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Abstract— A smart vehicle should be able to monitor the
actions and behaviors of the human driver to provide critical
warnings or intervene when necessary. Recent advancements in
deep learning and computer vision have shown great promise
in monitoring human behavior and activities. While these
algorithms work well in a controlled environment, naturalistic
driving conditions add new challenges such as illumination
variations, occlusions, and extreme head poses. A vast amount of
in-domain data is required to train models that provide high
performance in predicting driving related tasks to effectively
monitor driver actions and behaviors. Toward building the
required infrastructure, this paper presents the multimodal driver
monitoring (MDM) dataset, which was collected with 59 subjects
that were recorded performing various tasks. We use the Fi-Cap
device that continuously tracks the head movement of the driver
using fiducial markers, providing frame-based annotations to
train head pose algorithms in naturalistic driving conditions.
We ask the driver to look at predetermined gaze locations to
obtain accurate correlation between the driver’s facial image and
visual attention. We also collect data when the driver performs
common secondary activities such as navigation using a smart
phone and operating the in-car infotainment system. All of the
driver’s activities are recorded with high definition RGB cameras
and a time-of-flight depth camera. We also record the controller
area network-bus (CAN-Bus), extracting important information.
These high quality recordings serve as the ideal resource to train
various efficient algorithms for monitoring the driver, providing
further advancements in the field of in-vehicle safety systems.

Index Terms— In-vehicle safety, driver visual attention, driver
monitoring dataset.

I. INTRODUCTION

HE National Highway Traffic Safety Administration
(NHTSA) reported that in 2019, around 36,120 people
died in car accidents across the United States [1]. Driver
distractions and human errors are the leading causes of these
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accidents. With the growing use of in-vehicle technologies and
hand-held devices, drivers are exposed to more distractions,
leading to more accidents. Artificial intelligence-based driver
behavior monitoring systems can play a key role in modeling
and understanding driver distractions, triggering timely alarms
to save humans lives. In addition, they can decide when to take
over the vehicle’s control from the driver in levels 3 and 4 of
autonomous driving. These driver monitoring systems need
to be trained with an annotated dataset that mimics practical
driving environments.

Recent advancements in the field of computer vision and
deep learning have attracted increased research interests in
the field of human-centered computing. Facial images can be
used to extract multiple information such as identity [2], [3],
emotions [4], and gaze [5], [6]. While in theory these solu-
tions should be directly applicable for developing in-vehicle
safety systems, in practice, most of these systems fail to
work in a driving environment due to additional challenges,
such as occlusions and illumination changes [7]. Since most
recent technologies based on deep learning (DL) rely on
in-domain data with ground truth annotations, naturalistic
driving recordings collected from multiple drivers and with
appropriate labels are needed to advance in-vehicle safety
systems. This requirement is particularly important if the focus
is to analyze the driver’s visual attention in realistic driving
environments. Driver’s gaze is one of the most crucial features
for modeling and classifying driver’s distractions. However,
estimating the driver’s gaze in naturalistic driving environ-
ments is a challenging task because of regular illumination
changes and common occlusions, especially from eye glasses.
To tackle these challenges, previous studies have utilized
the driver’s head pose to obtain a coarse gaze estimation,
which is relatively easy to estimate [8]-[11]. Other studies
have included eye features to capture fine gaze changes
[12], [13]. Understanding and capturing the interplay between
the head pose and the eye movements is essential for any driver
behavior monitoring system and any solid gaze estimation
algorithm [14]. Studies have used gaze location to determine
the driver behavior patterns while operating a car (e.g., what
they look at when driving by intersections) [15], [16].

This study presents the multimodal driver monitoring
(MDM) database, which was specifically designed to study
the driver’s visual attention. The study addresses some of the
challenges of existing driver monitoring datasets, including
their limited size and narrow scope focusing solely on either
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the driver’s head pose or the driver’s gaze zones. The MDM
corpus is a new multimodal dataset that considers both head
pose and gaze directions to facilitate learning this complex
interplay between the head pose, eye movements, and the
resulting gaze. We achieve this goal by providing frame-based
information about head pose, and spatial positions for target
markers inside and outside the vehicle that were glanced at by
the drivers. The corpus is multimodal, where we use multiple
RGB cameras and a depth camera to record the drivers.
We also have a camera recording the road. We have collected
59 different gender-balanced subjects spanning different ethnic
groups. Our dataset captures primary (e.g., mirror checking,
lane keeping, left/right lane changes, and left/right turns)
and secondary activities (e.g., navigation using Google maps,
and operating the radio). In addition, we ask the drivers
to look at predefined targets inside and outside the vehicle,
providing temporal gaze information. These target markers
are placed on the windshield, mirrors, dashboard, radio, and
gear shifter. We also ask the driver to look at other vehicles,
billboards, buildings, and street signs. In addition, we collect
continuous gaze annotations by asking the driver to look
at a moving fiducial marker outside while the vehicle is
parked. We design a systematic approach to obtain the driver’s
head pose per-frame annotation using the Fi-Cap helmet [11].
Fi-Cap is a helmet with multiple fiducial markers that are easy
to detect. The helmet is worn on the back of the head, avoiding
facial occlusions when the driver is recorded with frontal
cameras. We provide manual annotations using the ELAN
toolkit [17], describing gaze information and the secondary
activities conducted during the recordings.

This study provides an initial analysis of the MDM cor-
pus, showing that our dataset covers a wide range of head
poses in all three rotation axes (pitch, yaw, and roll). The
analysis reflects the diversity of the ground truth head pose
obtained by including the primary and secondary activities in
our protocol. Furthermore, we evaluate the accuracy of the
head pose annotations provided by the Fi-Cap helmet as a
function of the number of detected fiducial markers. Moreover,
we present some preliminary analysis on head pose estimation
using depth cameras, and gaze estimation using the RGB
camera, demonstrating the potential of using multiple sensors
for vision-based tasks inside the vehicle. In summary, the main
features of this paper are:

« A multimodal database with drivers performing activities

in naturalistic driving conditions.

« Continuous and discrete instances of drivers’ faces asso-
ciated with available ground truth gaze.

« Continuous tracking of the head pose of the driver with
reliable ground truth using the Fi-Cap helmet.

o Multiple sensors to capture high quality RGB videos,
point cloud data, CAN-Bus information, and audio
recordings.

The rest of this paper is organized as follows. Section II
describes previously published databases for in-vehicle driver
monitoring systems. Section III presents the data collection
protocol, describing the annotation process of various activ-
ities and gaze events. Section IV shows how we utilize the
Fi-Cap helmet to annotate the driver’s head pose on a frame-
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by-frame basis. This section also analyzes the reliability in the
frame-based head pose annotations as a function of the number
of fiducial markers. Section V analyzes the head pose and gaze
angle distributions in our dataset. This analysis section also
briefly describes a method to estimate the driver’s head pose
using the depth cameras, and a method to estimate gaze using
RGB frames. Section VI concludes the paper by summarizing
the main features of our corpus.

II. RELATED WORK

The research community has made several efforts to
construct high-quality and diverse driving datasets, espe-
cially those focusing on road scenes. Examples include the
BDDI100K corpus [18], [19], Mapillary Vistas Dataset [20],
Waymo Open Dataset [21], and nuScenes dataset [22]. How-
ever, the MDM dataset focuses on the drivers, not the road
scenes. While there has been interest in different aspects of
driver monitoring such as visual attention [23], emotions [24],
and driving anomalies [25], [26], we will review relevant
datasets that have focused on head pose estimation (Sec. II-A),
and gaze estimation (Sec. II-B). This section also reviews
recent efforts to collect long-term driving datasets (Sec. II-C).

A. Databases Focusing on Head Pose Estimation

Databases focusing on head pose estimation aim to provide
frame-based annotations for the driver’s head pose [27]-[32],
which has a wide range of applications including coarse gaze
estimation, driver behavior modeling, and human-computer
interaction (HCI) for entertainment purposes. Table I sum-
marizes the main databases created to estimate head pose of
the driver.

Martin et al. [27] presented the Lisa-P dataset, which
is a naturalistic driving dataset collected on the road. The
recordings included a motion capture system (marker and
camera) at the back of the driver to track the head movement.
The authors placed a camera on the dashboard to capture
the driver’s face. The corpus provides annotations for roll,
yaw, and pitch head rotation of the driver extracted with
the motion capture system. Additionally, the corpus provides
manual annotations for seven key facial features (eye corners,
nose corners, and nose tips) for some video sequences every
5 to 10 frames. This dataset contains 14 video sequences with
an average of 14,281 frames per video, at 30 frames per second
(fps) (i.e., about 111 minutes of recordings in total). The
resolution of the camera is 640 x 480.

The CoHMEt database [28] offers naturalistic driving
recordings from three RGB cameras. The first camera was
mounted on the car frame between the front mirror and
the windshield. The second camera was placed on the front
windshield. The third camera was mounted near the rear
view mirror. The cameras collected images with a resolution
of 640 x 480 at 30 fps. The corpus included two inertial
measurement units (IMU), one on the driver’s head and the
other fixed on the car. The difference between the two IMU
results was used as the label for the roll, yaw, and pitch head
rotations. The IMUs are reset around every 10 seconds to
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TABLE I
A COMPARISON OF EXISTING DRIVING DATABASES FOCUSING ON HEAD POSE ESTIMATION

Dataset Recording Sensors Annotation # Subjects Length of data
Year Conditions provided M/F # Frames
Lisa-P [27] Day and night driving RGB-face(640x480,30fps) Head orientation 14 1.85 hours
2012 RGB-back(640x480,30fps) 7 facial landmarks 199,934
Mo-Cap
CoHMEt [28] . RGB-face(640x480,30fps) Head orientation - 0.28 hours
2014 Daytime, suburban - RGB-2sides(640x480,30fps) 30231
street, highway IMU
DriveAHead . . depth(TOF) (512x424) Head pose 20 -
[29] Daytime, sunny, rainy |R camera (512x424) binary occlusions 16/4 IM frames
2017 and foggy ) Mo-Cap glasses,  sunglasses,
small town, highway, occlusion
and parking
DD-Pose [30] . RGB-back Head pose 27 -
2019 Daytime, ~ parked,  pepth(stereo)-face(2048x2048) occlusion label 21/6 330k
highway, cities Mo-Cap steering wheel info
look at markers, make  CAN-BUS vehicle motion info
phone calls, read shop
name, interact with
pedestrians
Pandora [31] Simulator RGB-face(1920x1080) Head orientation 22 -
2017 constrained and uncon-  depth-face(512x424) shoulder skeleton ~ 12/10 250k
strained movement MU joints
shoulder pose
AutoPose [32] Simulator RGB-full body(1920x1080,30fps) Head pose 21 4.63 hours(IR) +
2020 look at marker Depth-full body(512x424,30 fps) 6 gaze zone 10/11 1.46 hours(Kinect)
constrained and uncon-  Infrared-full body(512x424,30fps) driver activity IM(IR) +
strained movement Infrared-face(512x424, 60fps) glasses yes/no 316k(Kinect)
Mo-Cap glass type
MDM corpus Parked, daytime driving, =~ RGB-face(1920x1080,601fps) Head pose 59 50.23 hours
2021 look at markers, read RGB-back(1920x1080,60fps) 21 gaze targets 27/32
road landmarks, change = RGB-mirror (1920x1080,60fps) vehicle info
radio station, navigation =~ RGB-road(1920x1080,60fps) audio
on phone depth(ToF)-face (171x224,45 fps)
grayscale-IR LED(171x224,45 fps)
Fi-Cap
microphone array(5)
CAN-BUS

avoid drifts in the measurements. There are 30,231 frames
in total in this dataset, which translates to roughly 17 minutes
of recording. The dataset includes driving scenes on the streets
and freeways near the University of California at San Diego.
The DriveAHead [29] is a more recent driving dataset.
The recordings include videos using a Kinect V2 sensor,
which provides infrared and depth captures at a resolution
of 512 x 424. A 3D motion capture system was used to track
the position and orientation of the driver’s head. In addition,
the authors provided binary annotation of three types of
occlusions: hair, eye glasses, and self-occlusion. The database
consists of 21 video sequences from 20 unique subjects
(4 males, 16 females), each performing parking maneuvers,
driving on highways and driving in a small town. The data
collection took place in sunny, rainy, and foggy weather
conditions. In total, this dataset has about 1 million frames.
The Daimler TU Delft Driver Head Pose (DD-Pose)
Benchmark [30] utilizes one high-resolution stereo camera
(2,048 x 2,048) capturing the driver’s face, and a wide-angle
RGB camera recording from the backside of the driver. The
authors used a 3D motion capturing system and provide
rotation and translation labels for the driver’s head. The corpus
also provides occlusion labels for each frame (none, partial,
and full occlusion). In addition, the corpus provides steering

wheel and vehicle motion information. This dataset includes
both naturalistic driving as well as induced driving conditions.
Naturalistic driving conditions consist of driving recordings
in highways and big German cities, with complex traffic
scenarios. The drivers were asked to read names of the shops
along the street while driving. During the induced driving
conditions, the car was parked. The driver was instructed to
look at a series of target points in the car. The DD-Pose dataset
comprises of 27 subjects (21 males, 6 females) with a total
of 330k frames.

Some of the databases for head pose estimation were
recorded in physical simulators. The Pandora Database [31]
uses a Kinect One camera mounted on the simulated dash-
board. The resolution of the RGB camera was set to
1,920 x 1,080, while the resolution for the depth camera was
set to 512 x 424. In this dataset, drivers were asked to perform
driving-like maneuvers such as looking at the rear-view mirror
and holding the steering wheel. Subjects were first asked to
rotate their heads along one axis at a time. Then, they were
instructed to freely move their heads. To create more variations
in head pose and shoulder pose, subjects wore eye glasses,
sun glasses, scarves, caps, and used smartphones. The corpus
provides labels for the head and shoulder pose. An IMU on
the back of the subject’s head was used to record the ground
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TABLE II

A COMPARISON OF EXISTING DRIVING DATABASES FOCUSING ON GAZE ESTIMATION
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Dataset Recording Sensors Annotation # Subjects Length of data
Year Conditions provided M/F # Frames
Fridman et al. | Highway, daytime, RGB-face(800x600,30fps) 6 gaze zone 50 17.23 hours
[33] voice control interface, 1.86M
2016 select phone number
DAD [25] Naturalistic driving RGB-road(1600x1200,30fps) 4-layer driver behav- 4 250 hours
2019 suburban, urban and  RGB-face(1600x1200,30fps) ior representation
highway CAN-BUS
eye tracking glasses
physiological sensors
DR(eye)VE Day and night RGB-head Continuous gaze map 8 6 hours
[23] different weather condi-  mounted(1280x720,30fps) GPS,vehicle 771 0.56M
2019 tions road(1920x1080,25fps) speed,course
countryside, downtown
and highway
DG-Unicamp Parked, day and night RGB-face(320x240,30fps) 18 gaze zone 45 12 hours
[34] look at markers depth(stereo)-face(320x240,30 fps) 35/10 M
2019 Infrared-face(320x240,30 fps)
DGW [35] Parked, day and night RGB-face 9 gaze zone 338 N/A
2020 look at markers 247/91
AutoPose [32] Simulator RGB-full body(1920x1080,30fps) Head pose 21 4.63 hours(IR) +
2020 look at marker Depth-full body(512x424,30 fps) 6 gaze zone 10/11 1.46 hours(Kinect)
constrained and uncon-  Infrared-full body(512x424,30fps) driver activity IM(IR) +
strained movement Infrared-face(512x424, 60fps) glasses yes/no 316k(Kinect)
Mo-Cap glass type
MDM corpus Parked, daytime driving, =~ RGB-face(1920x1080,601fps) Head pose 59 50.23 hours
2021 look at markers, read RGB-back(1920x1080,60fps) 21 gaze targets 27/32
road landmarks, change = RGB-mirror (1920x1080,60fps) vehicle info
radio station, navigation = RGB-road(1920x1080,60fps) audio
on phone depth(ToF)-face (171x224,45 fps)
grayscale-IR LED(171x224,45 fps)
Fi-Cap
microphone array(5)
CAN-BUS

truth for the head pose. In total, the dataset has 250k frames.
Another dataset collected in a car simulator is the AutoPose
corpus [32]. This corpus relies on one dashboard IR camera
running at 60 fps, and a Kinect V2 camera (RGB, Depth,
and Infrared), mounted at the rear view mirror, running at
30 fps. There are 21 subjects in this dataset. The recording
protocol included a series of tasks such as performing head
rotations and looking at markers at various locations. Each
task was performed in three conditions: without eye glasses,
with eye glasses, and with sun glasses. Head rotations were
performed with and without the subject wearing a scarf. Due
to interference of the two cameras, each subject performed
the entire protocol twice, recording the session with either
the IR camera or the Kinect V2 camera. Head pose labels
are provided using an OptiTrack Motion Capture System.
Gaze labels associated with the markers are also provided.
No primary driving activities were performed in this dataset
due to its simple setup consisting of just a seat and a steering
wheel, without a computer monitor simulating the road scene.
In total, there are 1,018,885 IR images and 316,497 images
from Kinect. We note that methods with physical simulation
only partially replicate a naturalistic driving environment.
Most systems lack feedback from the roads such as vibrations
and inertia after maneuvers. Additionally, the illumination and
background environment may not be realistic. Most impor-
tantly, the chances of making errors while driving are not
high, regardless of how realistic the simulator is. Therefore,
the behaviors of the drivers may not be exactly the same as the

ones observed in real driving conditions (e.g., the subject may
look away for longer glances in physical simulators, without
worrying about real accidents).

Compared to the aforementioned driver head pose estima-
tion dataset, our proposed MDM has several features that
make this corpus an ideal platform to build machine learning
algorithms to track head pose in a vehicle: (1) it includes
data when the driver is operating the car and when the car
is parked, (2) it provides complementary multimodal sensors
(four different RGB, depth, grayscale-IR LED, microphone
array, CAN-Bus), (3) it has frame-based head pose information
obtained with a simple setting based on fiducial markers, and
(4) it is recorded from 59 gender balanced subjects.

B. Databases Focusing on Gaze Estimation

Driver gaze monitoring databases often provide ground truth
location for regions where the drivers are asked to glance [23],
[34], [36], which can be used to train different gaze estimation
algorithms. Tables II summarizes the main databases created
to estimate the gaze of the driver.

Fridman et al. [33] constructs a naturalistic driving dataset.
The subjects were asked to drive on a highway, and perform
secondary tasks such as making phone calls and entering
addresses into a navigation system using a voice-control
feature. The driver’s face was recorded using a resolution
of 800 x 600 at 30 fps. The dataset includes recordings
of 1,860,761 frames from 50 subjects (17h, 14m). The ground



10740

truth of the driver’s gaze is manually labeled as one of six
predefined gaze zones.

The DR(eye)VE Project [23] features data from both an
ego-centric view of the road (from the eye-tracking glasses),
and a car-centric view (a camera capturing the road). This
dataset is somehwat different from many other gaze datasets
in that it provides gaze data from the ego-centric view. The
eye-tracking data was recorded at 60 fps, while the camera
on the eye-tracking glasses acquired data at a resolution
of 1280 x 720 at 30 fps. The road camera captured data
at a resolution of 1920 x 1080 at 25 fps. In this dataset,
eight subjects were asked to drive in various scenes including
countryside, downtown, and highway, during different hours
during the day (both day and night), and in different weather
conditions. This dataset provides ground truth gaze in the
form of a continuous gaze map, derived from the eye-tracking
glasses. In addition, the corpus provides global positioning
system (GPS) information and vehicle speed. In total, there
are 555,000 frames in this dataset (roughly 6 hours).

Another interesting database is the driving anomaly dataset
(DAD) [25]. The corpus was collected in a real car in an Asian
city. The database involves two cameras, one capturing the
road and the other capturing the driver’s face. The database
also includes eye tracking glasses to obtain the gaze of the
driver. Additionally, the vehicle information was collected
from the CAN-Bus. The drivers were asked to use wearable
devices, which captured heart rate (HR), breath rate (BR), and
electrodermal activity (EDA). One of the key strengths of this
corpus is the detailed annotations, providing a 4-layer driver
behavior representation: goal-oriented action (e.g., right turn),
stimulus-driven action (e.g., stop), cause (e.g., a stopped car in
front of ego car), and attention (e.g., pedestrian near ego lane).
In total, the corpus has about 250 hours, where 120 hours have
been annotated.

Ribeiro and Costa [34] presented the DG-Unicamp corpus,
which is a driving dataset that focuses on gaze zone estimation.
It uses an Intel Realsense R200 camera placed on top of
the dashboard. The camera provides aligned RGB and depth
recordings as well as two sources (from stereo) of infrared
recordings at 30 fps, with a resolution of 320 x 240. This
corpus divided the gaze direction into 18 gaze zones, providing
the corresponding gaze labels. The recordings were collected
in a parked car due to safety concerns. The recordings were
collected in different locations, light conditions (both day
and night) at different hours to ensure maximum diversity
in the recordings. Each subject was asked to look at each
gaze zone for 10s and then move to the next gaze zone.
The corpus consists of 45 subjects (35 males, 10 females),
where five subjects were recorded twice. In total, the corpus
has about 1 million frames (12 hours). A similar corpus is
the Driver Gaze in the Wild (DGW) Dataset [35], which is
a gaze zone classification dataset that features 338 subjects
with age between 18 and 63 years old. In this dataset,
subjects were asked to look at markers in different loca-
tions in a parked car at different locations in a university.
The recording was collected at different times of the day
and at night. During the recording, the driver was asked to
fixate on one of the nine gaze markers and say its number.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

TABLE III

A COMPARISON OF LARGE-SCALE NATURALISTIC DRIVING
DATABASES FOR VISUAL ATTENTION

Dataset Sensors # Subjects Study Duration
Year
NHTSA [37] 5 Cameras 241 18 months
2005 CAN-BUS

Doppler Radar

MU

GPS
SHRP 2 [38] 4 Cameras 2360 7 years
2012 CAN-BUS

Radar

IMU

GPS
MIT-AVT [36] | 3/4 Cameras 122 Ongoing
2019 CAN-BUS

IMU

GPS

They directly labeled the gaze zone using an automatic speech
recognition (ASR) system.

We note that many gaze datasets are collected in parked
vehicle conditions. We have observed that gaze behaviors
are different from the patterns observed while the driver
is operating a vehicle [14]. The driver is cognitively busy
with primary driving tasks, resulting in more eye move-
ments and shorter glances. Additionally, naturalistic driving
conditions pose extra challenges due to sudden illumination
changes and occlusion of the driver’s face. These variations
create a domain-shift problem for machine learning algo-
rithms to be deployed in naturalistic driving. In the MDM
corpus, we address these challenges by recording our database
while the car is parked and while the driver is operating
the vehicle. Likewise, compared to other gaze estimation
datasets, our proposed MDM corpus includes multiple modal-
ities (four different RGB, depth, infrared, microphone array,
CAN-BUS), and provides fine-grained labels (21 gaze tar-
gets during driving condition; continuous label during parked
condition).

C. Large-Scale Naturalistic Databases for Visual Attention

This section presents large-scale naturalistic databases that
can be used to analyze the driver visual attention. Table III
summarizes the main databases in this area. The NHTSA
conducted a large-scale naturalistic driving study [37], which
involved 241 drivers with 100 cars equipped with various
sensors, conducted over the course of 18 months. In this study,
the subjects were asked to drive naturally in cars with sensors.
These sensors included five cameras capturing the driver’s
face, driver side road view, passenger side road view, road, and
over-the-shoulder view for the driver’s hands, and surrounding
areas. The recordings also included the CAN-Bus, a Doppler
radar, an accelerometer, a gyroscope, and a GPS. The equip-
ment also included a toolbox for drivers to identify accidents.
NHTSA collected approximately 43,000 hours of data, which
included 82 total collisions. In each accident, Neale et al. [37]
identified the pre-event maneuver, precipitating factor, event
type, contributing factors, associative factors, and avoidance
maneuver.
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The SHRP 2 Naturalistic Driving Study [38] is the
largest long-term naturalistic driving study. The goal of
this study was to understand how drivers interact with and
adapt to the environment, including the vehicle, the traf-
fic environment, roadway characteristics, and traffic control
devices. The database includes nearly 2,360 subjects from
different parts of the U.S. The experimental vehicles had
four cameras, recording at 15 fps, capturing the driver,
road, instrument cluster, and road in the back. In addi-
tion, a single camera captures still images of passengers
every few seconds. The database also had information about
the CAN-Bus, GPS, radar, accelerometer, and rate sensor
information.

The MIT advanced vehicle technology (AVT) Study [36]
is a long-term driver behavior monitoring dataset. Subjects
are asked to drive either their own vehicles or MIT-provided
vehicles for a period of time between one month and over a
year. The cars are equipped with sensors. This study aimed
at capturing all aspects of the drivers’ states as well as their
interactions with technologies such as autopilot. They have
recordings of 3 or 4 Logitech C920 RGB cameras, facing
the driver’s face, body, road, and occasionally the instrument
cluster. The cameras record at 1,280 x 720 at 30 fps. In addi-
tion, they also have CAN-Bus data, audio from each of the
cameras, IMU, and GPS data. The data are synchronized via
a customized board.

While these efforts provide attractive platforms to build
driver behavior models for in-vehicle systems, they do not
focus on visual attention. Also, the data are proprietary and
have important privacy constraints that prevent distributing the
recordings to other research groups.

III. DATA RECORDING PROTOCOL

The goal of this study is to create a multimodal database
recorded from multiple drivers targeting applications that
model driver visual attention. For this purpose, we collect
the multimodal driver monitoring (MDM) database, where our
subjects are asked to follow a predefined protocol aiming to
obtain labeled data to study gaze detection and head pose esti-
mation. We perform our experiments in the UTDrive vehicle
[39]-[41], which is a 2004 Toyota RAV4 SUV equipped with
multiple on-board sensors and equipment (Fig. 1). We use
various devices and sensors to set up baselines and record
the data. The data is collected from a total of 59 subjects
(32 females, 27 males). During the data collection, 31 of
them wore prescription eye glasses, two wore sun glasses, and
26 did not wear any eye glasses. The drivers were all affiliated
with the University of Texas at Dallas. We collected a total
of 50 hours and 14 minutes of data, which captures the drivers
performing a variety of activities as defined in our data collec-
tion protocol. We present in details the protocol followed dur-
ing the data collection (Sec. III-A), the sensors used to record
the driver, car, and road information (Sec. III-B), the syn-
chronization of the sensors (Sec. III-C), the methods used to
spatially calibrate the orientation of different sensors in the
environment (Sec. III-D), and the annotations provided in the
corpus (Sec. III-E).
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Fig. 1. The UTDrive vehicle used for the data collection. The car is equipped

with multiple sensors.

Fig. 2. Step 1 in the data collection protocol. The driver looks at a target
board with a fiducial mark held by one of the researchers outside the car. This
part in the protocol provides continuous gaze information.

A. Protocol

Our protocol is an improved version of the data collection
protocol used in our previous work [14], where we made sev-
eral additions and improvements, learning from our previous
experience. Our goal is to obtain (1) continuous gaze data
with reliable ground truth, and (2) naturalistic data when the
driver is performing driving related tasks. We ask the drivers
to perform multiple tasks while being at the driver seat in the
UTDrive car. We provide a detailed description of each of the
tasks included in this protocol.

1) Parked Car: Looking at a Target Outside the Vehicle:
The first step in our protocol aims to collect continuous
gaze information. We start the recordings while the vehicle is
parked. Then, we ask the driver to sit in the driver seat while a
researcher slowly moves a board outside the vehicle (Fig. 2).
The board has a big fiducial marker with fixed pattern that
can be easily tracked using basic image processing algorithms.
We use an AprilTag [42] for this purpose such that we can
easily track the 3D position of the marker (Fig. 2). We ask
the driver to follow the target board with her/his gaze as the
researcher moves the board in front of the car. We collect data
in three to five sessions with short breaks in between. Each
session is approximately one minute long.

2) Parked Car: Looking at Target Markers Inside the Car:
As mentioned before, our goal is to have gaze direction
information. The second step in the protocol is to ask the
driver to look at predefined markers placed inside the vehicle.
We placed 21 different target markers inside the car (Fig. 3).
The first 13 markers are placed on the windshield. The rest
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Fig. 3. Location of the target markers placed inside the car. Markers 1-13 are
in the windshield. The rest of the markers are in the mirrors (14-16), side of
the windows (17-18), speedometer panel (19), radio (20), and gear (21).

of the markers are placed on the mirrors (14-16), side of the
windows (17-18), the speedometer panel (19), radio (20), and
gear shifter (21). We ask the driver to look at each of these
markers two to three times, calling the number in random
order. The driver is asked to look at each marker as naturally
as possible. This part of the protocol is conducted while the
car is parked. The drivers get familiar with the location of the
markers in a safe environment.

3) Driving Car: Looking at Target Markers Inside the Car:
After the subject is familiar with the task of looking at target
markers, we repeat this step while the driver is operating the
vehicle. We ensure that this step is conducted when the subject
is driving on a straight road, with reduced demand for driver
maneuvering. We ask the subject to quickly glance at the target
marker. We ask the subject to look at all the markers three
times in a random order. The investigator points to the location
of the target markers to reduce the cognitive load associated
with searching for the right marker.

4) Driving Car: Looking at Targets Outside the Car:
We ask the subjects to locate and identify targets such as
landmarks, street signs, buildings, and other cars on the road
to complement the gaze data obtained while looking at the
markers inside the car. We ask questions to the subjects
that prompt them to naturally look at the target locations.
Examples of these questions are: can you tell me the name
of the store in the corner? and can you read the license plate
of the car in front? We also ask the subjects to search for
multiple targets (e.g., can you find red cars? and can you read
the license plates of as many cars as possible?). This part of
the data collection creates implicit gaze responses that can
be easily associated with the corresponding gaze directions.
We ask each subject to identify between 20 to 30 landmarks
on the road.

5) Driving the Car: Navigation: The next step of the data
collection starts with the secondary tasks. We setup a multi-
destination navigation route on a smartphone. The directions
are chosen to have multiple maneuvers. We ask the drivers
to wait for the navigation instructions to reroute in situations
when they miss an instruction. The audio of the navigation is
turned off and the drivers follow navigation purely by looking
at the phone screen. Once the drivers reach a destination, they
hit the continue button to obtain the navigation instructions
for the next stop in the trip. We set four destinations in total.

6) Driving Car: Operating the Radio: The next step in the
protocol is also a secondary driving task. We ask the drivers to
operate the radio in the vehicle. We ask the drivers to turn on
the car radio and set it to a given station. Since the UTDrive

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

(b) Radio

Fig. 4. Examples of subjects performing secondary tasks: (a) Following
navigation on a smart phone, and (b) operating the in-car radio.

vehicle does not have radio controls on the steering wheel,
the driver needs to operate the radio using the knobs in the
central console. We repeat this step by calling out random
stations for the drivers to find. 5-10 different radio channels
were called out at random and the driver turned the radio to
the closest existing channel.

7) Naturalistic Driving: During multiple instances in the
data collection, we ask the subjects to drive with minimal
intervention from the researcher. Only navigation instructions
are provided to the driver and no additional task is carried out.
These recordings aim to provide a baseline for natural driving
conditions without secondary tasks.

B. Multimodal Sensors

To collect high quality data and relevant information from
the driver, vehicle, and road environment, we use multiple
devices during the data collection. Figure 5 shows the setup
used to place different devices inside the car. This section
discusses the sensors used to collect the data.

1) Fi-Cap: Providing reliable labels for head pose estima-
tion is important for modeling the driver’s visual attention.
Our primary objective was to have a head pose label for
each of the frames in our corpus. Alternative systems to track
head pose in actual vehicle include motion capture systems
[27], [30], and IMU measures [28]. The IMU systems are
sensitive to drifts in the measurement and, hence, the recording
of more than 10 minutes is not possible without significant
drop in the reliability. Passive Motion capture (Mo-Cap)
systems with retroreflective markers have gained popularity in
recent studies [27], [30]. The reliability depends on the number
of markers, the frame rate and resolution of the camera, and
environmental factors such as background illumination and
occlusion. A Mo-Cap system requires a sophisticated setup,
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CAN-BUS
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| (Camboard Picoflex)

facing the driver

Fig. 5. Data collection setup showing the placement of the sensors in the
UTDrive car. The setting includes four HD cameras, a depth camera, which
simultaneously records grayscale images with IR illumination, microphone
array, and a Dewetron that records the CAN-Bus data.

so it is more appropriate for data collections in car-simulators
(e.g., AutoPOSE corpus [32]). There are very few examples of
motion capture systems in naturalistic data collections in real
road [27], [29], [30]. Vibrations in the car and movements
of the markers can have a big impact on the recordings.
Furthermore, most Mo-Cap systems do not work in outdoor
environments. The placement of the markers can also occlude
the driver’s face, which can pose difficulty if we are inter-
ested in studying visual attention of the drivers. Additionally,
Mo-Cap systems are usually expensive. A simpler alternative
relying on a similar optical tracking is using fiducial markers
that can be tracked using regular cameras and simple image
processing techniques.

Our solution for estimating the frame-based labels for the
head pose is based on fiducial markers placed on a solid helmet
with a predefined structure with highly contrasting black
and white patterns. The position and orientation of multiple
fiducial points are easily tracked with simple algorithms, which
are then used to estimate the head pose of the drivers. Our first
prototype was a headband with 17 fiducial markers used in the
forehead [14]. The main problem of this setting was the facial
occlusion caused while wearing the headband. Our second
prototype is the Fi-Cap helmet [11] (Fig. 6), which is used
in this data collection. The Fi-Cap is a helmet that contains
23 different AprilTags [42]. The size of each of them is
3.2cm x 3.2cm. The high number of fiducial points, the size
of each marker, and the 3D structure of the helmet lead to
robust estimation of head movement, which can be established
for a wide range of head poses. Another advantage of the
Fi-Cap device is that the helmet is worn on the back of the
driver’s head, so the facial occlusion is minimal (see Fig. 7).
We request the drivers to avoid touching and adjusting the
Fi-Cap helmet during the recordings to avoid drifts. However,
the drift that may still exist can be compensated over time
during the calibration. The readers are referred to Jha and
Busso [11] for more details about the Fi-Cap helmet. Notice
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Fig. 6. The Fi-Cap helmet [11], which we use to obtain head pose labels for
each frame. A HD camera is placed behind the driver to record the fiducial
points in the helmet (Fig. 7(d)).

. 2L &
(e) Depth camera (f) Grayscale image with IR LEDs

Fig. 7.  Examples of images collected with different sensors. All the
recordings are synchronized with a clapboard.

that with the addition of the Fi-Cap helmet, we need an addi-
tional camera that can record the back of the driver’s head. The
additional camera is the only extra sensor in our setting, which
makes this solution a very convenient approach for estimating
frame-based labels for head poses. These advantages were
the main reasons for using the Fi-Cap over other alternative
methods.
2) RGB Cameras: We use four GoPro Hero 6 Black cam-
eras in our data collection. All the cameras are set to record
in full HD (1,920 x 1,080) in linear mode. The purpose
and placement of each of the four cameras are listed as
follows:
o Face Camera - This camera is placed in front of the driver
to record the frontal view of the driver’s face (Fig. 7(a)).

o Road Camera - This camera is placed in the center of
the dashboard facing the road. This camera captures road
related information (Fig. 7(b)).
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o Mirror Camera - This camera is placed under the rearview
mirror to obtain a profile view of the driver’s face. Several
cameras installed on commercial cars are placed on the
rearview mirror, so this camera provides realistic views
that can be expect in deploying in-vehicle technology
(Fig. 7(c)).

o Back Camera - This camera is placed behind the driver
to record the Fi-Cap helmet (Fig. 7(d)). The camera is
attached to the driver seat.

3) Depth Camera: A sensor that can be particularly useful
in a vehicle is a depth camera, which has gained popularity
in various computer vision applications. For our database,
we place a camboard picoflex camera close to the face camera.
This camera records the point cloud data using time-of-flight
technology, providing robust estimation of the depth map
in varying illumination conditions (Fig. 7(e)). This camera
provides reliable information even during night-time. The
camera also records grayscale images which are illuminated
using IR LEDs (Fig. 7(f)) and, hence, is immune to ambient
lighting variations. The camboard picoflex camera records at
45fps, with a resolution of 224 x 171.

4) CAN-Bus: The UTDrive vehicle records the CAN-Bus
information during the recordings. From the CAN-Bus,
we obtain the information about accelerator, brakes, steering,
and speed of the vehicle. The UTDrive vehicle also has a gas
and brake pressure sensors. The information provided in the
CAN-Bus is very useful, for example, to analyze the vehicle
state, and obtain driver maneuver information.

5) Microphone Array: The UTDrive vehicle is also
equipped with a microphone array with five microphones.
While our protocol does not include any task that elicits
speech, the audio information is useful for understanding
potential auditory distractions.

6) Dewetron: The CAN-Bus data and the microphone array
are connected to a Dewetron system, model DA-120, which
stores and synchronizes the modalities.

C. Synchronization of Sensors

The Dewetron system can record up to two cameras. Since
we are using multiple sensors, each with its own independent
clock, we use a clapboard to synchronize the recordings. This
is an easy, simple, and effective approach to synchronize
audiovisual recordings, which is used in movie productions
and other popular audiovisual databases [43]. Figure 8 shows
the process. The clapboard provides a reference time to syn-
chronize these devices. We perform two claps to synchronize
all the cameras. The first clap is performed inside the car
such that it is visible to the face camera, mirror camera, back
camera, and the depth camera. The second clap is performed
outside the car such that it is visible to the back camera
and the road camera. The claps can be precisely detected
in the recording using the video and the audio. Using the
video, the clap is manually analyzed by obtaining the first
frame when the two bars of the clapping board touch each
other. In the audio, we manually mark the peak observed
when the clap happens. Using these timings, we calculate the
time offset (#,4;) by obtaining the difference between two
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(b) Video

Fig. 8. Synchronization of audiovisual sensors using a clapping board. The
peak in the audio and the videos’ frames when the two bars of the clapping
board touch each other are manually annotated.

streams of data. We did not observe any drift in the recordings
provided by the GoPro cameras. The sampling rate for the
picoflexx camera is not constant. However, the camboard
picoflex camera records the time information of each frame,
which is used to synchronize the point cloud with RGB data.

D. Cameras Calibration

We perform camera calibration in two steps. In the first
step, we establish a reference position and orientation for each
camera. This step was performed once before we started our
data collection. For this step, we place all the cameras at their
desired locations. We place multiple AprilTags [42] of size
3.2cm x 3.2cm around the car such that all the cameras can see
some of the tags. Figure 9 shows example of these markers.
Then, we use an additional camera to capture static images
inside the vehicle from multiple perspectives. We rely on the
Kabsch algorithm [44] to calculate the transformation between
the coordinate systems associated with different cameras.
We establish the location of the tags from multiple cameras,
which are used to obtain the relative position between the
cameras. The procedure is similar to the one proposed in Jha
and Busso [45]

We also place AprilTags at each of the target marker (Fig. 3)
as shown in Figure 9(h) to estimate the 3D positions of the
markers. Using these tags, we obtain the 3D coordinates of
the markers with respect to a common coordinate system (we
arbitrarily choose the back camera as our reference).

The second step in the calibration process is performed to
compensate for small camera placement variations between
sessions. The driver seat is adjusted affecting the location of
the back camera. In addition, all the cameras are removed from
the vehicle after the session. After recharging the equipment,
they are reinstalled back in the vehicle to their original
positions. This process can result in slight changes in the
positions and orientations of the cameras. For this purpose,
we fix multiple AprilTag markers in different locations in the
car, including the ceiling, windshield, dashboard, and side-
windows. These markers are left in the car for all the sessions.
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(a) Face camera

(d) Mirror camera

(e) Moving camera view 1 (f) Moving camera view 2

(g) Moving camera view 3

(h) AprilTag on top of the target
markers

Fig. 9. AprilTags placed at different locations inside and outside the car to
calibrate the cameras.

We ensure that each camera has at least two AprilTag markers
within its field of view. By estimating the corners and the
center of each AprilTag, we estimate at least 10 reference
points for every camera view. We calculate the variations in
the setup of the cameras for each session using the changes
in the positions of these tags from the original reference setup
using the Kabsch algorithm.

E. Annotations

We use the ELAN tool [17] to annotate events in the
videos (Fig. 10). The videos from the four GoPro cameras
are synchronized by manually finding the precise timings of
the claps in each video. The annotation process has multiple
channels with relevant information that are currently provided

in the database:
o Activity: This channel splits the data collection into the

stages defined in our protocol (Section III).

o Continuous_Gaze: This channel identifies the segments
when the subjects are following the target board outside
the car while the car is parked (Section III-A.1).

o Gaze_Markers: This channel locates the times when
subjects are looking at different markers inside the vehi-
cle (Sections III-A.2 and III-A.3). The numbers of the
markers are also provided in the annotations.
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o Gaze_Road: This channel locates the times when sub-
jects are looking at different landmarks on the road
(Sec. ITI-A.4). It also provides information about the
actual target objects glanced at by the driver.

Since ELAN provides a convenient way of adding mul-
tiple tier of annotations, more information can be added
in the future based on specific target applications (e.g.,
mirror-checking actions [46], driver maneuvers [47]).

IV. HEAD POSE ESTIMATION WITH F1-CAP
A. Head Pose Estimation

The Fi-Cap contains multiple AprilTags that are tracked
using the back camera. The locations of the fiducial points
determine the frame-based labels for the head poses of the
drivers. The first step to track the head pose is to obtain
the position and the orientation of the cap with respect to
a standard reference given a visible subset of tags on the cap.
We follow the steps proposed in Jha and Busso [11]. We obtain
a mesh of the Fi-Cap by finding the corners of each of the
AprilTags in the structure by conducting continuous recording
of the cap from different perspectives. Using this mesh as
a reference, we obtain the transformation of all the visible
corners in a given frame using the Kabsch algorithm [44].
We use a method inspired by the iterative closest point (ICP)
algorithm [48] to reduce the effect of outliers in estimating
the pose. We reconstruct the mesh from the estimated trans-
formation and remove the points that have high reconstruction
error. Then, we recalculate the transformation matrix based on
the reduced set of points. We repeat this step until the error
is below a threshold. We consider this final transformation
as the pose of the Fi-Cap helmet for each frame, referred
to as RFicap-

The next step is to find the head orientation from the Fi-Cap
pose. We use the multiple local reference frame (LRF) calibra-
tion approach proposed by Hu et al. [49]. This transformation
is subject-specific because each subject might wear the Fi-Cap
helmet differently. The transformation ensures that the ground
truth for the head pose is defined uniformly across subjects.
We use the ICP algorithm [48] to achieve this goal. First,
we manually select one frontal frame from one subject to be
the global reference (GR) frame (Fig. 11(b)). We calculate its
head pose estimate using OpenFace2.0 [50] by processing its
corresponding gray-scale image. For every subject, we choose
a number of frames with the closest rotation angles as the
GR frame (Fig. 11(a)). We refer to these selected frames
as local reference (LR) frames, obtaining the rotation matrix
Rrgrrp for each of them. For each LR frame, we crop the
face region in the point cloud data for the LR and GR
frames. Then, we run the ICP algorithm between the two
point cloud data to find a transformation between them, which
compensates for the differences in head pose rotation between
the LR and GR frames (matrix Ry,cqiGiobar in Fig. 11(b)).
Therefore, the LR and GR frames do not need to have the
exact head rotation. Then, the calibration matrix is defined
by Re = RyocaiGlobalRLrF- For frame t, with rotation Rricap,
we estimate the final head rotation with R, = Rc_lRF,-cgp.
During long trips, the Fi-Cap helmet may move causing errors
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Fig. 10.
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The corpus uses ELAN as the interface to annotate the recordings. The annotation includes the segments associated with the seven steps in the

protocol. It also provides the temporal information for instances when the subject looked at the target markers or objects inside and outside the vehicle.
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Fig. 11.  Approach proposed in Hu et al. [49] to estimate the head pose
labels using multiple local reference frames.

in the calibration. We maintain multiple transformations for
each subject to ensure maximum accuracy against any drift
of the Fi-Cap helmet. We use the closest LRF in time from
frame ¢ for this head pose compensation. Section V-E presents
an analysis of the benefits of using multiple LRF.

B. Reliability of the Fi-Cap Helmet

The Fi-Cap helmet provides the position and orientation
of the driver’s head. In Jha and Busso [11], we estimate the
reliability of the Fi-Cap using a virtual animation, where an
exact copy of the helmet was rendered and placed in a virtual
agent. By controlling the rotation, resolution of the image and
illumination, we demonstrated that the median angular error
was less 1.62°, and that the 95 percentile error was less than
2.88°. We also validated the approach in a laboratory setting,
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(b) Standard deviation of the rotation angle of matrix R

Fig. 12.  Mean and standard deviation of the rotation angle of matrix R
capturing the variability of head rotation angles estimated as a function of the
number of detected fiducial points.

using a laser mounted on glasses worn by a subject. We pro-
jected the laser into a white screen, measuring the angular
distance between the head pose direction, as determined by the
laser marker, and our prediction. The results showed median
angular errors that were less than 2.31°, and 95 percentile
angular errors that were less than 6.93°. The estimation of
head position is more reliable when more fiducial markers are
detected. This section evaluates the reliability of the ground
truth for head pose provided by the Fi-Cap helmet as a function
of the number of detected fiducial markers.

Our approach to evaluate the reliability of the Fi-Cap helmet
consists of comparing the rotation matrix estimated with all
the fiducial markers, and with a subset of the markers. Let
n denotes the number of tags detected in one particular
frame. We first calculate the global head pose using all the
n tags. We refer to this rotation matrix as R,;. For every
combination, we evaluate the rotation matrix with different
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Fig. 13. Distribution of the driver’s head orientation in our database estimated with the Fi-Cap helmet. The results are projected into the yaw-pitch, yaw-roll

and roll-pitch spaces.

subsets of markers using only the selected tags:
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We refer to one of these matrices as Ry,pser. Then, we cal-
culate the rotation difference between R, and Rgypger, Nnamely
R = Rmbse,R;”l. We aggregate all the matrices calculated in
the previous step, obtaining their mean absolute value and
standard deviation. Notice that we use the combinations of
up to n — 2 to avoid having few combinations to estimate
these statistics (Eq. 1).

Figure 12 shows the mean and standard deviation of the
rotation angle of matrix R as a function of the number of
fiducial points used in the estimation. Lower angles indicate
small deviations from the angles estimated with all the mark-
ers. This analysis shows the uncertainty in the ground truth
labels when few fiducial points are used in the estimation.
We observe that we can obtain a mean difference of less than
1° with sufficient number of visible tags (2 for roll, 5 for
yaw and 8 for pitch). We observe the largest difference for
pitch angle, which is the most difficult rotation to estimate.
The standard deviation represents the variability in estimating
the Fi-Cap pose when selecting different subsets of visible
tags. The standard deviation drops significantly when more
than two tags are detected. As we add more fiducial points,
the estimation of the Fi-Cap position becomes more consistent.
In fact, Figure 12 shows that with more tags, the rotation
estimates are closer to R,j. As a reference, the average number
of detected fiducial points per frame is 6.16. We have five or
more fiducial points in 57.93% of the frames with detected
tags. These results show that our ground truth labels for head
pose are very close to the hypothetical scenario where every
single tag is visible and detected. This analysis demonstrates
the reliability of our ground truth labels estimated with the
Fi-Cap helmet.

1)

V. ANALYSIS

The MDM database provides a diverse resource to design
algorithms to model the visual attention of the driver. This
section analyzes the database to discuss its potential use.

A. Head Pose Distribution

We start our analysis by showing the distribution of
the driver’s head orientation during the entire recording.

Figure 13 shows the distribution, projected on the yaw-pitch,
yaw-roll, and roll-pitch spaces. We notice that our dataset
covers a large range of head poses along all three rotation axes
due to the large number of subjects included, and the variety
of primary and secondary driving activities considered during
the data acquisition. Figure 13(a) shows a wide symmetric
yaw angle range around the origin spanning between —80° to
80°, which reflects practical driving scenarios where the driver
looks forward most of the time, but frequently checks the
mirrors, dashboard, windshield, and side windows. In contrast,
pitch angles have an asymmetric range spanning from —50° to
100°, reflecting high degrees of freedom at high pitch angles
as the driver looks at the dashboard or gear shifter compared to
low pitch angles, which almost vanishes at the edge between
the windshield and the car ceiling.

B. Driver’s Gaze Distribution

We also analyze the distribution of the annotated gaze
directions. We represent the driver’s gaze using the eleva-
tion (vertical) and azimuth (horizontal) gaze angles and report
the distribution of these angles. First, we pick the frames where
the driver is looking at target markers inside the car while
driving (Fig. 3). The locations of these markers are estimated
during the calibration phase for our reference. Second, we take
the frames where the driver is looking at the fiducial markers
outside the car. The locations of these markers are estimated
with respect to the road camera. We transform the points
into the back camera coordinate using the calibration data
(Sec. III-D). Third, we approximate the location of the head
with the location of the Fi-Cap helmet. With the head location,
we define the driver’s gaze vector (g) as the line joining
the head’s location with the target marker and calculate the
elevation angle (¢gaze) and azimuth angle (044z¢) of this line
in the 3D space. Hence, we can obtain absolute gaze directions
that are agnostic of the camera locations and calibrations.
Equations 2-5 show the expressions of these angles, where
toaze is the 3D location of the target gaze, hpes is the head
location, and & = (&, &y, §;) is a unit vector in the direction
of the gaze.

g = tgaze - hpos (2)

N g

g=— (3)
gl
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Fig. 14. Distribution of the driver’s gaze angles in our dataset: (a) distribution
of the drivers’ gaze as she/he looks at target markers inside the car (step 3 in

our protocol), and (b) distribution of the driver’s gaze angles as the driver
looks at the moving board outside the car (step 1 in our protocol).

Ogaze = arctan ( g)f ) 4)
—&z

~

8y

Pgaze = arctan | ———— 5)
NG

Figure 14(a) reports the distribution of the gaze angles
when the driver looks at markers inside the car while driving
(step 3 in our protocol - Sec. III-A). Figure 14(b) reports
the distribution of the gaze angles as the driver looks at the
moving board during the parking phase (step 1 in our protocol
- Sec. II-A). As expected, the gaze angle distribution for
the in-vehicle markers has a higher azimuth and elevation
angles ranges since these markers span more locations in the
car in contrast to the moving board gaze distribution, which
only spans the windshield area. However, the moving board
gaze angles have a more balanced and smooth distribution
due to their continuous nature. In addition, they can help
in training time-based deep learning models (e.g., recurrent
neural networks) as they provide continuous gaze annotations
for successive frames.

The MDM database can be used for other gaze represen-
tations. For example, the driver’s gaze can be represented in
terms of normalized pixel location in the road camera scene.
The 3D location of the target marker can be mapped into any
camera as the reference frame, since all cameras are calibrated.
This alternative representation can be useful if the goal is to
map the driver’s gaze directly to targets on the road.

C. Head Pose Estimation With Depth Data

This section demonstrates one of the potential uses
of the MDM database for head pose estimation (HPE).
In Hu et al. [51], we showed that we can effectively estimate
head pose from a depth camera by directly processing point
cloud data. In this work, we achieved better performance
than state-of-the-art HPEs based on RGB images, especially
in frames with large rotations. Figure 15 shows the model
structure inspired by the work of Qi er al. [52], [53], where
we formulate this task as a regression problem. We have
three basic building blocks for this model: sampling, grouping,
and PointNet. In sampling, we use the iterative farthest point
sampling algorithm to get “anchor points.” This step reduces
the redundancy of the point cloud while maintaining its
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Fig. 15. Diagram of the algorithm proposed by Hu et al. [51] to estimate
head pose of the driver using point cloud data. The framework directly uses
the point cloud data without projecting the 3D points into 2D spaces.

TABLE IV

MSE OF THE POINT-CLOUD BASED ALGORITHM AND OPENFACE 2.0.
WE REPORT RESULTS OF THE PROPOSED MODEL ON THE ENTIRE
TEST SET AND ALSO ON THE SET WHERE OPENFACE
2.0 PROVIDES ESTIMATIONS

Method Errors Percentage Frame
Roll(®)  Yaw (°)  Pitch (°) Missed
Hu et al. [ 5.77 5.84 6.33 [ 0%
OpenFace set
Hu et al. 5.68 5.63 6.27 0%
OpenFace 2.0 7.63 5.06 7.20 3.08%

structure as much as possible. In the grouping building block,
we group points within a radius R of the anchor points,
capturing the relationship between each anchor point and its
neighbors. In PointNet, we adopt multi-layer perceptrons to
learn from the data features that are more discriminative for
our task. We repeat the sampling-grouping-PointNet layer set
five times, aggregating features from different resolutions.
Finally, we acquire a high-level feature vector that represents
the input point cloud. We use a fully-connected layer to
derive the head rotation from this feature vector. We retrain
the models using data from 39 subjects for training, 10 for
validation, and 10 for testing.

We estimate the mean square error (MSE) of this model
for all the frames in the test set, reporting the average results
in Table IV. The average angular error for our estimation was
between 5.77° and 6.33° on the entire test set. We compare our
point cloud HPE model with a state-of-the-art HPE algorithm
based on RGB images. We use OpenFace 2.0 [54], estimating
the head pose with the 1,920 x 1,080 face camera (GoPro
camera — Fig. 7(a)). To ensure that the definition of head
pose in our dataset is consistent with OpenFace 2.0, for
each subject, we find an average transformation between the
head pose ground truth and OpenFace 2.0. We observe that
OpenFace 2.0 fails at giving predictions in 3.08% of the
frames in the test set. The performances on the frames with
predictions are 7.63° for roll, 5.06° for yaw, and 7.20° for
pitch angles. In contrast, the proposed approach produces
a head pose estimate for every frame. For fair comparison,
we evaluate our approach only on the frames with predictions
from the RGB-based HPE algorithm, which we refer to as the
OpenFace set. Table IV shows clear improvements in using
our point cloud algorithm, with absolute differences of 1.95°
for roll and 0.93° for pitch angles. In the yaw direction,
openface works marginally better with the absolute error
difference of 0.57°.

D. Driver Gaze Estimation From Eye Appearance

This section demonstrates another potential research of the
MDM dataset in predicting the gaze direction of the driver
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Fig. 16. Diagram of the model using the MobileNet network to predict the
driver’s gaze from the eye appearance.

TABLE V

MSE OF GAZE ESTIMATION ON THE TEST SET,
USING THE CONTINUOUS GAZE SET

Method Errors
Ggazc (O) d)gaze (O)
Mobilenet [ 13.90 5.10
80
\
60 b ‘
$ 40 u
2 Ot Ay {
[9) Nk, i | | 111 if
o 20 AT l ] I i | il \“
2 LT L At AL ot
S 0 AR aEk ARl AL
S i i ' | I WG
o
o —-20
4
5—40
—60 I Proposed Model Prediction
HEE Ground Truth (Single LRF)
8051000 2000 3000 4000 5000 6000 7000
Frame number
(a) Single Local Reference Frame
80
60
o a0 |, |
o ] el
S 20 Y
C
o 0 e
=
©
©-20
@
5—40
—60 EEE Proposed Model Prediction
HEEl Ground Truth (Mutiple LRF)
—805 1000 2000 3000 4000 5000 6000 7000

Frame number

(b) Multiple Local Reference Frame

Fig. 17.  Tlustration of the effect of drifts in the Fi-Cap placement on
predicted versus ground truth head orientations (yaw angles). The figure shows
the results using a single LRF or multiple LRF for head pose calibration.

from the facial image. We evaluate the model shown on
Figure 16, which is a simple approach based on the MobileNet
architecture [55]. This model uses the FAN algorithm [56] to
extract a patch from the face camera image that includes both
eyes. This image is sent through the MobileNet architecture,
which is trained from scratch. The output of the MobileNet
block is fed to a fully connected layer with two outputs for
the horizontal and vertical gaze angles (Fig. 16). We create a
subject independent partition with data from 39 subjects for
the train set, data from 10 subjects for the test set, and data
from 10 subjects for the development set. We train and test the
model with the continuous gaze data (e.g., drivers looking at
the board held by the researcher outside the car when the car
is parked). Table V shows the results. We observe that the test
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error is 13.90° in the horizontal direction (84;.) and 5.10° in
the vertical direction (¢gqzc). We expect that these results can
be improved with more sophisticated models that compensate
for variations in appearance across subjects.

E. Drift Compensation Using Multiple Reference Frames

We analyze the benefits of using the multiple LRF approach,
presented in Section IV-A, to compensate for potential Fi-Cap
drifts during the data collection. We use the point cloud-based
HPE model discussed in Section V-C for the analysis.
Figure 17 shows the prediction of yaw angles when using
a single LRF and when using multiple LRF. We observe that
while the pattern of the estimated head pose follows the ground
truth when using a single LRF, there are random drifts in
different sections of the plots (Fig. 17(a)). In contrast, using
multiple LRF alleviates this problem (Fig. 17(b)).

VI. CONCLUSION

This paper presented the MDM database, which provides
naturalistic recordings that are ideal for studying visual atten-
tion in realistic driving conditions. The database includes
multimodal sensors including four HD cameras, depth sensors,
grayscale camera with IR illumination, and a microphone
array. The database also includes the CAN-Bus information
to obtain vehicle related information. The database provides
ground truth for both head pose and gaze information. The
Fi-Cap helmet is used to provide continuous annotation of
the driver’s head pose. The placement of the helmet in the
back of the driver’s head avoids occlusions for frontal cameras
recording the face of the subject. This setup provides head
pose information for each of the millions of frames included
in the corpus. We obtained the driver’s reference gaze in a
continuous setting, where we moved a board with a fiducial
point outside the car while the car is parked. We also collected
the event based gaze directions by asking drivers to look
at particular locations, both inside and outside the vehicle.
In addition, we collected data when the driver performs natural
secondary activities such as changing the radio station and
following instructions. Collectively, the information included
in the corpus can be useful in training efficient algorithms to
study driver visual attention in naturalistic driving conditions.

This study also provided an analysis of the MDM corpus.
We introduced a novel experimental framework to quantify the
robustness of our head pose labels by studying the estimated
head pose as a function of the number of detected fiducial
points in the Fi-Cap helmet. By analyzing the distribution
of gaze and head pose information, we showed that our
dataset covers a wide range of angles in all rotation axes,
which reflects the variety of primary and secondary activities
included in the data collection protocol.

A. Potential Research Relevant to the MDM Corpus

The collected data provides a great resource to analyze
the driver behavior. The corpus’s size, the driver diversity,
the naturalistic nature of the recording, the presence of mul-
tiple sensors, and the detailed annotations provided in the



10750

corpus are ideal to train sophisticated deep learning solutions
to monitor driver visual attention for in-vehicle systems. The
MDM corpus is also an ideal resource to explore various
research questions in the field of driver monitoring systems.
The dataset contains continuous benchmarking of head pose
for the entire duration of the recording, which can be used to
train machine learning models for head pose estimation, using
RGB cameras, depth information, or multimodal frameworks
combining both modalities. Additionally, the ground truth gaze
is collected in varying conditions. These data points can be
used to train models for driver visual attention that are robust
to road conditions observed in naturalistic recordings. Another
feature of this corpus is the multiple camera setup, which
can be ideal for designing multi-view models. This setting
is also ideal to study the effect on the performance of visual
attention models when the perspective of the camera is not
perfect. For example, we can analyze the compromise in
accuracy by using the mirror camera (profile view) instead
of the face camera (frontal view). The road cameras can be
used to extract information about the environment, which can
be associated with the driver activity and behavior. Likewise,
we can estimate the vehicle state by using the CAN-Bus
information, which can be correlated with the driver’s head
pose as well as his/her visual attention. The corpus also offers
an ideal platform to study driver behavior during secondary
tasks such as following the navigation system or operating
the radio. Techniques such as driving anomaly detection
[25], [26] can also be studied by analyzing the data collected
from various sensors during different activities.

B. Limitations of the Corpus

Our database has some limitations. The Institutional Review
Board (IRB) approved by our university required the data to be
collected only during low traffic conditions and during daylight
hours. Therefore, we do not have data collected during the
night or in rush hour traffic. Challenging lighting conditions
can be simulated using data augmentation strategies, which can
be leveraged to train robust models against low illumination.
The secondary tasks selected in the data collection were
also constrained by the IRB approved by our institution. For
example, we were not able to include tasks that require the
driver to use a cellphone. Furthermore, the corpus is not ideal
to study important research problems such as fatigue detection.
Finally, we do not provide continuous gaze annotations for all
frames, similar to head pose. Some studies have attempted
to collect continuous gaze labels using commercial glasses
with cameras. Unfortunately, these systems occlude the face so
they were not appropriate for our data collection. Nevertheless,
we expect that the gaze data provided in our corpus include
representative images collected in varied settings to train
efficient algorithms for naturalistic gaze estimation.

C. Access to Corpus

The multimodal driver monitoring dataset is licensed
free of cost to academic institutions under a Federal
Demonstration — Partnership (FDP) Data Transfer and
Use Agreement. We have also established a licensing

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

program for commercial entities interested in our
corpus.The instructions for obtaining the corpus are
available at https://ecs.utdallas.edu/research/researchlabs/msp-
lab/MDM.html.
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