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   Abstract—Swarm  intelligence  algorithms  are  a  subset  of  the
artificial  intelligence  (AI)  field,  which  is  increasing  popularity  in
resolving  different  optimization  problems  and  has  been  widely
utilized  in  various  applications.  In  the  past  decades,  numerous
swarm intelligence algorithms have been developed, including ant
colony  optimization  (ACO),  particle  swarm  optimization  (PSO),
artificial  fish  swarm  (AFS),  bacterial  foraging  optimization
(BFO),  and  artificial  bee  colony  (ABC).  This  review  tries  to
review  the  most  representative  swarm  intelligence  algorithms  in
chronological  order  by  highlighting  the  functions  and  strengths
from  127  research  literatures.  It  provides  an  overview  of  the
various  swarm  intelligence  algorithms  and  their  advanced
developments,  and  briefly  provides  the  description  of  their
successful  applications  in  optimization  problems  of  engineering
fields.  Finally,  opinions  and  perspectives  on  the  trends  and
prospects in this relatively new research domain are represented
to support future developments.
    Index Terms—Ant colony optimization (ACO), artificial bee colony
(ABC),  artificial  fish  swarm  (AFS),  bacterial  foraging  optimization
(BFO),  optimization,  particle  swarm  optimization  (PSO),  swarm
intelligence.
  

I.  Introduction

IN  nature,  groups  of  thousands,  millions,  or  trillions  of
individual  elementary  entities  can  self-organize  into

multifarious forms to fit a functional objective, purely through
local  and  ordinary  interactions.  Examples  at  different
biological  levels  include  the  self-assembly  of  crystals  of
bacterial  flagella  at  the  molecular  scale,  regular  development
of  multicellular  organisms  at  the  cellular  scale,  and
interconnected  food  searching  or  risk  avoidance  (for  energy-
saving in ants) at the colony scale [1]. Research on biological

behavioral intelligence has been conducted for a long time; a
study  regarding  Cape  bees  and “ animal  intelligence” was
published in 1883 [2].

Throughout  nature,  different  organisms  often  profit  from
acting in swarms. Models of the simple collective behavior of
individuals indicate that uncomplicated partial interactions are
sufficient  to  produce  and  present  group  morphologies.
Individuals  constitute  groups  that  can  collectively  process
information  and  provide  corporate  decisions.  By  shared
information,  the  group  could  make  better  decisions  than  a
single  individual;  this  phenomenon  is  called  as “collective
intelligence” [3 ].  For  example,  bees  appear  to  rely  on
decentralized decision-making for the critical choice of a new
nest site. Although no individual evaluates the complete set of
available  information  or  directly  compares  the  available
options, the swarm efficiently integrates the resulting flow of
information into a high-quality final decision, without central
control.

By  studying  the  characteristics  of  individuals  and  their
relationships  with  groups,  algorithms  for  the  corresponding
mechanism,  known  as “ swarm  intelligence” have  been
formalized.  These  essentially  comprise  biologically  inspired
computations and have been deemed an emerging field and an
integral  part  of  artificial  intelligence  (AI)  [4].  Swarm
intelligence  algorithms  can  be  organic  combination  of
evolutionary  computing,  artificial  neural  networks  (ANNs),
and  fuzzy  systems  in  a  series  of  computational  intelligence
(CI)  approaches  [4].  They  are  known  as  a  group  of  nature-
inspired  methods  that  are  used  to  deal  with  complex
optimization  problems  for  which  mathematical  or  traditional
approaches are  invalid.  This  ineffectiveness is  mainly caused
by,  e.g.,  the  overwhelming  complexity  of  the  procedure  for
mathematical reasoning, possible uncertainties, or a procedure
that  is  stochastic  by  nature.  Among  the  heuristic  algorithms
inspired by nature,  in addition to the swarm-based intelligent
optimization algorithms mainly introduced in this paper, some
are  also  inspired  by  natural  evolution,  physical  rules,  and
human  behavior.  The  hierarchical  distribution  of  these
algorithms  is  shown  in Fig. 1 .  Specifically,  we  divide  the
heuristic  algorithms  inspired  by  nature  into  the  above  four
categories.  In  each  category,  we  have  listed  five  classic
algorithms.  The  first  is  the  method  of  swarm  intelligence
inspired  by  the  intelligent  behavior  between  biological
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swarms,  which  will  be  discussed  in  this  review.  Secondly,
algorithms  based  on  the  laws  of  cosmic  physics  are  also  an
important  branch,  including  the  well-known  simulated
annealing  algorithm,  gravity  search  algorithm,  sine  cosine
algorithm, artificial  electric  field algorithm, etc.  Then,  evolu-
tionary algorithms based on evolutionary theory are produced
by  using  the  laws  and  processes  of  biological  heredity  and
population  evolution  in  nature.  The  most  popular  is  the
genetic  algorithm  that  simulates  Darwin’s  evolution.  In
addition,  classic  algorithms  include  differential  evolution,
evolution  strategy  and  evolution  programming.  Finally,  there
are  algorithms  based  on  human  intelligent  behavior,  for
example,  the  harmony  search  algorithm that  simulates  music
creation  by  musicians,  the  teaching  learning-based  optimi-
zation  algorithm  imitating  the  influence  of  teachers  on
students, the political optimization algorithm that imitates the
multi-stage process of politics, etc.

The term “swarm intelligence” was formally put forward by
Beni  and  Wang  in  the  background  of  studying  a  cellular
robotics  system  [5].  Currently,  it  is  considered  as  a  sub-
discipline  of  CI,  aiming  to  solve  problems  by  modelling
populations of agents that  can self-organize and interact  with
each  other.  In  view  of  well-organized  principles,  we  have
selected  many  of  the  most  representative  swarm  intelligence
algorithms and divided them into six categories, based on the
number  of  algorithms  used  and  the  basic  biology  they  are
derived from: ant colony optimization (ACO), particle swarm
optimization  (PSO),  artificial  fish  swarm  (AFS),  bacterial
foraging optimization (BFO), artificial bee colony (ABC) and
other  swarm  intelligence  algorithms.  As  swarm  intelligence
algorithms  possess  features  of  self-organization,  parallel

operations, distributive operations, flexibility, and robustness,
they have been gradually very widespread and are utilized in
many events. For example, swarm intelligence algorithms are
used  for  scheduling  problems,  robots,  power  systems,
parameter optimization, system identification, image process-
ing,  signal  processing,  and  other  optimization  problems  of
engineering  fields.  Hence,  studying  the  swarm  intelligence
algorithms  possesses  extremely  significant  academic  and
practical value.

From the  number  of  publications  based on Google  Scholar
data  since  2000,  we  can  obtain  that  abundant  research  has
been  conducted  on  swarm intelligence  algorithms  in  the  past
two decades, as shown in Fig. 2. Overall, from 2000 to 2005,
the  development  of  the  various  algorithms  for  swarm
intelligence was relatively slow; this period can be regarded as
the initial stage. From 2005 to 2012, the publication of various
algorithms  in  Google  Scholar  contributed  to  a  rapid  growth
trend,  meaning  that  the  swarm  intelligence  algorithms
developed  rapidly.  After  2012,  the  related  research  was  still
increasing,  but  the  trend  was  relatively  flat.  Specifically,
among the five swarm intelligence algorithms, PSO has been
the  most  researched;  it  developed  particularly  rapidly  from
2005  to  2012.  However,  the  growth  rate  slowed  down  after
2012,  and  particularly,  the  publications  have  continued  to
slightly decline since 2016. It is likely that the AI experts and
scholars  have  gradually  paid  attention  to  machine  learning,
tree  searching,  reinforcement  learning,  and  deep  neural
networks in recent years [6]. The research on ACO is second
only to that on PSO, and the overall  research shows a steady
growth trend. Unlike the other algorithms, whose growth rates
slowed down after 2012, the ABC algorithm has become more
pronounced since 2012, owing to the popular research topic of
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Fig. 1.     The hierarchical distribution of nature-inspired algorithms.
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robot  swarms.  The  AFS  algorithm  has  had  relatively  fewer
academic achievements over the years, but is the most stable.
Academic  publications  regarding  the  BFO  algorithm  were
particularly prominent in 2012, as more academic conferences
were held on related topics. In addition to the above five types
of  algorithms,  there  are  many  other  swarm  intelligence
algorithms,  and the  corresponding research  is  also  increasing
each year.

This  review  is  intended  to  have  reference  significance  for
professional  and  technical  researchers  interested  in  the  state-
of-the-art in swarm intelligence algorithms and their trends in
related  fields.  The  remainder  of  this  paper  is  organized  as
follows.  Section  II  divides  the  swarm intelligence  algorithms
into  six  categories.  Section  III  describes  the  achievements  of
the  swarm  intelligence  schemes  in  various  applications  of
related  fields;  several  results  from  these  applications  are
provided  and  are  compared  with  the  pipelines  of  commonly
utilized  approaches.  Section  IV  summarizes  major  strengths
and  limitations  in  swarm  intelligence  algorithms,  along  with
main trends that would be developed in the future. Section V
concludes this review.  

II.  Swarm Intelligence Algorithms

From flocks of birds to schools of fish to swarms of insects,
biological aggregations displaying collective behavior emerge
throughout  nature.  This  self-organized,  natural  phenomenon
has been the subject of intensive modelling for decades,  as it
is  highly  commonly  employed  in  nature  to  efficiently  solve
problems  and  owing  to  its  potential  ability  as  a  biomimetic
control  strategy  for  engineering  systems  [7].  In  recent  years,
swarm  intelligence  has  been  universally  studied  in  various
areas;  consequently,  many  related  approaches  to  collective
behavior  have  emerged.  A  categorization  of  swarm  intelli-
gence  algorithms  with  several  representative  works,  are
illustrated  in Fig. 3 .  In  this  section,  we  will  briefly  review
each of these swarm intelligence algorithms, along with their
most recent developments and applications.

Essentially,  swarm  intelligence  algorithms  are  iteratively

based  on  stochastic  search  algorithms,  where  heuristic
information is  shared to conduct  the search for  the following
iterations. Fig. 4  shows  a  general  framework  for  swarm
intelligence algorithms [8]. Before the initialization phase, the
parameter values are required to be defined. The evolutionary
process  then  begins  with  initialization  and  its  corresponding
strategies.  Then,  the  termination  condition  used  to  stop  the
algorithm  execution  is  set;  it  is  either  one  condition  or
comprised  of  two  separate  conditions.  The  fitness  function
that  is  in  charge  of  the  evaluation  of  the  search  agents  is
evaluated;  the  fitness  function  can  be  a  basic  metric,  or  a
composed  one.  The  algorithm  updates  agents  until  the
previous  termination  condition  is  achieved.  Finally,  the  best
search  result  is  generated.  For  a  specific  swarm  intelligence
algorithm, the sequence of each process may be different, and
some  processes  could  be  executed  several  times  in  a  single
iteration.  

A.  Ant Colony Optimization
In  computer  science  and  operational  research,  ACO  is  a

probabilistic  method  for  resolving  computational  problems
which  could  be  reduced  to  searching  the  optimal  paths
through  graphs.  It  was  first  proposed  by  Marco  Dorigo  in
1992 based on his  Ph.D.  research [9],  and the  inspiration for
this  basic  algorithm  came  from  the  behavior  of  ants  finding
paths  in  the  procedure  of  food  searching  or  risk  avoidance.
The  ACO  algorithm  has  characteristics  of  distributed
computing,  positive  information  feedback,  and  a  heuristic
search [10]. Its basic idea is to imitate an ant’s dependence on
pheromones, and to guide each ant’s action by using positive
feedback  among  the  ants.  This  algorithm  can  be  utilized  to
deal  with  most  optimization  problems  or  can  be  transformed
into optimization problems. Ants can leave a type of material
called a pheromone in the paths they pass. They can sense the
intensity  of  this  material  and  can  thereby  guide  their  own
direction of  action in  the  process  of  foraging [11].  The basic
searching process of ACO is as follows [12].

At  first, m  ants  are  randomly  placed  in  the  location.  The
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Fig. 2.     Google trends indicator of swarm intelligence algorithms from 2000 to 2020.
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τi j(0) = τ0 (k = 1,2, . . . ,m)
initial values of the pheromones on each path are equal, that is

. Then, the k-th  ant chooses the next
location  to  be  transferred  to  on  account  of  the  random
proportion  rule,  and  its  selection  probability  is  shown  as

follows [13]:
 

pk
i j(t) =


[
τi j(t)

]α[
ηi j(t)

]β∑
s∈allowedk

[τis(t)]α
[
ηis(t)

]β , j ∈ allowedk

0, Otherwise.

(1)

τi j ηi j = 1/di j
i j

di j allowedk
k-th

In the above,  is the pheromone of edge;  is the
heuristic  factor  of  transferring  from  location  to  location ,
where  is the distance; and  is the location set that
the  ant is allowed to visit next.

After the t-moment, all ants have accomplished a tour. The
path  length  of  each  ant  is  calculated,  and  the  shortest  path
length  is  saved.  At  the  same  time,  the  pheromones  on  each
edges are updated. The pheromone update includes two parts
[14]: i) the volatilization of pheromones, as in (2); and ii) the
release of pheromones by ants on the edge they pass by (3)
 

τi j = (1−ρ)τi j (2)
 

τi j = τi j+

m∑
k=1

∆τki j. (3)

ρ

∆τki j k-th
(i, j)

In  the  above,  is  the  volatilization  coefficient  of  the
pheromone,  is  the  pheromone  released  by  the  ant
passing  the  edge .  After  the  ants  complete  a  cycle,  they
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Fig. 3.     A categorization of the swarm intelligence algorithms and their representative works.
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Fig. 4.     General framework of the swarm intelligence algorithms.
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return to the original location and prepare for the next tour.

[MIN,MAX]

The original ACO concept has been diversified to manage a
wider  group  of  numerical  problems.  However,  several  new
problems  have  emerged,  and  additional  studies  have  been
required  to  improve  the  ACO  performance,  depending  on
different  aspects  of  the  ant  behaviors.  The MAX–MIN  ant
system  [15]  is  a  typical  representative  method  for  directly
improving  an  ant  system.  This  algorithm  modifies  the
approach  to  updating  pheromones.  After  each  iteration,  only
one ant can update the pheromone to obtain a better solution.
To avoid the search stagnation, the pheromone on the path is
limited  to .  In  addition,  the  initial  value  of  the
pheromone  takes  its  upper  limit,  helping  to  promote  the
algorithm’s search ability.  Bullnheimer et  al.  [16] provided a
novel  rank-based  version  of  an  ant  system.  After  each
iteration,  the  paths  of  the  ants  are  arranged  from  small  to
large. The algorithm gives different weights on account of the
path length; the shorter the path length, the greater the weight.
Hu et  al.  [17]  proposed  a  new  ACO  denoted “continuous
orthogonal  ACO” for  solving  continuous  problems.  The
pheromone  deposition  mechanism  of  this  algorithm  enables
ants  to  efficiently  search  for  solutions.  Gupta et  al.  [18]
introduced  the  concept  of  depth  for  a  recursive  ACO.  The
depth  determined  the  number  of  recursions,  and  each  depth
was based on an ordinary ant colony algorithm. Gao et al. [19]
introduced  a  K-means  clustering  algorithm  to  combine  with
ACO algorithm with three immigrant schemes for addressing
the dynamic location routing problem. Hemmatian et al.  [20]
applied  an  elitist  ACO  algorithm  to  the  multi-objective
optimization of hybrid laminates, to obtain the minimum cost
in the calculation process.  

B.  Particle Swarm Optimization
In  groups  of  birds  acting  in  a  cooperative  energy-saving

manner,  individuals  in  the  group  continuously  optimize  the
search  mode,  in  view  of  the  experience  of  group  members.
Based  on  a  study  of  swarm behavior,  Kennedy  and  Eberhart
put forward the PSO algorithm in 1995 [21]. In PSO, a flock
of  particles  retain  motion  in  a  constrained  parameter  space,
interact  with  each  other,  and  update  their  velocities  and
positions  on  account  of  their  own  and  their  neighbors’
information, finding the global optimum [22], [23]. The initial
state  of  the  algorithm  is  a  group  of  random  particles
comprising  a  particle  swarm;  it  also  represents  a  random
solution  space.  Each  particle  owns  only  two  properties:
velocity  and  position.  Each  particle  searches  for  the  optimal
solution results  in  the  corresponding space,  and continuously
updates its individual optimal value. Particle swarm members
share  their  individual  optimal  values.  The  global  optimal
solution  is  the  best  of  the  current  individual  optimal  values
[24],  [25].  Based on the current individual optimal value and
the current global optimal solution, the particles continuously
adjust  the  velocities  and  positions.  The  above  search  process
can be formulated as (4) and (5) [26], as follows:
 

vt+1 = c1vt + c2r1(pi,t − xt)+ c3r2(pg,t − xt) (4)
 

xt+1= xt + vt+1. (5)
vt xtIn  the  above,  and   are  the  velocity  and  position  of

i t pi,t
i t pg,t

t c1,c2,c3
r1,r2 [0,1]

particle  at  time ,  respectively.  is  the individual  optimal
value of particle  found before time , and  represents the
global  optimal  solution  of  the  particle  swarm  found  before
time .  are  the  respective  cognition  coefficients,  and

 are the random parameters within .
The first portion of (4) is the “memory term” and indicates

the  particle’s  velocity  vector  in  the  current  state.  The  second
portion  of  (4)  is  a “ self-cognition  term”,  which  is  a  vector
from  the  current  value  to  the  individual  optimal  value.  It
expresses the influence of the particle’s own experience.  The
third  portion  of  (4)  is  a “ global-cognition  term”,  i.e.,  the
vector  from  the  particle’s  current  value  to  the  current  global
optimal  solution.  It  reflects  the  cooperation  and  information
sharing between particles.

Because  of  its  simplicity,  effectiveness,  and  low
computational  cost,  PSO  has  obtained  significant  popularity,
and many improvements have been proposed. Most researches
of  PSO  improvement  fall  into  categories  which  modify  the
model  coefficients,  consider  the  population  structures,  and
alter  the  interaction  modes  [27].  By  combining  PSO  and  a
genetic algorithm, Ghamisi and Benediktsson [28] provided a
new  feature  selection  method.  This  method  also  adopts  a
support  vector  machine  (SVM)  as  a  fitness  function,  which
improves the classification accuracy. To address the challenge
of  premature  convergence  to  a  local  optimum  in  global
optimization problems, Li et al. [29] introduced a competitive
and  cooperative  PSO  with  a  data-sharing  mechanism.  It
allows  particles  to  share  each  other’s  individual  optimal
values,  instead  of  simply  reflecting  the  cooperation  in  the
current  global  optimal  solution.  Furthermore,  the
comprehensive  learning  PSO  proposed  in  [30]  allows
members  in  the  swarm  to  share  the  historical  individual
optimal  values  of  all  other  particles.  This  algorithm  is
particularly  outstanding  in  solving  multimodal  problems.  In
[31],  a  parallel  PSO  algorithm  with  a  special  operator  was
proposed,  and  it  has  proven  effective  in  solving  the  problem
of PSO convergence at a suboptimal location. Since the PSO
algorithm  was  proposed,  its  convergence  has  been  an
important  aspect  of  the  research.  Via  the  depth  analysis  of
basic  PSO  algorithm,  Zeng  and  Cui  proposed  the  stochastic
PSO  algorithm  [32],  which  can  ensure  the  probability  of
converging  to  be  globally  optimal.  In  contrast  to  the
traditional  PSO,  which  focused  on  solving  continuous
problems,  Clerc  [33]  studied  the  reasonable  adoption  of  a
discrete  PSO  to  the  classic  traveling  salesman  problem.  The
results  represent  that  the  discrete  PSO  algorithm  could  be
easily  combined  with  other  algorithms  to  efficiently  solve
certain  discrete  problems.  In  [34],  a  PSO-based  neural
network  identifier  was  constructed  to  model  the  unknown
system dynamics, and proved to be more effective in resolving
the  Hamilton-Jacobi-Bellman  equation  by  utilizing  the
estimated system states. Roy et al. [35] proposed a PSO-based
artificial  neural  network  for  enhanced  forecasting  of  the
reliability  of  software,  considering  the  fault  generation
phenomenon with the fault complexity of different levels. Lv
et  al.  [36]  combined  a  surrogate-assisted  PSO  with  Pareto
active  learning  to  solve  the  multi-objective  optimization
problem  with  high  computational  cost,  and  in  this  research
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PSO was used as a sampler to generate candidate solutions.  

C.  Artificial Fish Swarm
In  nature,  fish  could  discover  more  nutritious  areas  by

individual  searching  or  following  other  fish,  and  areas  with
more individuals are normally more nutritious. The stochastic
population-based  AFS  optimization  algorithm  was  initially
proposed by Li et al. in 2002 [37]. Its main idea is to imitate
fish behaviors such as preying, swarming, and following, with
a local search of individuals for generating a global optimum
[38].  The AFS algorithm possesses attractive features  similar
to  those  of  a  genetic  algorithm,  but  it  can  reach  a  faster
convergence  speed  and  requires  the  adjustment  of  fewer
parameters.  The  AFS  algorithm  does  not  include  crossover
and mutation procedures, so it can be executed more easily. It
is  also  an  optimizer  in  view  of  population;  the  system  is
initialized  with  a  group  of  randomly  generated  potential
solutions,  and  then  iteratively  executes  a  search  for  the
optimum one  [39].  The  AFS algorithm acts  as  a  parallel  and
random search optimization method, with the advantages of a
strong  global  search  capacity  and  an  excellent  convergence
speed.  The  fish  group  is  represented  by  a  set  of  points  or
solutions,  with  each  agent  representing  a  candidate  solution.
The feasible solution space constitutes the “waters” where the
artificial  fish  moves  and  searches  for  the  optimum.  The
survival,  competition,  and  coordination  mechanisms  are
introduced  into  the  basic  operation  [40].  The  main  challenge
in  the  algorithm  implementation  is  determining  how  to  use
simple  and  effective  ways  to  construct  and  realize  these
behaviors.  In  addition,  the  PSO  algorithm  and  the  AFS
algorithm are often used for comparison in research: the PSO
algorithm  is  inspired  by  a  flock  of  birds,  and  it  uses  some
particles  flying  in  the  search  space  to  find  the  best  solution,
that  is,  these  particles  continuously  adjust  themselves  based
on  the  original  path  according  to  the  position  of  the  optimal
solution  in  the  particle  swarm;  the  AFS  algorithm  is  mainly
based  on  the  foraging  behavior  of  the  fish  school  in  the  real
environment with a bottom-up design idea, and it mainly uses
the  three  operators  of  artificial  fish  school  for  foraging,
clustering  and  tail-finding  to  construct  the  underlying
behavior of the individual.

f (x)x ∈Ω

n xi, i = 1,2, . . . ,n xi
li ui

xi Ω = {x ∈ Rn : li ≤ xi ≤ ui, i = 1,2, . . . ,n}
xi v

v = δmax j∈{1,2,...,n}
(u j− l j) δ ∈ (0,1)

xi npi

C f = npi/N
npi = 0 xi

C f ≤ θ
xi

C f ≥ θ xi

The  description  of  basic  AFS  processing  in  a  global
optimization problem for  minimizing  is  as  follows
[41], [42]. There exist a population of artificial fish including
 agents  or  points  and   is  a  floating-point

encoding  with  the  lower  and  upper  bounds  and  .  The
search  space  of  is:  .
Each  point  has  a  closed  neighborhood  with  a  radius ,
which  is  called  the “ visual  scope”,  and 

.  In  addition,  is  a  positive  visual  parameter
which  can  be  decreased  by  the  iterative  process.  The “visual
scope” of  point  is   number  of  points.  The  crowding
factor  indicates  the  degree  of  crowding.  If

,  the “ visual  scope” is  empty,  and  point  will  move
stochastically and look for better  areas;  if ,  the “visual
scope” is  not  crowded,  and  point  can  chase  or  swarm
towards  the  best  or  central  point  of  the “ visual  scope”.  If

, the “visual scope” is congested, and the point  has a

problem insofar as chasing. It will randomly choose and move
toward  another  point.  In  the  AFS  algorithm,  the  swarm
behavior is  featured by the motion to the central  point  of  the
“visual scope”.

During the use of the AFS algorithm, it has been developed
and improved by numerous researchers, generating a series of
novel  variants.  In  [43],  a  binary  version  of  the  AFS  is
proposed  for  resolving  0–1  multidimensional  knapsack
problems. In this method, a binary string of 0/1 bits represents
a point.  Through copying the relevant  bit  from itself  or  from
another specified point with identical probability, each bite of
a trial point is produced. Zhang et al. [44] proposed a Pareto-
improved AFS algorithm for resolving a multi-objective fuzzy
disassembly  line  balancing  problem,  and  it  was  useful  in
decreasing  the  existing  uncertainty.  To  heighten  the  global
search ability and the convergence speed, Zhu and Jiang [45]
proposed  a  novel  quantum  AFS  algorithm.  The  algorithm  is
on account of principles and concepts of quantum computing,
e.g.,  the  quantum  bit  and  quantum  gate.  As  regular  artificial
fish  can  get  stuck  in  blindness  hunting,  Gao et  al.  [46]
provided  a  knowledge-based  AFS  algorithm  with  crossover.
In addition, the conventional regular AFS could only perform
local or global searching by continuously initializing the step
and  visualization  parameters.  To  remedy  this,  Yazdani et  al.
[47] proposed two novel adaptive methods for utilizing fuzzy
systems to adjust the step and visualization parameters during
execution.  The  purpose  is  to  adaptively  adjust  the  capability
for  global  and  local  searching.  In  the  first  one,  the
visualization  and  step  parameters  of  all  fish  are  adjusted
uniformly,  whereas  in  the  second,  a  special  fuzzy  controller
controls  the  step  and  visualization  parameters  for  each
artificial fish.  

D.  Bacterial Foraging Optimization
The BFO algorithm was  first  proposed by Passino  in  2002

[48].  It  models  the  foraging  behavior  of  Escherichia  coli  in
humans,  is  relatively  new  to  the  family  of  nature-inspired
optimization algorithms. It optimizes through the competition
and cooperation among bacterial populations and is utilized as
a  global  random  search  algorithm.  It  has  characteristics  of
simplicity  and  fast  convergence,  and  there  is  no  need  to
optimize  the  gradient  information  of  the  object  during  the
optimization  process  [49].  The  BFO  simulation  of  the
bacterial  population  contains  three  steps:  chemotaxis,
reproduction,  and  elimination/dispersal,  corresponding  to  the
following  three  processes  [50]:  in  chemotaxis,  a  bacterium
moves  by  carrying  on  small  steps  while  searching  for
nutrients,  and  a  core  concept  of  BFO  is  simulating  the
chemotactic  movement  of  the  virtual  bacteria  in  the
corresponding search space; then, in the reproduction step, the
remaining  bacteria  multiply  to  keep  the  population  size;
finally,  the  local  area  where  the  individual  bacteria  live  may
suddenly  change,  which  may  lead  to  elimination/dispersal,
i.e., the collective death of the bacterial population staying in
this local area or the collective migration to another local area
[51].  The  new  individual  randomly  created  by  the  migration
operation may be nearer to the global optimal solution, which
is  more  valuable  to  jumping  out  of  a  local  optimal  solution.
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The main procedures in basic BFO are summarized as follows
[48], [49].

i
θi =
[
θi1, θ

i
2, θ

i
3, . . . , θ

i
D

]
θi( j+1,k, l)

i j-th k-th
C(i) > 0
Φ( j)

θi( j+1,k, l) θi( j,k, l) Φ

Φ

The size of the bacterial population is S, and the location of
the bacteria indicates a candidate solution to this problem. The
information of a bacterium  is labelled with a D-dimensional
vector . A chemotactic step is deemed as
a tumble followed by a tumble, or a tumble followed by a run.
In addition,  indicates the position of the bacterium
 after  the  tropism  operation,  replication  operation,

and l -migration  operation.  Moreover,  represents  the
step  size  of  forward  swimming,  and  represents  the  unit
direction  vector  (randomly  selected  after  rotation).  If  the
fitness at  is  better  than that  at ,  is  kept
unchanged,  and  the  bacteria  keep  to  swim  in  this  direction
until  a  position  with  the  best  fitness  is  discovered  or  the  set
number  of  tendencies  is  reached;  otherwise,  a  new  is
generated, and the next rotation is performed.
 

θi( j+1,k, l) = θi( j,k, l)+C(i)Φ( j). (6)

P( j,k, l)
j-th

k-th
Jcc(θ,P(i,k, l))

When searching for food in their own way, each bacterium
also  receives  attractive  signals  from  other  individuals  in  the
population,  and  receives  repulsive  signals  from  nearby
individuals  for  maintaining  a  safe  distance.  is  the
position  of  each  bacterium  in  the  population S  after  the 
tropism operation,  replication  operation,  and l-migration
operation.  indicates that the synthesized effects
of attraction and repulsion among the bacteria are considered
simultaneously.
 

Jcc(θ,P(i,k, l)) =
S∑

i=1

Ji
cε(θ,θ

i( j,k, l)). (7)

S r = S/2
S r

S r

In  the  BFO  algorithm,  its  population  size  does  not  change
after  a  copy  operation.  The  number  of  bacteria  eliminated  is
usually set as . First, the bacteria are sorted according
to  their  pros  and  cons;  then,  the  bacteria  that  are  ranked
lower  are  eliminated.  The  remaining  bacteria  will  self-
replicate. A newly generated individual has the same position
as  the  original  individual.  The  migration  operation  appears
with  a  certain  probability.  If  a  bacterial  individual  meets  the
probability  of  migration,  the  bacterial  individual  would  die,
and  a  new  individual  would  be  randomly  created  at  any
position in the solution space. Destroyed individuals may own
different positions.

The  BFO  algorithms  also  have  some  extensions  for
subsequent  research.  Majhi et  al.  [52]  proposed  a  high-
performance  forecasting  model  for  the  prediction  of  various
stock  indices,  and  they  minimized  the  mean  square  error  to
optimize  the  connecting  weights  of  the  adaptive  linear
combiner. In [53], Niu et al. described a multi-objective BFO
and  introduced  two  different  performance  metrics,  diversity
and  generational  distance,  to  evaluate  multi-objective
optimization  problems.  Chen et  al.  [54]  developed  a  multi-
colony BFO algorithm in which a  single  population bacterial
foraging  method  was  applied  to  the  interacting  multiple
colony  model  (which  links  the  chemotaxis  behavior  of
individual  bacterial  cells  to  the  intercellular  communications
of  bacterial  communities).  Several  improvements  have  been

made by combining bacterial foraging optimization algorithms
with  other  algorithms.  Gollapudi et  al.  [55]  developed  a
velocity-modulated  BFO  technique  by  combining  the  BFO
algorithm  and  a  PSO  technique.  Kim et  al.  [56]  presents  a
hybrid  technique  involving  genetic  algorithms  and  BFO
algorithms,  focusing  on  mutations,  crossovers,  step  changes,
chemotaxis steps, and bacterial lifespans.  

E.  Artificial Bee Colony

dm
xm

A group of honey bees,  called as a swarm, could complete
different  tasks  through  social  collaboration.  Karaboga
proposed  the  ABC algorithm in  2005  to  solve  a  multivariate
function  optimization  problem,  in  view  of  the  intelligent
foraging  behavior  of  a  honey  bee  swarm  [57].  Bees  form
groups of insects, and although the behavior of a single insect
is  extremely  simple,  a  group  of  single  individuals  represent
very  complex  behavior.  Real  bee  populations  can  collect
nectar from food sources (flowers) with high efficiency in any
environment;  they  can  also  simultaneously  adapt  to
environmental changes [58]. In the original ABC algorithm, it
contains  three  kinds  of  individuals:  employed  bees,  onlooker
bees,  and  scout  bees.  Each  employed  bee  corresponds  to  a
certain food source (solution vector), and the field of the food
source  is  iteratively  searched  [59].  More  formally,  employed
bees will search for a richer food source ( ) near the original
food source ( ).  They will evaluate the fitness and compare
it  with  that  of  original  food  source.  They  would  find  a  new
food  source  by  using  a  process  corresponding  to  (8)  [60],  as
follows:
 

dmi = xmi+ωmi(xmi− xki). (8)
xm n

(xmi, i = 1,2, . . . ,n) ωmi

Each food source  is a solution vector to a problem with 
components ;  and  is  a  random number
within a certain range. The bees choose the food source based
on the fitness value, using a greedy selection. The fitness can
be calculated as follows [61]:
 

f itm(x⃗m) =


1

1+ fm(xm)
if fm(xm) ≥ 0

1+abs( fm(xm)) if fm(xm) < 0 .
(9)

fm(·)In  the  above,  is  the  objective  function  for  the
optimization problem.

In  the  onlooker  bee  phase,  an  onlooker  bee  selects  a  food
resource,  based  on  the  probability  values  computed  by  the
fitness  values  of  the  employed  bees’ food  resources.  A
roulette method based on the probability value is employed to
observe  and  collect  food  with  the  onlooker  bees.  The
probability value indicates how likely a food resource is to be
selected by an onlooker bee, and it can be computed by using
(10) [62], as follows:
 

pm =
f itm(xm)

M∑
m=1

f itm(xm)
. (10)

MHere,  indicates the population size of the food resources.
During the scout bee phase, if the food source is not updated

multiple  times,  the  food  source  is  abandoned,  and  the
employed  bee  turns  to  a  scout  bee  to  randomly  search  for

TANG et al.: A REVIEW ON REPRESENTATIVE SWARM INTELLIGENCE ALGORITHMS FOR SOLVING OPTIMIZATION PROBLEMS 1633 



another food source [63]. To prevent this method from falling
into  a  local  optimum,  when the  food  source  iteration  limit  is
not  improved,  the  food  source  is  recorded  in  a  taboo  table.
Simultaneously, the employed bee corresponding to the honey
source is transformed into a scout bee, to randomly produce a
new position for finding a new food resource [64].

Based  on  observing  the  operations  and  structure,  there  are
also drawbacks to the basic ABC algorithm. For example, the
artificial  bee  could  only  move  straight  to  one  of  the  nectar
sources,  and  the  characteristic  may  decrease  the  set  of
explored  zones.  Hence,  several  novel  ABC  algorithms  have
been proposed to address some discovered disadvantages. The
searching  mechanism  can  be  improved  by  using  an  efficient
genetic selection method [65]. This new discrete binary ABC
algorithm can  solve  the  dynamic  clustering  problem,  and  the
number  of  clusters  is  determined  automatically.  In  [66],  a
Gbest-guided ABC and global bee colony search are improved
by taking the basis  of  the maximum fitness values instead of
the maximum cycle numbers, and the results are superior. Pan
et al. [67] improved the method for generating food resources
by  using  a  self-adaptive  strategy  to  ensure  that  the  discrete
ABC  algorithm  could  be  adopted  to  discrete  spaces.  The
improvement in the local search approach is also shown to be
effective  in  enhancing  the  local  intensification  capability.  Its
convergence  speed  can  be  enhanced  by  applying  a  control
parameter, as discussed in [68]. Experiments with this method
have  proven  the  solution  quality  and  the  convergence  to
global  optimum. In  [69],  Karaboga and Gorkemli  provided a
combinatorial ABC algorithm that showed good performance
in solving complex optimization problems regarding finding a
Hamiltonian path with the lowest cost. Ji et al. [70] proposed
a scale-free ABC algorithm that applied an innovative method
for  a  hybrid  ABC  algorithm  with  a  scale-free  network  to
enhance  the  optimization  performance  without  sacrificing
efficiency.  

F.  Other Swarm Intelligence Algorithms
Other swarm intelligence algorithms are still mainly derived

from the simulation of natural biomes, especially those based
on  insects  and  animals.  They  are  optimized  using  artificial
algorithm  simulations  of  the  processes  of  finding  food  or
exchanging  information  in  biomes,  and  most  of  them  are
directional  iterative  methods  based  on  a  probability  search
[71].  With  the  development  of  swarm  intelligence,  the
optimization  algorithms  are  not  limited  to  introducing
biological population characteristics into the algorithm. Some
studies  have  introduced  human  biological  characteristics  into
swarm  intelligence  algorithms,  such  as  the  human  immune
mechanism [72].  The new swarm intelligence algorithms and
improvements  to  classic  algorithms  proposed  in  recent  years
mainly  focus  on  reducing  parameters,  simplifying  processes,
increasing  computation  speeds,  and  improving  search
capabilities,  and  are  aimed  at  high-dimensional  and  multi-
objective  optimization  problems  [73]–[76].  The  fields  of
application  for  swarm  intelligence  algorithms  are  becoming
increasingly  extensive,  and  the  expansion  of  algorithm
applications has also guided the development directions.

In  addition  to  the  several  classic  swarm  intelligence

algorithms,  there  are  many  other  extended  algorithms  that
have  been  widely  discussed  and  employed.  In  view  of  the
obligate brood parasitic behavior of several cuckoo species in
combination with the Lévy flight behavior of several birds and
fruit  flies,  a  meta-heuristic  algorithm defined  as  the “cuckoo
search” was  formulated  to  deal  with  optimization  problems
[77].  Pigeon-inspired  optimization  is  a  swarm  intelligence
optimizer utilized to resolve air-robot path planning problems.
It presents a map and compass operator model on account of a
magnetic  field  and  the  sun,  whereas  a  landmark  operator
model  is  constructed  on  account  of  landmarks  [78].  The  bat
algorithm  is  an  animal  group/herd-based  learning  algorithm
which  utilizes  the  echolocation  behavior  of  bats  to  generate
solutions  for  single-  and  multi-objective  domains  within  a
continuous  solution  space  [79].  The  grey  wolf  optimizer  is  a
swarm  intelligence  algorithm  inspired  by  grey  wolves,  and
simulates  their  leadership  hierarchy  and  hunting  mechanisms
in nature [80]. An artificial immune system (ARTIS) contains
several typical properties of natural immune systems, such as
diversity,  distributed  computation,  error  tolerance,  dynamic
learning and adaptation, and self-monitoring. ARTIS acts as a
complete  framework  for  a  distributed  adaptive  system  and
could, in principle,  be utilized in different domains [81].  The
fruit fly optimization algorithm (FOA) is a method of seeking
global  optimization  based  on  the  foraging  behavior  of  fruit
flies.  Fruit  flies  can  rely  on  their  outstanding  sense  of  smell
and  vision  to  find  better  food  sources  and  locations  where
their  companions  gather  [82].  Glow-worm  swarm
optimization  is  developed  by  incorporating  the  behavior  of
glow-worms  into  AI  systems.  It  can  be  used  for  the
simultaneous  calculation  of  multiple  optima  of  multimodal
functions  [83].  Inspired  by  colonizing  weeds,  invasive  weed
optimization is  a  numerical  stochastic  optimization algorithm
for  mimicking the robustness,  adaptation,  and randomness  of
colonizing  weeds,  using  an  uncomplicated  yet  effective
optimization algorithm [84].  

III.  Applications and Results

The  appearance  of  swarm  intelligence  algorithms  has
provided  fast  and  reliable  methods  for  obtaining  solutions  to
different  complex  optimization  problems.  These  swarm
intelligence  algorithms,  including  ACO,  PSO,  AFS,  BFO,
ABC,  and  other  algorithms,  reflect  their  ability  in  resolving
nonlinear design problems in real-world applications thinking
over  nearly  all  areas  of  science,  engineering,  and  industry.
These  applications  include,  e.g.,  those  concerning  transport
problems (such as those concerning unmanned aerial vehicles
(UAVs)),  network  routing,  route  planning,  robot  systems  for
scheduling  problems,  power  systems,  fault  diagnosis,
parameter optimization, system identification, cluster analysis,
data mining, image processing, layout optimization, and signal
processing.  The  purpose  of  this  section  is  to  present  some
typical and relevant professional applications in which the use
of swarm-based optimization algorithms has successfully been
made  in  the  literature  (but  not  to  present  all  possible
applications).

Fig. 5 depicts the various above-mentioned applications for
swarm intelligence algorithms in different fields, based on the
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published  studies  explored  in  Google  Scholar.  If  one  paper
satisfies  applications  of  swarm  intelligence  algorithms,  it  is
selected  in  this  review  for  further  introduction.  Some  high-
frequency  application  domain  keywords  are  used  to  refine
literature classification.  Based on this  kind of  search strategy
and  criteria,  appropriate  publications  are  recorded  and
reviewed.  Among  them,  the  direction  of  the  arrow  indicates
the  application  of  that  type  of  swarm  intelligence  to  resolve
the corresponding problem; the line thickness is based on the
number  of  studies  found.  The information shown in Fig. 5  is
basically consistent with that in Fig. 1, e.g., PSO and ACO are
the two most proverbially used algorithms. In addition, we can
find  that  scheduling  problem,  robot  system,  power  system,
parameter  optimization,  system  identification,  image
processing,  and  signal  processing  utilize  the  swarm
intelligence algorithms the most;  these seven applications are
explained  in  further  detail  below.  To  ensure  the  quality  of
review, it should be emphasized that the principle of adopting
the  corresponding  swarm intelligence  algorithm literatures  in
each  type  of  application  is  that  the  citation  rate  is  relatively
high.  In  addition,  the  fan  diagrams  in Fig. 6  are  used  to
illustrate  the  proportion  of  representative  applications  of
different swarm intelligence algorithms, and this format refers
to [85].  

A.  Scheduling Problem
Scheduling  acts  as  the  procedure  of  arranging,  controlling,

and optimizing task, resource, workloads, etc. in a production
procedure,  manufacturing  module,  or  mathematical
computation [86]. Most research on scheduling problems aims
to maximize the efficiency of operations and to reduce costs.
For example, in manufacturing, the objective of scheduling is
to  minimize  the  production  time  and  costs  by  instructing  a
facility  when  to  produce  a  product,  with  which  staff,  and  on
which equipment.

The  resource-constrained  project  scheduling  problem

(RCPSP)  acts  as  one  of  the  most  investigated  kinds  of
scheduling problems; its objective is to generate the resource-
to-task  assignments  that  make  a  finite  project  plan  the
cheapest  or  shortest.  Myszkowski et  al.  [87]  studied  the
usability  and  robustness  of  the  ACO  and  its  hybrids  with
priority  rules  in  resolving  the  RCPSP,  through  renewing
pheromone values in view of both the best and worst solutions
preserved by the ants. Based on PSO, García-Nieto et al. [88]
determined  successful  cycle  programs  for  traffic  lights  and
applied  the  optimization  technique  for  two  extensive  traffic
networks placed in the metropolitan centers of Spanish cities.
Pan  [89]  presented  a  new  cooperative  co-evolutionary  ABC
algorithm  for  addressing  a  novel  steelmaking  continuous
casting  (SCC)  scheduling  problem in  the  context  of  iron  and
steel  production  processing.  Its  effectiveness  was  confirmed
using  instances  from  real-world  SCC  program.  Kumar et  al.
[90]  used  the  AFS  algorithm  as  a  stochastic-based  search
algorithm  for  serviceably  solving  the  optimal  scheduling
problem  of  energy  generation  among  available  renewable

 

 
Fig. 5.     Various  applications  of  swarm  intelligence  algorithms  in  different
fields.
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Fig. 6.     Statistical diagrams to show the proportion of applications of swarm
intelligence algorithms.
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energy  sources.  Bamini  and  Enoch  [91]  applied  a
classification and regression tree as a workflow to increase an
allocation  of  resources,  and  a  modified  BFO  algorithm  was
implemented  to  efficiently  schedule  the  resources  among  the
submitted jobs and to minimize the overall time of execution.  

B.  Robot System
Robot  research  in  swarm  intelligence  focuses  on  the  robot

design,  the  physical  body  group  size,  and  the  control
behaviors. Generally, this research studies the coordination of
multiple  robots,  as  a  system  consisting  of  many  simple
physical robots [92]. It is supposed that the constant feedback
for  the  desired  collective  behaviors  appears  from  the
interactions  between  these  robots,  and  their  interactions  with
the environment. As compared to ordinary distributed robotic
systems,  swarm robotics  emphasizes large numbers of  robots
and heightens scalability.

Globally optimal path planning is a common problem in the
navigation  of  autonomous  mobile  robots,  and  the  navigation
must  be  collision-free.  Tan et  al.  [93]  utilized  the  ACO
algorithm to resolve this problem, and verified that it provided
better  performance  in  convergence  speed,  solution  variation,
dynamic  convergence  behavior,  and  calculative  efficiency
than the general path planning technique, on account of a real-
coded genetic algorithm with an elitist model. Contreras-Cruz
et  al.  [94]  combined the ABC algorithm and an evolutionary
programming algorithm to  improve  a  feasible  path  generated
by  a  series  of  local  optimization  procedures.  Experiments
demonstrated  the  statistical  significance  of  the  promotion
obtained by their proposed method. Yao et al. [95] structured
a hybrid adaptive AFS algorithm based on adaptive enhanced
prey  behavior  and  the  segmented  adaptive  strategy  for  an
artificial fish’s view and steps, and the algorithm was verified
based  on  path  planning  for  a  coal  mine  rescue  robot.  In
addition, for other issues in robotics research, Pugh et al. [96]
explored the performance of PSO in noisy environments while
paying  attention  to  unsupervised  robotic  learning  and
suggested  an  augmentation  of  the  original  method  for
achieving  maximization  of  performance.  Aghajarian et  al.
[97] presented an innovative application of the BFO algorithm
to  generate  a  fuzzy  controller  for  tracking  control  of  a  robot
manipulator.  It  was  used  efficiently  to  constitute  a  rule  base
and membership functions. The simulation results represented
the superiority of the BFO algorithm (as compared to the PSO
algorithm) for this application.  

C.  Power System
Owing to the network connections of the power system and

further innovations in the electricity market, the power system
is  in  fact  developing  to  be  a  large-scale  nonlinear  dynamic
system,  and  several  complex  engineering  calculations  are
required  to  be  resolved  [98].  Note  that  swarm  intelligence
does not require any preconditions for centralized control and
a global model, it is really appropriate for solving large-scale
nonlinear  optimization  problems  that  are  difficult  to  solve
using traditional methods (and for which it is hard to establish
effective  formalized  models).  Recently,  there  have  been
several  studies  on  the  successful  practical  application  of

swarm intelligence in power systems.
Economic  dispatch  is  of  great  value  for  electrical  power

system operations. To solve this complex problem, Zhou et al.
[99]  described  a  multi-objective  multi-population  ACO
algorithm  for  a  continuous  domain.  It  proved  valuable  in
minimizing  a  total  fuel  cost  subject  to  various  physical  and
operational  constraints,  via  appropriately  allocating  power
demands to generator modules. Abido [100] employed a PSO
algorithm  to  find  the  optimal  settings  of  power-system
stabilizer  parameters.  An  eigenvalue  analysis  and  the
nonlinear  simulation  results  demonstrated  its  effectiveness  in
damping  out  the  local  and  inter-area  modes  of  oscillations,
and  it  performed  availably  over  a  wide  range  of  loading
conditions  and  system  configurations.  Gozde et  al.  [101]
provided  the  usage  of  the  ABC  algorithm  as  an  AI-based
optimization technique for optimizing an automatic generation
control  system, and provided a comprehensive analysis  of  its
tuning  performance  and  contributions  to  robustness.  The
market  clearing  price  (MCP)  acts  as  one  of  the  main  factors
for load control and market monitoring in a power system. Li
and  Wang  [102]  applied  the  AFS  algorithm  to  improve  the
ability  to  determine  the  MCP,  and  it  provided  advantages
insofar as fast training, the overcoming of local extrema, swift
access  to  a  global  optimum,  and  so  on.  Ali  and  Abd-Elazim
[103]  proposed  BFO-based  load  frequency  control  for  the
suppression of oscillations in a power system. It was adopted
to obtain optimal controller parameters by minimizing a time
domain objective function.  

D.  Parameter Optimization
Parameter  optimization  considers  a  field  of  problems  that

seek optimal control parameters [104]. Traditionally, the most
elaborate  systematic  methods  for  parameter  optimization  are
on  account  of  generalization  error  estimations  and  gradient
descents.  In  recent  years,  the  development  of  parameter
optimizations  for  various  operating  systems  has  been
supported by AI techniques and evolutionary strategies.

One of the most important research problems in an SVM is
the  generation  of  optimal  parameters  to  develop  an  efficient
SVM, so  as  to  achieve  the  desired  output  with  an  acceptable
level  of  accuracy.  Zhang et  al.  [105]  applied  the  ACO
algorithm  to  establish  a  new  SVM  model  to  resolve  this
problem.  It  only  explored  a  finite  subset  of  the  possible
values,  to  obtain  the  parameters  that  minimized  the
generalization  error.  A  flux-cored  arc  welding  (FCAW)
procedure is a fusion welding procedure in which the welding
electrode is a tubular wire that is continuously fed to the weld
area.  The  welding  input  parameters  are  truly  critical  in
determining  the  quality  of  a  weld  joint.  Panda et  al.  [106]
provided  a  model  of  the  weld  bead  geometry  in  the  FCAW
course  based  on  an  ANN,  and  optimization  of  the  process
parameters  utilizing  the  PSO  algorithm.  Focusing  on  the
improvement  of  algorithm  performance,  Akay  and  Karaboga
[107]  introduced  some  improvements  on  the  original  ABC
algorithm,  and  the  performance  of  the  improved  ABC
algorithm was investigated for real-parameter optimization in
both  basic  and  composite  functions.  Proportional  integral
derivative  (PID)  control,  as  a  classical  control  strategy,  has
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good robustness, and is widely adopted in process and motion
control. Cheng and Hong [108] utilized the AFS algorithm for
parameter  optimization,  which  is  the  core  of  PID  controller
design. In addition, the decrease of product development cycle
time  is  a  core  concern  for  industries  intended  to  keep
competitive  in  the  marketplace;  therefore,  rapid  fabrication
techniques  are  increasingly  important.  Panda et  al.  [109]
applied  the  BFO  algorithm  to  represent  a  theoretical
combination  of  parameter  settings  for  simultaneously
achieving great strength in all procedure responses.  

E.  System Identification
System identification is the phrase adopted in the automatic

control  field  to  denote  the  optimal  estimation  of  dynamic
black-box models for systems, in view of measurements of the
input and output signals of those systems [110]. It aims to start
from  measurements  of  the  system  behavior  and  external
influences,  and  attempts  to  confirm  a  mathematical  relation
between  them,  without  investigating  the  details  of  what  is
actually occurring inside the system.

Fuzzy  logic  has  been  used  in  the  analysis  of  physical  and
engineering  problems.  In  a  fuzzy  identification  problem,
several unknown parameters are required to be found, and the
interval for each parameter is uncertain. Thus, Tsai and Chen
[111]  provided  a  novel  ACO-based  fuzzy  identification
algorithm for finding silted initial  consequent parameters and
an  initial  membership  function  matrix.  In  [112],  Alfi  and
Modares  proposed  a  method  to  find  optimal  system
parameters  and  optimal  control  parameters  utilizing  a  new
adaptive  PSO  algorithm.  Its  main  advantages  were  in
achieving  a  faster  convergence  speed  and  better  solution
accuracy  with  the  minimum  increment  in  the  computational
burden.  To  distinguish  unknown  fractional-order  chaotic
systems  from  the  view  of  optimization,  Hu et  al.  [113]
presented  an  innovative  parameter  estimation  scheme  on
account  of  a  hybrid  ABC  algorithm;  it  was  proven  to  be  a
feasible,  effective,  and  promising  method.  Han et  al.  [114]
addressed  parameter  identification  for  a  photovoltaic  module
in  view  of  an  enhanced  AFS  algorithm.  Its  feasibility  was
approved  by  identifying  the  parameters  of  one  commercial
photovoltaic  submodule  with  a  single  diode  model  under
various  operating  conditions.  Majhi  and  Panda  [115]
developed  a  valuable  identification  scheme  for  nonlinear
dynamic  systems  adopting  combinatorial  swarm  intelligence
algorithms,  e.g.,  BFO and PSO.  Compared  to  functional  link
ANN-based  methods,  the  combinatorial  technique  is  faster,
more accurate, and involves less computation.  

F.  Image Processing
Image  processing  is  the  use  of  a  computer  to  process

different images using algorithms [116]. The main influencing
factor  in  the  development  of  image  processing  is  the
increasing demand for a comprehensive range of applications,
e.g.,  in  medicine,  the  military,  agriculture,  and  industry.
Currently,  increasing research has been conducted on nature-
inspired  methods  for  image  processing,  such  as  swarm
intelligence algorithms.

An  edge  is  one  of  the  simplest  and  the  most  important

features  of  an  image,  and  it  is  widely  adopted  in  image
recognition,  segmentation,  enhancement,  and  compression.
Tian et  al.  [117]  successfully  applied  an  ACO  algorithm  to
image edge detection by combining gradients and the relative
differences  of  statistical  means.  Based on PSO,  Omran et  al.
[118] provided a novel dynamic clustering method for image
segmentation.  It  could  automatically  determine  the  optimum
cluster  number  and  simultaneously  cluster  the  data  set,  with
minimal user interference. Image enhancement acts as the core
phase in an image processing system and tries to improve both
the  visual  and  informational  qualities  of  distorted  images.
Draa  and  Bouaziz  [119]  proposed  an  innovative  ABC
algorithm for image contrast enhancement, and its superiority
was proven by comparing the obtained results with those of a
genetic  algorithm.  For  efficient  color  image quantization,  El-
Said  [120]  exploited  the  optimization  capability  of  an
improved  AFS  algorithm  to  overcome  the  deficiencies  of  a
fuzzy C-means algorithm. The algorithm could also be used to
obtain  visually  improved  images  after  the  quantization.  In
addition,  to  enhance  color  images  using  a  fuzzy  logic
technique,  Hanmandlu et  al.  [121]  used  a  bacterial  foraging
algorithm  to  generate  the  parameters  for  optimized  entropy
and  the  visual  factors  which  are  involved  in  the  objective
function.  

G.  Signal Processing
Signal processing plays an extremely key role in extracting

valuable  information  from different  detectors,  and  acts  as  an
electrical  engineering  subfield  which  includes  analyzing,
modifying,  and  synthesizing  signals  such  as  sounds,  images,
and  biological  measurements  [122].  Relevant  techniques  are
applied  to  promote  the  transmission,  storage  efficiency,  and
subjective quality of the signals, and also to emphasize or find
components of interest in a measured signal.

Signal  processing  in  regard  to  brain  activity  has  become  a
challenge for various researchers. Huang et al. [123] proposed
an ACO algorithm to generate the distributions of the intensity
of  a  targeted  image,  so  as  to  obtain  the  spatiotemporal
characteristics  of  brain  activities.  Shadmand  and  Mashoufi
[124] used an ANN to classify electrocardiogram heartbeats of
a patient into five typical types, and the network structure and
weights  were  effectively  optimized  adopting  a  classic  PSO
algorithm.  Koza  and  Karaboga  [125]  utilized  an  ABC
algorithm  for  the  construction  of  a  quadrature  mirror  filter
bank with a mitral valve Doppler signal, and used it in various
subjects,  such  as  image  coding  and  signal  processing.  Jiang
and  Yuan  [126]  combined  an  AFS  algorithm  with  a
conventional  wavelet  threshold  algorithm,  and  enhanced  the
effects  of  signal  processing  using  optimization.  Sahu et  al.
[127]  resolved  the  problem  of  electric  power  systems  being
polluted  by  unwanted  fluctuations  in  both  the  current  and
voltage  signals,  based  on  an  improved  BFO  algorithm.  The
algorithm  could  also  raise  the  classification  accuracy  of
various power quality events.  

IV.  Discussions and Trends

Recently, swarm intelligence has been extensively discussed
in  the  field  of  multi-objective  optimization.  Consequently,

TANG et al.: A REVIEW ON REPRESENTATIVE SWARM INTELLIGENCE ALGORITHMS FOR SOLVING OPTIMIZATION PROBLEMS 1637 



many  related  approaches  have  emerged.  Along  with  the
promising  performances  swarm  intelligence  has  realized,  the
research  literature  has  also  indicated  some  important
challenges,  as  well  as  inherent  trends.  These are  summarized
in Table I, and are described below.
 

TABLE I 

Analysis of Swarm Intelligence Algorithms

Strengths

Relatively higher scalability

Excellent exploration and exploitation capability

Simple individuals and collective intelligence

Good robustness

Limitations

Temporal complexity

Stagnation situation/Local optimum

Possible slower feedback

Trends

Novel extension of swarm algorithms

Characteristic refinement of individual agent

Further improvement of application transformation

Comprehensive consideration of negative factors

Normative systematization of refined datasets

 
   

A.  Strengths
Swarm  intelligence  algorithms  present  advantages  as

compared  to  traditional  methods,  and  even  as  compared  to
other  AI  algorithms.  Based  on  the  relevant  literature,  some
representative advantages are summarized as follows.

1)  The  most  basic  feature  of  the  swarm  intelligence
algorithms  is  the  flexible  number  of  individuals,  facilitating
higher  scalability.  Thus,  their  control  mechanisms  are  not
excessively based on swarm size, as long as it is not too small
or too large.

2)  They  present  the  capability  to  realise  a  relatively  large-
scale  search,  and  to  refine  the  solutions  in  a  single  search
process. In the phase of generating the optimal solution, they
usually  present  excellent  exploration  and  exploitation
capabilities.

3)  Several  simple  individuals  interacting  locally  among
themselves  can  eventually  lead  to  a  sophisticated  global
behavior.  Low-level  interactions  between  simple  individuals
have been represented to make the percolation of information
known  by  only  a  few  individuals  throughout  an  entire
aggregate,  and  to  promote  the  emergence  of  collective
intelligence. This mechanism is particularly suitable for some
frontiers  in  special  fields,  such as  targeted medical  therapies,
bee colony drones, and geographic surveillance.

4)  Basically,  the  swarm  operates  without  central  control,
and  no  specific  individual  is  indispensable  for  the  swarm  to
keep operation.  This  means that  a  malfunction in  any part  of
this  system would  not  increase  the  risk  of  a  complete  failure
of the entire swarm system, providing good robustness.  

B.  Limitations
As  concluded  in  the  majority  of  the  papers,  swarm

intelligence algorithms have proven to be valuable in dealing

with  various  tasks  and  challenges.  However,  there  are  also
several  limitations  worth  mentioning,  and  the  representative
limitations are summarized as follows.

1)  Swarm  intelligence  algorithms  are  generally  time-
consuming processes which are affected by factors such as the
size  of  population,  frequency  of  iterations,  and  pattern  of
iterations.  Thus,  these factors directly affect  the efficiency of
swarm intelligence  algorithms  relative  to  the  size  of  relevant
applications, and these algorithms may be worthless when the
factors exceed certain sizes.

2)  Basic  swarm  intelligence  algorithms  can  suffer  from
stagnation  or  a  premature  convergence  to  a  local  optimum,
owing to the lack of central coordination. Therefore, they need
to  be  improved  to  realise  adaptive  mechanisms  for
continuously  exploiting  and  exploring  the  search  space,  and
for balancing the searching speed.

3)  Blocking  coordination  mechanisms  increase  the
calculation  time.  In  particular,  an  agent  has  to  stay  for  other
agents  to  be  evaluated  before  it  could  continue  to  another
position  and start  exploring the  search  domain.  For  example,
the  basic  PSO  algorithm  is  computationally  costly,  owing  to
the  waiting  time  between  evaluation  of  the  first  particle  and
that of the rest of the swarm before the state could finally be
updated.  

C.  Future Research Directions
The research in swarm intelligence algorithms has shown a

positive  evolution;  in  addition,  it  provides  several  future
research  directions  that  may  contribute  to  further  growth  in
the field of swarm intelligence, as discussed below.

1)  Novel  extensions  of  swarm  algorithms.  The  existing
swarm  intelligence  algorithms  form  an  older  category  of
optimization  techniques,  i.e.,  immense  research  has  been
introduced,  and  potential  application  areas  have  been
expanded.  These  techniques  are  represented  by  an  adequate
number  of  references  in  the  previous  research.  Deeper
investigation  into  the  normal,  possibly  universal,  features  of
the collective behaviors  of  animals,  bacteria,  cells,  molecular
motors, and driven granular matter are necessary for extension
of  the  swarm  algorithm  family.  Appropriate  and  novel
application  areas  are  required  to  be  sought  out  for  other
advanced  and/or  simplified,  time-effective  algorithms,  as
these  are  still  unexplored  and  comparatively  newer
approaches to resolving complicated computation problems.

2)  Characteristic  refinement  of  individual  agent.  Future
research  should  also  pay  attention  to  the  characteristic
refinement  of  each  individual  agent,  to  promote  the  overall
optimization  performance  of  the  swarm  intelligence
algorithms.  For  example,  there  are  two  proverbial  kinds  of
interaction  patterns:  hierarchical,  and  egalitarian.  Some
research  has  indicated  that  an  individual  will  switch
interaction  patterns  in  different  situations.  This  switching
mechanism is prospective for potential  industrial  applications
in  multi-robot  system  coordination,  unmanned  vehicle
formation  control,  and  other  areas.  Within  these  individual
agent-based  techniques,  there  is  also  immense  potential  for
fine-tuning,  i.e.,  to  further  optimize  outcomes  based  on
context-specific  requirements.  Furthermore,  the  interplay  of
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social  and environmental  information and their  influences  on
population performance could be further investigated.

3)  Further  improvement  of  application  transformation.  In
nature,  thousands  (or  even  millions)  of  individuals  could
easily form a great range of patterns such as bacteria colonies,
bird  flocks,  and  insect  swarms,  purely  based  on  local
communications.  In  view  of  the  designed  methods  and
wireless  communication,  robotic  systems  could  simulate
several  complex  biological  swarm  structures.  Using  patterns
and rules, these elements could dramatically amend the swarm
shape  based  on  the  environment.  However,  creating  a
swarming  robotic  system  with  a  large  number  of  individual
members at a micro-scale that embodies functional collective
behaviors is also a challenge. Therefore, while expanding the
algorithm,  future  research  should  also  focus  on  hardware
developments and algorithm transformations in the application
area.

4)  Comprehensive  consideration  of  negative  factors.  It  is
well-known that social interactions benefit swarm members in
diverse  ways,  such  as  by  increasing  the  foraging  ability  or
reducing  the  predation  risk.  However,  the  social  benefits
should  be  weighed  against  possible  adverse  effects,  such  as
de-valued  individual  information,  and  reduced  sensitivity  to
changing  environments.  Individuals  must  weigh
environmental  information  gathered  from  their  senses  along
with  social  information  or  face  a  larger  risk  of  isolation  and
predation.  These  possible  negative  factors  from  group
members should be investigated, to make it easier to consider
and simulate negative downside elements in an actual system
when applying swarm intelligence algorithms.

5)  Normative  systematization  of  refined  datasets.  Swarm
intelligence  is  achieving  popularity  for  resolving  different
optimization  problems  and  is  attracting  the  attention  of  an
incremental  number  of  researchers.  Researchers  should  pay
attention to comparing different swarm intelligence algorithms
and  their  variants  and  providing  in-depth  empirical  and
analytic  studies.  All  the  innovative  algorithms  should  be
tested,  and  a  normative  systematization  of  refined  datasets
should be required and/or recommended. The refined datasets
should  be  classified  based  on  the  different  algorithms.  In
addition,  a  taxonomy  of  uniformly  recognized  evaluation
methods  (e.g.,  for  testing  the  performance,  advantages,  and
drawbacks of specific algorithms) are necessary for improving
comparisons  of  the  results,  and  could  greatly  promote  the
application process.  

V.  Conclusion

Swarm  intelligence  algorithms  mimic  the  swarm
intelligence  behavior  of  biological  elements  in  nature,  and
have  been  gradually  popular  cross-discipline  and/or  research
field  in  recent  years.  This  review  provides  a  comprehensive
survey  of  swarm  intelligence  and  represents  a  categorization
scheme  for  analyzing  the  existing  swarm intelligence  studies
with  applications.  It  is  evident  from  the  study  that  the
representative  algorithms  discussed  here  (ACO,  PSO,  AFS
and BFO and ABC) are very popular and well-explored, with
several  literatures  relating to  each subject.  Authors  have also
expressed  details  of  lesser-known  algorithms,  among  which

the  cuckoo  search,  pigeon-inspired  optimization,  bat,  grey
wolf  optimizer,  artificial  immune  system,  and  fruit  fly
optimization  algorithms  have  formed  an  important  and
growing  category.  These  algorithms  have  been  utilized  in
numerous diverse domains for solving optimization problems,
e.g.,  scheduling  problems,  robots,  power  systems,  parameter
optimization,  system  identification,  image  processing,  and
signal  processing.  Despite  the  promising  results  reported  so
far,  there  is  significant  space  for  further  advances.  The
strengths  and  limitations  are  discussed  and  future  research
trends are summarized, in an attempt to provide a standard for
the evaluation and application of the algorithms and to display
potential  valuable  directions  for  subsequent  research.  Swarm
intelligence  is  still  active,  and  its  potential  is  far  from  being
exhausted; research and applications will continue to increase
in the future.  

Abbreviations

In Table II ,  we  summarize  the  abbreviations  and  notations
used throughout the review in alphabetical order.
 

TABLE II 

Abbreviations Used in This Overview

Abbreviation Term

ABC artificial bee colony

ACO ant colony optimization

AFS artificial fish swarm

AI artificial intelligence

ANN artificial neural networks

ARTIS artificial immune system

BFO bacterial foraging optimization

CI computational intelligence

FCAW flux cored arc welding

FOA fruit fly optimization algorithm

MCP market clearing price

PID proportional integral derivative

PSO particle swarm optimization

RCPSP resource-constrained project scheduling problem

SCC steelmaking-continuous casting

SVM support vector machine

UAV unmanned aerial vehicle
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