and used
images with higher spatial resolution (e.g., Landsat OLI) to map
the spatial distribution of algal blooms [39].

Previous studies of inland lakes in North America and Italy
indicate that algal blooms normally occur in summer or early
autumn [9], [30], [35], [37], [39]. However, algal blooms in
Lake Taihu occurred in spring, summer and autumn during

2017–2020, with even small outbreaks in winter (2017 and
2020; Fig. 11). Other monitoring at Lake Taihu indicated that
algal blooms mainly occur from May to September [59]. The
results of this study indicate five continuous outbreaks from
February 28, 2017 to December 25, 2017 [about ten months,
Fig. 11(a)], three from April 9, 2018 to October 26, 2018 [about
6.5 months, Fig. 11(b)], three from April 15, 2019 to November
20, 2019 [about seven months, Fig. 11(c)], and four major
continuous outbreaks (except the outbreak from January 29,
2020 to February 23, 2020, Fig. 11(d)] from April 13, 2020
to December 4, 2020 [about 7.5 months, Fig. 11(d)]. Starting
dates of algal blooms in Lake Taihu have been found to be
very early (average phenological starting date was 29.9 days
during 2003–2017) [80]. Compared to the large algal bloom
that occurred on Erhai Lake with a coverage of 150 km2 in 1996
[6], the largest algal bloom outbreak covered 361.37 km2 in May
5 2017 [see Fig. 11(a)].

Compared to the temporal changes of in situ measured Chla
data in 2017–2019 (supplementary D), the frequency and du-
ration of extracted algal blooms (see Fig. 11) were not exactly
consistent with Chla concentration. Chla concentration mea-
sured once a month is insufficient to indicate the frequency and
occurrence duration of all the algal blooms (supplementary D)
because they rapidly appear and disappear within a few days,
or even within a few hours [12], [37]. However, the extracted
results from sentinel-2 MSI and Landsat OLI images show
some agreement with the field measured Chla concentration
(supplementary D) when the data collection dates were similar
with image acquiring dates. The largest algal bloom extracted
in May 11, 2017 from the images was consistent with highest
Chla concentration (i.e., total concentration of all the samples
measured in May 15, 2017; supplementary D). However, the
extraction of algal blooms from the images did not capture the
highest spatial extents of two outbreaks compared to the Chla
data [i.e., the algal blooms occurred in the summer of 2017 and
2019; Fig. 11(a) and (c); supplementary D]. This indicates the
combination of sentinel-2 MSI and Landsat OLI (i.e., with the
revisit frequency of 2–3 days) might still miss some temporal
characteristics of algal bloom outbreaks due to cloud cover. More
work (e.g., integrating synthetic aperture radar data [81]) will
be needed to improve the temporal resolution for images with
high spatial resolution to monitor algal blooms in inland waters
wherein rain and clouds are frequent.

V. CONCLUSION

Based on a methodology developed using the LISA concept,
NIR and red-edge bands (bands 6, 7, 8, and 8a from sentinel-2
MSI images or band 5 from Landsat OLI images) are capable of
measuring the spatial distribution of moderate algal blooms in
shallow Lake Taihu. However, the other red-edge band (band 5
of sentinel-2 MSI), in contrast to previous studies, performed
poorly for algal bloom detection due to turbidity and high
concentrations of suspended matter. This approach may be
applied to map the spatial distribution of algal blooms using
a combination of satellite platforms (i.e., band configuration in
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NIR, red-edge or SWIR1 wavelength regions) with automation
and batch-processing capacity.

The temporal resolution of the combination of Landsat OLI
and sentinel-2 MSI images would miss some important temporal
characteristics of surface algal blooms in the summer time due
to cloud effects on the images in Lake Taihu.
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