7112

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

ProtTrans: Toward Understanding the Language
of Life Through Self-Supervised Learning

Ahmed Elnaggar®™, Michael Heinzinger™, Christian Dallago™, Ghalia Rehawi
, Tamas Feher™, Christoph Angerer, Martin Steinegger,

Tom Gibbs
Debsindhu Bhowmik

, Yu Wang", Llion Jones,

, and Burkhard Rost

Abstract—Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models
(LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we
trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from
UniRef and BFD containing up to 393 billion amino acids. The protein LMs (pLMs) were trained on the Summit supercomputer using
5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw pLM-embeddings from unlabeled data
captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for
several subsequent tasks: (1) a per-residue (per-token) prediction of protein secondary structure (3-state accuracy Q3=81%-87%); (2)
per-protein (pooling) predictions of protein sub-cellular location (ten-state accuracy: Q10=81%) and membrane versus water-soluble
(2-state accuracy Q2=91%). For secondary structure, the most informative embeddings (ProtT5) for the first time outperformed the
state-of-the-art without multiple sequence alignments (MSAs) or evolutionary information thereby bypassing expensive database
searches. Taken together, the results implied that pLMs learned some of the grammar of the language of life. All our models are

available through https://github.com/agemagician/ProtTrans.

Index Terms—Computational biology, high performance computing, machine learning, language modeling, deep learning

1 INTRODUCTION

DEEP Learning (DL) has recently been advancing hand-
in-hand with High-Performance Computing (HPC) to
achieve new scientific breakthroughs in both fields. More
powerful supercomputers [1], [2] and advanced libraries
[3], [4], [5], [6], [7] enable the training of more complex mod-
els on bigger data sets using advanced processing units
(incl. Graphics Processing Units (GPUs) and Tensor Proc-
essing Units (TPUs)).

Through contextualized Language Models (LMs) [8], [9],
Natural Language Processing (NLP) has been benefiting
substantially from advances in HPC. In particular

o Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi,
and Burkhard Rost are with the Department of Informatics, Bioinformatics &
Computational Biology - i12, Technical University of Munich (TUM), 85748
Garching/Munich, Germany. E-mail: ahmed.elnaggar@tum.de, {mheinzinger,
assistant)@rostlab.org, christian@dallago.us, ghalia.rihawid3@gmail .com.

o Yu Wang is with the Med Al Technology (Wu Xi) Ltd., Wu Xi, Jiang Su
214000, China. E-mail: wang_yu@hotmail.com.

o Llion Jones is with the Google Al, Google, Mountain View, CA 94043
USA. E-mail: llion@google.com.

o Tom Gibbs, Tamas Feher, and Christoph Angerer are with the NVIDIA,
Santa Clara, CA 95051 USA. E-mail: {tgibbs, tfeher, cangerer |@nvidia.com.

o Martin Steinegger is with the School of Biological Sciences, Seoul National
University, Seoul 08826, South Korea. E-mail: martin.steinegger@snui.ac.
kr.

o Debsindhu Bhowmik is with Oak Ridge National Laboratory (ORNL), Oak
Ridge, TN 37830 USA. E-mail: bhowmikd@ornl.gov.

Manuscript received 20 July 2020; revised 3 May 2021; accepted 21 June 2021.
Date of publication 7 July 2021; date of current version 9 September 2022.
(Corresponding author: Ahmed Elnaggar.)

Recommended for acceptance by C. S. Ong.

Digital Object Identifier no. 10.1109/TPAMI.2021.3095381

<+

Transformers [10] have reached state-of-the-art (SOA) perfor-
mance for several tasks [11], [12]. Limitations in annotations
do not constrain LMs: the self-supervised training exclu-
sively relies upon the sequential order of the input, e.g., by
reconstructing corrupted tokens given the surrounding
sequence. After training, we can extract some information
learned by the LMs, referred to as embeddings. Transfer-learn-
ing refers to the idea of using such embeddings as input for
subsequently trained supervised models. These two steps
outsource the computationally demanding LM pre-training
to the HPC infrastructure, leaving the computationally less
demanding inference to commodity hardware.

Proteins are the machinery of life, built from 20 different
basic biochemical building blocks (called amino acids). Like
beads, those amino acids are strung up in one-dimensional
(ID) sequences (the beads are referred to as residues once
connected). These 1D sequences adopt unique three-dimen-
sional (3D) shapes (referred to as protein 3D structure) [13],
and these perform specific function(s) (simply put: as
sequence determines structure determines function). We know
many orders of magnitude more protein amino acid sequen-
ces than experimental protein structures (sequence-structure
gap) [14]. Knowing structure helps to understand function.
Closing, more generally, the sequence-annotation gap
through prediction methods based on artificial intelligence
(AD) is one of the crucial challenges for computational biol-
ogy and bioinformatics. Tapping into the vast wealth of
unlabeled data through transfer-learning is becoming cru-
cial to bridging these gaps.

Top prediction methods in computational biology [15],
[16], [171, [18], [19], [20] combine machine learning (ML)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4998-312X
https://orcid.org/0000-0002-4998-312X
https://orcid.org/0000-0002-4998-312X
https://orcid.org/0000-0002-4998-312X
https://orcid.org/0000-0002-4998-312X
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0002-9601-3580
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0003-4650-6181
https://orcid.org/0000-0001-5115-8658
https://orcid.org/0000-0001-5115-8658
https://orcid.org/0000-0001-5115-8658
https://orcid.org/0000-0001-5115-8658
https://orcid.org/0000-0001-5115-8658
https://orcid.org/0000-0003-4976-9366
https://orcid.org/0000-0003-4976-9366
https://orcid.org/0000-0003-4976-9366
https://orcid.org/0000-0003-4976-9366
https://orcid.org/0000-0003-4976-9366
https://orcid.org/0000-0002-9196-5830
https://orcid.org/0000-0002-9196-5830
https://orcid.org/0000-0002-9196-5830
https://orcid.org/0000-0002-9196-5830
https://orcid.org/0000-0002-9196-5830
https://orcid.org/0000-0003-2095-4349
https://orcid.org/0000-0003-2095-4349
https://orcid.org/0000-0003-2095-4349
https://orcid.org/0000-0003-2095-4349
https://orcid.org/0000-0003-2095-4349
https://orcid.org/0000-0001-7770-9091
https://orcid.org/0000-0001-7770-9091
https://orcid.org/0000-0001-7770-9091
https://orcid.org/0000-0001-7770-9091
https://orcid.org/0000-0001-7770-9091
https://orcid.org/0000-0003-0179-8424
https://orcid.org/0000-0003-0179-8424
https://orcid.org/0000-0003-0179-8424
https://orcid.org/0000-0003-0179-8424
https://orcid.org/0000-0003-0179-8424
https://github.com/agemagician/ProtTrans
mailto:ahmed.elnaggar@tum.de
mailto:mheinzinger@rostlab.org
mailto:assistant@rostlab.org
mailto:christian@dallago.us
mailto:ghalia.rihawi93@gmail.com
mailto:wang_yu@hotmail.com
mailto:llion@google.com
mailto:tgibbs@nvidia.com
mailto:tfeher@nvidia.com
mailto:cangerer@nvidia.com
mailto:martin.steinegger@snu.ac.kr
mailto:martin.steinegger@snu.ac.kr
mailto:bhowmikd@ornl.gov

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

and evolutionary information (ED), first established as the win-
ning strategy to predict protein secondary structure [21],
[22] in two steps. First, search for a family of related proteins
summarized as multiple sequence alignment (MSA) and
extract the evolutionary information contained in this MSA.
Second, feed the El into the ML through supervised learning
of implicit structural or functional constraints. Such meth-
ods need no additional information as input other than the
EI which is amply available giving the exploding databases
of bio-sequences [23], [24]. However, there are several prices
to pay for EI First, when predicting for entire proteomes (all
proteins in an organism), compiling the EI becomes compu-
tationally costly [25]. Second, EI is not available for all pro-
teins (intrinsically disordered proteins [26] or dark proteome
[27]). Third, the improvement is best when the EI is most
diverse [28], [29]. The latest, and arguably largest leap ever
in terms of protein structure prediction, namely Alpha-
Fold2, relies on an advanced combination of EI and ML
[30]. Although predicting protein structure at unprece-
dented levels of accuracy, the method is many orders of
magnitude more computationally expensive than the crea-
tion of “minimal” MSAs.

In analogy to NLP, protein Language Models (pLMs)
interpret an entire protein sequence as a sentence and its
constituents — amino acids - as single words. Protein
sequences are constrained to adopt particular 3D structures
optimized for accomplishing particular functions. These
constraints mirror the rules of grammar and meaning in
NLP. Since pLMs extract features directly from single pro-
tein sequences, such single-sequence based methods might,
for the first time in almost three decades, reach top perfor-
mance without using EI/MSAs.

In this project, dubbed ProtTrans, we pursued two objec-
tives. First, we explored the limits of up-scaling language
models trained on proteins as well as protein sequence data-
bases used for training. Second, we compared the effects of
auto-regressive and auto-encoding pre-training upon the
success of the subsequent supervised training, and com-
pared all LMs trained here to existing state-of-the-art (SOA)
solutions using evolutionary information (EI) [31].

2 METHODS

Protein Language Models (pLMs) copy the concepts of Lan-
guage Models from NLP by using as tokens (words in NLP)
amino acids from protein sequences, treating entire proteins
like sentences in LMs. In step 1 these pLMs are trained in
self-supervised manner, essentially learning to predict
masked amino acids (tokens) in already known sequences
(Data: 2.1, Method: 2.4). Once trained, we need to establish
that the pLMs capture relevant information (Data: 2.2). This
first step uses only protein sequences without any annota-
tion as input. In step 2, we transfer what the pLMs learned
by extracting the embeddings and using them as input for
supervised training of per-residue/per-token (secondary
structure) and per-protein/pooling (transmembrane pro-
teins and subcellular location) prediction tasks (Data: 2.3,
Method: 2.5). The second step uses experimental labels
about proteins for the supervised training. Details about
Hardware (2.6) and Software (2.7) provide details about
implementing pLMs.

7113

TABLE 1
Data Protein LM - UniRef50 and UniRef100 Cluster the UniProt
Database at 50 and 100 percent Pairwise Sequence Identity
(100 percent Implying That Duplicates are Removed) [32]; BFD
Combines UniProt With Metagenomic Data Keeping Only One
Copy for Duplicates [24], [33]

Data LM UniRef50 UniRef100 BFD
Number proteins [in m] 45 216 2,122
Number of amino acids [in b] 14 88 393
Disk space [in GB] 26 150 572

Units: number of proteins in millions (m), of amino acids in billions (b), and of
disk space in GB (uncompressed storage as text).

2.1 Data for Protein Language Models (pLMs)

We measure the impact of data amount on performance
through three data sets (Table 1, SOM Fig. 9, which can be
found on the Computer Society Digital Library at http:/ /doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3095381):
Uniref50 [32], UniRef100 [32], and BFD (Big Fantastic Data-
base) [24], [33]. Merging UniProt [23] and proteins translated
from multiple metagenomic sequencing projects, BFD has
become the largest collection of protein sequences: about eight
times larger than the largest sets used previously for pLMs
[34]. The 8-fold increase in data increased the number of
tokens 5-fold (Table 1), as proteins were 1.6-fold longer in Uni-
Ref100. Without a clear mapping for LMs from NLP to pro-
teins, i.e., the concept of words can be related to single amino
acids, a window of amino acids (k-mer motifs [35]) or func-
tional units (domains [36]), we decided to interpret single
amino acids as input tokens/words. Thereby, protein data-
bases contain several orders of magnitude more tokens than
corpora used in NLP, e.g., Google’s Billion Word data set [37]
top in NLP with about 829m (million) tokens (words), com-
pared to BFD with 393b (billion) tokens (amino acids). Inter-
preting domains as words, would cut the number of tokens in
BFD roughly by a factor of 100 (average domain length [38])
still leaving 5-times more tokens in BFD than the Billion Word
corpus. Uniref50, UniRef100 and BFD were tokenized with a
single space (indicating word-boundaries) between each
token. Each protein sequence was stored on a separate line,
with lines/proteins representing the equivalent of
”sentences”. Additionally, an empty line was inserted
between each protein sequence in order to indicate the “end
of a document”; however, this is only essential for models
with auxiliary task (Bert and Albert). Non-generic or unre-
solved amino acids ([BOUZ]) were mapped to unknown (X).
For training ProtTXL and ProtT5, the data was transformed to
pytorch and tensorflow tensors, respectively on the fly. For
ProtBert, ProtAlbert, ProtXLNet and ProtElectra, the data was
pre-processed and stored as tensorflow records. Given tensor-
flow records with terabytes, data sets had to be chunked into
6000 files for thousands of parallel workers.

2.2 Data for Unsupervised Evaluation of
Embeddings

We extracted the information captured by the protein LMs

through embeddings, i.e., vector representations from the last

hidden state of the protein LM (Fig. 1) and analyzed it by

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3095381
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3095381

7114

Token-level

classification T T T L
A

Supervised ¥
‘ A
T T T Concatenate

network
A
L amino acid 1024 1024 1024 1024) '

e 11 1]

Last hidden layer

mean(L) Pooling

Stack of N self-
attention layers

sl ol 00
S8 B 6 O

Fig. 1. Feature extraction overview - We give a general overview on how
ProtTrans models can be used to derive features (embeddings) for arbi-
trary protein sequences either on the level of single amino acids or whole
proteins and how they can be used for classification tasks on both levels.
First, an example protein sequence "SEQ” is tokenized and positional
encoding is added. The resulting vectors are passed through any of our
ProtTrans models to create context-aware embeddings for each input
token, i.e., each amino acid. Here, we used the last hidden state of the
Transformer’s attention stack as input for downstream prediction meth-
ods. Those embeddings can either be used directly as input for predic-
tion tasks on the level of individual tokens, e.g., a CNN can be used to
predict an amino acid’s secondary structure. Alternatively, those embed-
dings can be concatenated and pooled along the length-dimension to
get fixed-size embedding irrespective of the input length, i.e., global
average pooling is applied. The resulting protein-level embedding can
be used as input for predicting aspects of proteins, e.g., a FNN can be
used to predict a protein’s cellular localization.

Transformer model

1024 Protein
T embedding

Supervised
network

Protein-level
classification

Nuc\euﬂ

projecting the high-dimensional representations down to
two dimensions (2D) using t-SNE [39]. Toward this end, we
took annotations from several sources. First, a non-redun-
dant (PIDE<40%) version of the SCOPe database [40]
(release 2.07 with 14,323 proteins). Second, we mapped pro-
teins into the three major domains of life (archaea, bacteria, or
eukarya) or to viruses (removing all proteins with missing
classifications). The number of iterations for the t-SNE pro-
jections was set to 3,000 and the perplexity to 30 for all plots
with the exception of the amino acid plot for which we used
a perplexity of 5. All visualizations used the same random
seed (42).

2.3 Data for Supervised Training

We also assessed the information captured during self-
supervised pre-training of our protein LMs by using
embeddings extracted from those models as sole input for
supervised training. Although we mostly relied on previ-
ously published data sets to ease comparisons to other
methods, for the supervised training, we also added a novel
test set to refine the evaluation.

Per-Residue Prediction /Single Tokens. To predict properties
of single tokens (here: single amino acids, dubbed residues
when joined in proteins), we used the training set published
with NetSurfP-2.0 [15] describing secondary structure in 3-
and 8-states (class distribution for all data sets in SOM
Tables 4, 3, available online). We also included other public
test data sets, namely CB513 [41]), TS115 [42], and CASP12
[43]. Each of those has severe limitations (CASP12: too
small, CB513 and TS115 redundant and outdated). There-
fore, we added a new test set using only proteins published

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

after the release of NetSurfP-2.0 (after Jan 1, 2019). We
included proteins from the PDB [44] with resolutions < 2.5
A and > 20 residues. MMSeqs2 [45] with highest sensitivity
(-s 7.5) removed proteins with >20% PIDE to either the
training set or to itself. On top, PISCES [46] removed any
protein considered by its procedure to have >20% PIDE.
These filters reduced the number of new proteins (chains)
from 18k to 364 (dubbed set NEW364).

Per-Protein Prediction/Embedding Pooling. For the predic-
tion of features for entire proteins (analogous to the classifi-
cation of whole sentences in NLP), the DeepLoc [16] data
set was used to classify proteins into (i) membrane-bound
versus water-soluble and (ii) ten classes of subcellular local-
ization (also referred to as cellular compartments).

2.4 Step 1: Self-Supervised Protein LM Pre-Training
We trained six successful LMs in NLP (T5 [47], Electra [48],
BERT [49], Albert [50], Transformer-XL [51] and XLNet [11])
on protein sequences. BERT was the first bidirectional
model in NLP which tried to reconstruct corrupted tokens,
and is considered the de-facto standard for transfer learning
in NLP. Albert reduced BERT’s complexity by hard parame-
ter sharing between its attention layers which allows to
increase the number of attention heads (64 chosen here).
Electra tries to improve the sampling-efficiency of the pre-
training task by training two networks, a generator and a
discriminator. Instead of only reconstructing corrupted
input tokens, the generator (BERT) reconstructs masked
tokens, potentially creating plausible alternatives, and the
discriminator (Electra) detects which tokens were masked.
This enriches the training signal as the loss can be computed
over all tokens instead of the subset of corrupted tokens
(usually only 15 percent). T5 uses the original transformer
architecture proposed for sequence translation, which con-
sists of an encoder that projects a source language to an
embedding space and a decoder that generates a translation
to a target language based on the encoder’s embedding.
Only later, models used either the encoder (BERT, Albert,
Electra) or the decoder (TransformerXL, XLNet), but T5
showed that this simplification might come at a certain price
as it reaches state-of-the-art results in multiple NLP bench-
marks. Additionally, it provides the flexibility to apply dif-
ferent training methodologies and different masking
strategies, e.g., T5 allows to reconstruct spans of tokens
instead of single tokens.

As self-attention is a set-operation and thus order-inde-
pendent, Transformers require explicit positional encoding.
Models trained with sinusoidal position signal like BERT,
Albert or Electra, can process only sequences shorter or
equal to the length of the positional encoding which has to
be set before training. Due to the huge memory requirement
of Transformer-models, this parameter is usually set to a
value lower than the longest proteins, e.g., Titin with 33k
residues. Here, we trained models that were affected by this
limitations (ProtBERT, ProtAlbert, ProtElectra) first on pro-
teins of length < 512, then on proteins < 1024. Only setting
the length of the positional encoding to 40k after pre-train-
ing allowed the models to process protein sequences up to a
length of 40k. In contrast to this, TransformerXL introduced
a memory that allows it to process sequences of arbitrary

TABLE 2
Large-Scale Deep Learning: The Table Shows the Configurations for Pre-Training the Protein LMs Introduced Here (ProtTXL,
ProtBert, ProtXLNet, ProtAlbert, ProtElectra, ProtT5) Using Either Summit, a TPU Pod v2 or a TPU Pod v3

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

7115

length. Still, the model cuts sequences into fragments but
allows for flow of information between fragments for longer
proteins by re-using hidden states of fragments which have
already been processed. While its memory is uni-directional
as fragments are processed sequentially, TransformerXL
captures only uni-directional context within one memory
fragment (auto-regressive) while XLNet, which uses a simi-
lar memory mechanism to process sequences of arbitrary
length, allows to gather bidirectional context within one
memory fragment.

In contrast to this, T5 learns a positional encoding for
each attention head that is shared across all layers. This
way, the model learned to combine the relative offset
between residue pairs of lower layers, enabling the model
to make predictions beyond the actual length of the posi-
tional encoding. No auxiliary tasks like BERT’s next-sen-
tence prediction were used for any model described here.

ProtTXL, ProtBert, ProtXLNet, ProtAlbert and ProtElec-
tra were trained on UniRefl100, ProtT5 on UniRef50, and
ProtTXL, ProtBert & ProtT5, on BFD (Table 2). Largely, we
transferred configurations successfully from NLP to protein
sequences [52], [53], [54], with the exception of the number
of layers that was increased to optimize memory utilization.

ProtTXL. The Transformer-XL' was trained using both
UniRef100 and BFD-100 datasets (referred to as ProtTXL and
ProtTXL-BFD, respectively; Table 2). Both models used a
dropout rate of 15 percent, a memory length of 512 tokens
and using mixed precision. The number of layers, number of
heads, batch size, learning rate, weight decay, training steps
and warm-up steps were adjusted according to training set
size as well as GPU utilization. The number of warm-up
steps was set to cover at least one epoch for each data set. We
tested initial learning rates between 0.001 and 0.005 which
were increased linearly at every training step over the warm-
up period. To avoid model divergence during training, the

1. https:/ / github.com/NVIDIA /DeepLearningExamples /

Hyperparameter ProtTXL ProtBert ProtXLNet | ProtAlbert | ProtElectra ProtT5-XL ProtT5-XXL
Dataset BFD100 | UniRef100 | BFD100 [UniRef100 | UniRef100 | UniRef100 | UniRef100 |UniRef50 [BFD100 | UniRef50 | BFD100
Number of Layers 32 | 30 30 30 12 30 24 24
Hidden Layers Size 1024 1024 1024 4096 1024 1024 1024
Hidden Layers Intermediate Size 4096 4096 4096 16384 4096 16384 65536
Number of Heads 14] 16 16 16 64 16 32 128
Positional Encoding Limits - 40K - 40K 40K - -
Dropout 0.15 0.0 0.1 0.0 0.0 0.1 01 [00
Target Length 512 512/2048 512 512/2048 | 512/1024 512 512
Memory Length 512 - 384 - - - -
Masking Probability - 15% - 15% 25% 15% 15%
Local Batch Size 8 5 32/6 | 30/5 2 21/2 18/7 8 | 4 8 | 4
Global Batch Size 44928 | 22464 [32768/6144|15360/2560 1024 10752/1024| 9216/3584 | 2048 | 4096 2048 | 4096
Optimizer Lamb Lamb Adam Lamb Lamb AdaFactor AdaFactor
Learning Rate 0.0005 0.002 0.002 0.00001 0.002 0.002 0.01 0.01
Weight Decay 0.0 0.01 0.01 0.01 0.01 0.01 0.0 0.0
Training Steps 40.7K 313K | 800K/200K [300K/100K| 847K |150K/150K|[400K/400K| 991K [12M 343K [920K
Warm-up Steps 13.6K 5.5K 140K/20K | 40K/0K 20K 40K/5K | 40K/40K 10K 10K
Mixed Precision 2226_ Ilt/I/[;s(i: “l/vvzléii None None None None None None
Number of Parameters 562M \ 409M 420M 409M 224M 420M 3B 11B
System Summit | Summit TPU Pod TPU Pod | TPU Pod | TPU Pod TPU Pod TPU Pod
Number of Nodes 936 128 [64 64 64 64 32 [128 32] 128
Number of GPUs/TPUs 5616 1024 | 512 512 512 512 256 | 1024 256 | 1024

learning rate had to be (i) reduced along with the warm-up
steps (for BFD), or (ii) increased for both (for Uniref100).
Even after increasing the warm-up steps to two epochs, the
maximum learning rate remained at 0.0025 for both data
sets. Beyond this point, the training diverged. Using weight
decay to regularize the network increased the GPU memory
usage as it required to compute the norm of all weight vec-
tors on our models, thus reducing the batch size. ProtTXL-
BFD was trained for 40k steps in total, with 13.6k warm-up
steps using a learning rate of 0.0005, while ProtTXL was
trained for 31k steps with 5k warm-up steps using a learning
rate of 0.002. The Lamb optimizer was able to handle the
resulting batch sizes of 44k and 22k for ProtTXL-BFD and
ProtTXL, respectively, without divergence.

ProtBert. BERT? was trained using both UniRef100 and
BFD-100 datasets (referred to as ProtBert and ProtBert-BFD,
respectively; Table 2). Compared to the original BERT publi-
cation, the number of layers was increased. Unlike Trans-
former-XL which was trained on Nvidia GPUs, mixed-
precision was not used to train other models because those
were trained on TPUs. Similar to the BERT version trained
in the Lamb paper [55], ProtBert was first trained for 300k
steps on sequences with a maximum length of 512 and then
for another 100k steps on sequences with a length of a maxi-
mum length of 2k. While ProtBert-BFD was trained for 800k
steps, then for another 200k steps for sequences with maxi-
mum length of 512 and 2k, respectively. This allows the
model to first extract useful features from shorter sequences
while using a larger batch size, rendering training on longer
sequences more efficient.

ProtAlbert. We trained Albert’ on UniRef100 (ProtAlbert;
Table 2). We used the configuration from the official GitHub
repository for Albert (version: xxlarge v2). For Albert the
number of layers is increased through the number of times,
Albert stacks its single layer. Compared to the original

2. https:/ /github.com/google-research/bert
3. https://github.com/google-research/albert

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/google-research/bert
https://github.com/google-research/albert

7116

publication, we achieved increasing the global batch size
from 4096 to 10752 on the same hardware. The reason for
this counter-intuitive effect is the reduced vocabulary size
in proteins: the entire diversity of the protein universe is
realized by 20 different amino acids, compared to tens of
thousands of different words. Similar to ProtBert, ProtAl-
bert was first trained for 150k steps on sequences with a
maximum length of 512 and then for another 150k steps on
sequences with a maximum length of 2k.

ProtXLNet. XLNet* was trained on UniRef100 (ProtXL-
Net) using the original NLP configuration [11] (Table 2)
except for the number of layers that was increased to 30
layers which reduced the global batch size to 1024. Due to
the relatively small batch-size, we used the original opti-
mizer: Adam with a learning rate of 0.00001. The model
was trained through more steps, i.e., 20k warm-up and
847k steps to compensate for the smaller batch-size of this
model.

ProtElectra. Electra’ consists of two models, a generator
and discriminator (same number of layers, generator 25
percent of the discriminator’s hidden layer size, hidden
layer intermediate size, and number of heads). We copied
Electra’s NLP configuration with two changes: increasing
the number of layers to 30 and using Lamb optimizer.
Again, we split the training into two phases: the first for
proteins < 512 residues (400k steps at 9k global batch size),
the second for proteins < 1024 (400k steps at 3.5k global
batch size). While ProtTXL, ProtBert, ProtAlbert and
ProtXLNet relied on pre-computed tensorflow records as
input, Electra allowed to mask sequences on the fly, allow-
ing the model to see different masking patterns during
each epoch.

ProtT5. Unlike the previous LMs, T5° uses an encoder
and decoder [10]. We trained two model sizes, one with 3B
(T5-XL) and one with 11B parameters (T5-XXL). T5-XL was
trained using 8-way model parallelism, while T5-XXL was
trained using 32-way model parallelism. First, T5-XL and
T5-XXL were trained on BFD for 1.2M and 920k steps
respectively (ProtT5-XL-BFD, ProtT5-XXL-BFD). In a second
step, ProtT5-XL-BFD and ProtT5-XXL-BFD were fine-tuned
on UniRef50 for 991k and 343k steps respectively (ProtT5-
XL-U50, ProtT5-XXL-U50). Contrary to the original T5
model which masks spans of multiple tokens, we adopted
BERT’s denoising objective to corrupt and reconstruct single
tokens using a masking probability of 15 percent. All T5
models used the AdaFactor optimizer with inverse square
root learning rate schedule for pre-training. Like ProtElec-
tra, T5 masks each sequence on the fly. In our hands, the
encoder outperformed the decoder on all benchmarks sig-
nificantly and running the model in half-precision during
inference instead of full-precision had no effect on perfor-
mance but allowed to run the model on on a single Nvidia
TitanV (12GB vRAM). Thus, we dropped the decoder from
further analysis which cuts model size by half during infer-
ence. For completeness, we made weights for encoder and
decoder publicly available.

4. https:/ /github.com/zihangdai/xInet

5. https:/ /github.com/google-research/electra

6. https://github.com/google-research/text-to-text-transfer-
transformer

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

2.5 Step 2: Transfer Learning of Supervised Models
In the transfer-learning step, embeddings from our pre-
trained protein LMs served as sole input to subsequent
supervised training, thereby transferring knowledge acqu-
ired during self-supervised pre-training to other tasks. To
best analyze the impact of transfer learning, we deliberately
kept the supervised models using the embeddings from the
protein LMs as input minimal. In particular, compared to
SOA solutions such as NetSurfP-2.0, all our experiments
used the pre-trained LMs as feature extractors without fine-
tuning, i.e., without gradient back-propagating to the LMs.
Throughout, we extracted the embeddings from the last hid-
den state of the pre-trained LMs as described in detail else-
where [56]. To briefly summarize (Fig. 1): we applied tasks on
two different levels, namely on the level of single tokens (per-
residue) and whole sentences through pooling (per-protein)
predictions. For the per-residue prediction, we input the
embeddings into a two-layer convolutional neural network
(CNN). The first CCN layer compressed the embeddings to
32 dimensions using a window size of 7. The compressed
representation was fed into two different CNNs (each with
window size 7). One learned to predict secondary structure
in 3-states, the other in 8-states. The network was trained on
both outputs simultaneously by adding their losses (multi-
task learning). For ProtBERT-BFD embeddings we addition-
ally trained three other models: logistic regression, FNN and
LSTM. Similar to the CNN, the two-layer FNN first com-
pressed the output of the language model down to 32 dimen-
sions which the second FINN-layer used to predict 3- and 8-
states simultaneously. The bi-directional LSTM compressed
the embeddings down to 16 dimensions. Concatenating both
directions, the resulting 32 dimensional representation was
used by a FNN layer to predict 3- or 8-states. As the CNN per-
formed best (SOM Table 8, available online), we used CNNs
throughout. For the per-protein prediction, we also extracted
the embeddings from the last layer of the protein LMs. How-
ever, then we pooled the representations over the length-
dimension resulting in a fixed-size representation for all pro-
teins. Using ProtBERT-BFD embeddings, we compared alter-
native pooling strategies (SOM Table 8, available online) and
chose mean-pooling for all further experiments. The resulting
vector was used as an input to a single feed forward layer
with 32 neurons which compressed information before mak-
ing the final predictions for both per-protein tasks, i.e., the
prediction of subcellular localization and the differentiation
between membrane-bound and water-soluble proteins,
simultaneously (multi-task learning).

2.6 Hardware
HPC hardware is advancing both through infrastructure of
supercomputers, such as Fugaku [57], Summit [1] or the
SuperMUC-NG [58], and through its components, such as
TPU pods [2], specifically designed to ease large scale neu-
ral network training for users. Concurrent software
improvements in form of more efficient libraries such as
Horovod [6] allow executing general purpose code on large
distributed clusters with minor code changes. In this section
we give details on the hardware used for training language
models on large protein sequence databases.

ORNL Summit & Rhea. The Oak Ridge National Labora-
tory (ORNL) provides several clusters for researchers who

https://github.com/zihangdai/xlnet
https://github.com/google-research/electra
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

need computational resources not provided by research
facilities such as universities. Here, we used Summit and
Rhea. Summit was used to train the deep learning models,
while Rhea was used for the pre-processing of data sets
including the distributed generation of tensorflow records.

Summit is the world’s second fastest computer, consist-
ing of approximately 4618 nodes. Each node has two IBM
POWERS processors and six NVIDIA Volta V100 with 16GB
of memory each [1]. Every POWERY processor is connected
via dual NVLINK bricks, each capable of a 25GB/s transfer
rate in both directions. A single node has 0.5 TB of DDR4
main memory and 1.6TB of non-volatile memory that can
be used as a burst buffer. Summit is divided into racks with
each rack having 18 nodes. In all of our experiments we
reserved 936 nodes for training. As having nodes on the
same rack decreases the communication overhead, we
reserved entire racks.

The smaller cluster (Rhea) contains two partitions: Rhea
and GPU. The Rhea partition has 512 node, each with 128
GB of memory and two Intel® Xeon® E5-2650. The GPU par-
tition has only 9 nodes, each with 1 TB of memory and two
Intel® Xeon® E5-2695. Reha reduced the time needed for
creating tensorflow records for the BFD dataset from 7.5
months (!) to fewer than two days, by converting the origi-
nal sequential script to distributed processing using MPIL.
The generation script used two nodes of the GPU partition,
with a total of 112 parallel threads.

Google TPU Pod. In 2016, Google introduced tensor proc-
essing unit (TPU) as its application-specific integrated circuit
optimized for training neural networks. TPUs can be
accessed through Google Cloud. Training the protein LMs
used both older TPU generation (V2) with 256 cores, and the
latest TPU generation (V3) with 512 and 1024 cores. These
cores are divided into hosts with each host having access to 8
cores. Consequently, we had access to 32, 64 and 128 hosts
for V2/V3-256, V3-512 and V3-1024, and each core had 8 GiB
and 16 GiB of high-bandwidth memory for V2 and V3. Train-
ing on the TPUs required access to a virtual machine on Goo-
gle Cloud and storage on Google Bucket [59].

2.7 Software
Summit integrates several pre-configured modules which
include the most popular libraries and tools required for
simulation, deep learning, distributed training and other
purposes. We used the IBM Watson Machine Learning
module versions 1.6.0 and 1.6.2 for our deep learning train-
ing. In contrast to this, the Google Cloud server, which we
used for the TPU Pod training, had to be configured manu-
ally because only the operating system was installed.
Pytorch was used to train ProtTXL, tensorflow to train
ProtBert, ProtAlbert, ProtXLNet, ProtElectra and ProtT5.
Both libraries used the Horovod framework [6] to train the
models on distributed clusters such as Summit. Horovod
supports distributed GPU training with minimal change in
the code. It supports different backends including MPI,
NCCL and IBM PowerAl distributed deep learning (DDL).
We tested all three backends and found DDL to be the fastest
for our training purpose on Summit. The time needed to fin-
ish a single batch with ProtTXL-BFD increased from one to
two nodes due to the communication overhead (Fig. 2). After

7117

5
o 4
o
3 3
g *ProtTXL
=2 5 =ProtBert
=
9]
Q
[«F]
SO |

0

1(6) 2(12) 936 (5616)

Number of Nodes (and GPUs)

Fig. 2. Large scale dataset training: The figure shows the overhead of
increasing the number of nodes/gpus for both ProtTXL (blue; low) and
ProtBert (red; high). The overhead increases slightly from 1 to 2 nodes
but remains constant even when scaling up to 936 nodes with a total of
5616 GPUs. Having a low overhead means the model has a near-linear
scale-up across thousands of GPUs, upper-bounded by the theoretical
scale-up.

two nodes the communication overhead plateaued, even
when scaling up to 936 nodes with 5616 GPUs. Summit has
integrated DDL in their Watson Machine Learning module
which comes with most DDL libraries including pytorch,
tensorflow, apex, DDL and horovod. However, Summit has
only a license for using DDL up to 954 nodes. Contrary to
Summit, training on TPU Pods did not require any changes
in the Tensorflow code to use either a single TPU host or to
distribute workload among multiple TPU hosts.

Mixed precision allows to fit larger models and batch
sizes into GPU memory by using 16-bit precision only or a
mix of 16-bit and 32-bit precision. Nvidia’'s APEX library
[60] was used for mixed precision training of ProtTXL,
because APEX supports pytorch. As ProtTXL training
became instable when training with 16 Bit precision, we
switched to almost half precision training (more details in
SOM - 1.2 Software, available online). We did not use
mixed-precision for models trained on TPUs.

Another optimization technique/library crucial for our
training on Summit was IBM’s large model support (LMS)
[61]. Similar to gradient checkpointing [62], LMS virtually
extends the GPU memory by outsourcing parts of the model
from GPU to main memory. This allows training models
larger than the GPU memory. The obvious drawback of
LMS is the increase in training time due to shuttling data
between CPU and GPU and back. However, the reduced
memory consumption of the model allows to increase the
batch size, potentially compensating for the communication
overhead. ProtTXL was used to evaluate the effect of
Pytorch’s implementation of LMS while ProtBert was
trained for a few steps BFD using Summit to evaluate
tensorflow’s implementation of LMS. Training ProtBert for
a few steps was sufficient to assess the effect of LMS on
batch-size, model size as well as an estimate of training
time. In the end, we used LMS only for ProtTXL to strike a
balance between model size and training time. The number
of LM parameters could be increased by about 15.6 percent
for ProtTXL-BFD and to 6.6 percent for ProtBert (SOM Fig.
10a, available online). Additionally, we could increase the
batch size by 700 percent for ProtTXL-BFD (SOM Figs. 10b

7118

E . o A v
L .G
=] " o L
g ¥ g
b= o A v v
[~ Top
+ W x°
.C
+ N o
[} x
H
c +
oy G
(v} .Y .
Vo v s +
-— \ .
] o A o
el A" A
'V
m w v

A Hydrophobic (aromatic) ¢ Special cases

v Hydrophobic (aliphatic) @ Small (<130 Dalton)
@ Medium

@Big (>150 Dalton)

@ All alpha

@ All beta
+ Positive

% Negative
® Polar neutral

A Amino acids

B Structure: SCOPe

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

® Eukaryota @ Archaea
® Bacteria

©® Multi-domain

Membrane, cell surface ® Viruses

® Alpha & beta (alb) @Small proteins
© Alpha & beta (a+b)

C Lineage: Kingdoms

Fig. 3. Protein LMs learned constraints. t-SNE projections visualized information extracted by the unsupervised protein LMs (here best-performing
ProtT5-XL-U50; upper row: before training (Random), and lower row: after pre-training on BFD & UniRef50. (A) The left-most column highlights sin-

gle amino acids by biophysical features. (B) The middle column annotates protein structural class (taken from SCOPe). (C) The right-most column
distinguishes proteins according to the kingdom of life in which it is native. Although the random projections on top may suggest some adequacy of
the clusters, the trained models shown on the lower row clearly stood out. Incidentally, the comparison of the two also highlighted the potential pitfalls
of using t-SNE projections from many dimensions onto 2D: although random, the human might see some correct patterns even in the top row. Most
impressive might be the fine-grained distinctions of biophysical features of amino acids (A), however, more surprising are the classifications of entire
proteins according to structural class (B) and organism (C). For these, we created embeddings through global average pooling over the representa-
tions extracted from the last layer of ProtT5-U50 (average over protein length, i.e., per-protein embeddings; Fig. 1).

and 10c, available online). The NV-Link between CPU and
GPU on Summit-nodes, reduced the training time for
ProtTXL by 60 percent while it increased by 72 percent for
ProtBert (SOM Fig. 10d, available online).

3 RESULTS

Section 3.1 established that the protein LMs (pLMs) learned
to distinguish between different types of proteins by projec-
ting high-dimensional embeddings onto 2D using t-SNE
[39]. Section 3.2 showed that pLM embeddings succeeded
as exclusive input for supervised training to predict protein
features on the per-residue/token-level (secondary struc-
ture) and on the per-protein/sentence-level (location and
membrane/non-membrane). In fact, predictions based on
embeddings from single protein sequences were competi-
tive with, or even surpassed, top methods relying on infor-
mation from multiple alignments (MSAs). The last
Section 3.3 established that the on par performance will cre-
ate substantially lower costs in terms of computing, energy,
or CO2 consumption for every future protein prediction.

3.1 Step 1: Protein LMs Learn Without Labels

Embeddings extract constraints about protein function and
structure learned by the protein LMs during self-supervised

pre-training on raw (unlabeled) protein sequences. t-SNE
plots [39] visualized this information by projecting the
embeddings onto 2D and by overlaying annotations (labels)
of structural, functional or evolutionary features. Using
attention maps, we analyzed the DNA-binding zinc-finger
motif well conserved in evolution in more detail.

Capturing Biophysical Features of Amino Acids. Applying t-
SNE to the uncontextualized token embedding layer visual-
ized information extracted by the pLMs for individual
amino acids independent of their context (residues next to
it). As previously established for another pLM [53], the t-
SNE projections (e.g., ProtT5-XL-U50 SOM Fig. 14a, avail-
able online, or ProtBert-BFD SOM Fig. 15a, available online)
suggested that all pLMs captured essential biophysical
amino acid features, including charge, polarity, size, hydro-
phobicity, even to the level of aliphatic ([AILMV]) versus
aromatic ((WFY]).

We compared the embedding projection with a ran-
domly initialized model of identical architecture to ascer-
tain that the observed effects did not originate from
coincidental signals originating from projecting high-
dimensional data (Fig. 3 A) or some inductive bias of neu-
ral networks [63]. The random projection clearly did not
carry biophysical information, while the embeddings pro-
jection did.

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

Capturing Protein Structure Classes. We averaged over the
length-dimension of the representations derived from the
last layer of each pLM (Fig. 1) to derive fixed size representa-
tions for each protein and superposed structural class from
SCOPe [40]. ProtBert-BFD and especially ProtT5-XL-U50
embeddings visually separated the proteins best (SOM Figs.
14-19, available online). Although sequence length was not
explicitly encoded and our pooling squeezed proteins into a
fixed vector size, all pLMs separated small from long pro-
teins (brown, e.g., ProtT5-XL-U50 SOM Fig. 14D, available
online). All models also distinguished between water-solu-
ble and transmembrane proteins (light blue, e.g., ProtT5-XL-
U50 SOM Fig. 14D, available online) and, to some extent,
between proteins according to their secondary structure
composition(e.g., all-alpha (dark blue) versus all-beta (dark
green) ProtT5-XL-US50 Fig. 14D, available online). While hav-
ing much higher entropy, even the random model clustered
small proteins from long proteins (brown, Fig. 3B).

Capturing Domains of Life and Viruses. The analysis distin-
guished three domains of life: archaea, bacteria, and eukarya,
along with viruses - typically not considered as life. We used
the same proteins and per-protein pooling as above for
SCOPe. All pLMs captured some organism-specific aspects
(e.g., ProtT5-XL-U50 SOM Fig. 14E, available online).
Eukarya and bacteria clustered better than viruses and
archaea. Comparing different pLMs revealed the same
trend as for protein structure classes: ProtTXL (SOM 19E,
available online) and ProtBert (SOM 16E, available online)
produced higher entropy clusters, while ProtAlbert (SOM
17E, available online), ProtXLNet (SOM 18E, available
online), ProtBERT-BFD (SOM Fig. 15E, available online)
and ProtT5-XL-U50 (SOM Fig. 14E, available online) pro-
duced visually easier separable clusters.

Capturing Protein Function in Conserved Motifs. A similar
overall per-protein analysis as for structural classes and
domains of life also suggested some clustering according to
protein function as proxied by enzymatic activity (EC-num-
bers [64] and subcellular location (SOM -1.3 pLMs unsuper-
vised, available online). We focused in more detail on the
attention mechanism [65] at the core of each Transformer
model [10] providing some limited understanding [66], [67].
We visualized [68] the attention weights of ProtAlbert to
analyze the structural motif of a zinc-finger binding domain
(SOM Fig. 11, available online) crucial for DNA- and RNA-
binding and conserved across diverse organisms. Some of
the attention heads of ProtAlbert (SOM Fig. 11, available
online; line thickness resembles attention weight) focused
mostly on the four residues involved in zinc-binding (resi-
dues highlighted in the left part of SOM Fig. 11, available
online) which is essential for function.

3.2 Step 2: pLMs Competitive as Input to Predict

The acid test to prove that pLM embeddings extracted
important constraints is to exclusively use embeddings as
input to supervised training. We proxied this through pre-
dictions on two different levels, namely on the per-residue
or token level (secondary structure) and on the per-protein
or sentence level through pooling over entire proteins (loca-
tion, and classification into membrane/non-membrane pro-
teins). The pLMs remained unchanged, i.e., both approaches

7119

(per-residue/per-protein) used only embeddings derived
from the hidden state of the last attention layer of each pLM
(Fig. 1),i.e., pLMs were only used as static feature extractors.

3.2.1 Per-Residue Secondary Structure Prediction

To ease comparability, we evaluated all models on standard
performance measures (Q3/Q8: three/eight-state per-resi-
due accuracy, i.e., percentage of residues predicted correctly
in either of the 3/8 secondary structure states) and on stan-
dard data sets (CASP12, TS115, CB513). To increase the
validity, we added a novel, non-redundant test set (dubbed
NEW364). For simplicity, we only presented values for Q3 on
CASP12 and NEW364 (TS115 and CB513 contain substantial
redundancy; Q8 results brought little novelty; SOM Tables 7,
6, available online). As error estimates failed to capture the
performance variation between NEW364 and CASP12, we
used CASP12 as lower- and NEW364 as upper-limit.

Comparing Supervised Architectures. We input embeddings
from ProtBERT-BFD into four different supervised models
(Methods): logistic regression (LogReg), FNN, CNN and
LSTM. LogReg provided an advanced baseline (Q3(LogReg)
=74.3-79.3, lower number for set CASP12, upper for set
NEW364; SOM Table 5, available online). LSTMs and CNNs
performed alike and better than LogReg (Q3(CNN)=76.1-
81.1% versus Q3(LSTM)76.1-80.9%). In the following, we
focused on the more energy-efficient CNNS.

Comparing pLMs. Trained on UniRef100 (Table 1), Prot-
Bert outperformed other models trained on the same corpus
(SOM Tables 7, 6, available online). For ProtTXL and Prot-
Bert, we could analyze the influence of database size upon
performance: 10-times larger BFD (Table 1) helped ProtBert
slightly (AQ3: +1.1%) but made ProtTXL worse (AQ3: -0.6%;
SOM Tables 7, 6, available online). The gain was larger
when fine-tuning the two ProtT5 versions (XL and XXL) by
first training on BFD and then refining on UniRef50. Consis-
tently, all models fine-tuned on UniRef50 outperformed
those trained only on BFD (Fig. 4, SOM Tables 7, 6, available
online). Although these gains were consistently numerically
higher, the statistical significance remained within the 68
percent confidence interval (maximal difference: 1.1 percent
compared to one standard error of +0.5%).

Embeddings Reached State-of-the-Art (SOA). All models
(ProtTXL, ProtBert, ProtAlbert, ProtXLNet, ProtElectra,
ProtT5) and all databases (BFD, UniRef50/UniRef100) tested
improved significantly over context-free feature extractors
such as word2vec-based approaches (DeepProtVec in Fig. 4
and SOM Table 6, available online). Both ProtTXL versions
fell short compared to an existing ELMo/LSTM-based solu-
tion (DeepSeqVec [56]) while all other Transformer-models
outperformed DeepSeqVec. Embeddings extracted from
another large Transformer (ESMB-1b [67]), improved over
all our non-ProtT5 models (Fig. 4 and SOM Table 6, available
online). Most solutions using only embeddings as input
were outperformed by the top SOA method NetSurfP-2.0
[15] using evolutionary information (Fig. 4 and SOM Tables
7, 6, available online). However, ProtT5-XL-U50 reached
nearly identical performance without ever using multiple
sequence alignments (MSA). Analyzing the average Q3 per
protein of both models for set NEW364 in more detail (SOM
Fig. 12, available online), revealed that 57 percent of the

7120
£ % Lo Il CASP12

£ B NEW364 (stderr: 0.5%)

S IGE] * large BFD precraining
3 80 =80
© 60 —60
g 40 F40
® 20 " 20

g ||| i -
3 85 85

[} - L
2 80 i 80
:’-)_75 5 I I ;75
g70- I I I 70

S 65 Ll

2 65 —65

8 \ \I ! \I \I \I i

X
o’é &Q(g; g@bﬁ, @%‘j&?{»{gﬂg
QN So2eR
& S Y
&8 9 X

no LM / MSA input
evolutionary information

Fig. 4. Per-residue (token-level) performance for secondary structure
prediction: CASP12 (red) and NEW364 (blue) constitute two test sets.
Protein LMs trained here are shown in the left panel of the figure. Addi-
tions of BFD mark pre-training on the largest database BFD, U50 mark
pre-training with BFD and refining with UniRef50. We included protein
LMs described elsewhere (marked as: protein LMs others, namely ESM-
1b [67], DeepProtVec and DeepSeqVec [56]). All embeddings were input
to the same CNN architecture. Two approaches used amino acids
instead of embeddings as input (marked as: no LMs: DeepOneHot [56] -
one-hot encoding - and DeepBLOSUMG62 [56] - input BLOSUM62 [69]
substitution matrix), as well as, to the current state-of-the-art (SOA)
method NetSurfP-2.0 [15], and Jpred4 [70], RaptorX [71], [72], Spider3
[73]. The rightmost four methods use MSA as input (marked as: MSA
input evolutionary information). While only rotT5-XL-U50 reached the
SOA without using MSAs, several protein LMs outperformed other meth-
ods using MSA. All protein LMs other than the context-free DeepProtVec
improved significantly over methods using only amino acid information
as input. One interpretation of the difference between the two data sets
is that CASP12 provided a lower and NEW364 an upper limit. The top
row shows the complete range from 0-100, while the lower row zooms
into the range of differences relevant here.

proteins were predicted with higher Q3 by ProtT5-XL-U50
(CASP12 was too small for such a differential analysis).

pLMs Shone for Small Families. The size of protein families
followed the expected power-law/Zipf-distribution (few
families have many members, most have fewer [75]). To
simplify: families with fewer members carry less evolution-
ary information (EI) than those with more. One proxy for
this is the number of effective sequences (Neff), i.e., the
number of proteins in an MSA clustered at 62 percent PIDE
[74], [76]. We analyzed the effect of Neff by comparing Net-
SurfP-2.0 (using MSAs/EID) to ProtT5-XL-U50 (not using
MSAs) through four subsets of NEW364 applying different
Neff thresholds, i.e., the subset of proteins without any hit
(Neff=1 with 12 proteins), fewer than 10 hits (Neff < 10
with 49 proteins) and Neff>10 (314 proteins) (Fig. 5; details
on MSA in SOM, available online). ProtT5XL-U50 improved
most over NetSurfP-2.0 for the smallest families (Neff=1).

More Samples Better Performance. Despite substantial dif-
ferences, all pLMs exhibited a similar trend: performance
correlated with the number of samples presented to train
(pre-train). We computed the number of samples as the prod-
uct of the number of steps and the global batch size (Fig. 6;
Spearman’s p=0.62). In particular, comparing the two larg-
est models (ProtT5-XL and ProtT5-XXL) suggested more
pre-training steps to be more beneficial than bigger models.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

3.2.2 Per-Protein Location & Membrane Prediction

To investigate per-protein (sentence-level) predictions of
protein function, we trained FNNs on subcellular location
(also referred to as cellular compartment) in ten classes and
on the binary classification of membrane versus non-mem-
brane (also referred to as globular) proteins. Levels of ten-
state (Q10 for location) and two-state (Q2 for membrane/
globular) measured performance. Toward this end, we
pooled over the entire protein (Fig. 1).

Mean-Pooling Performed Best. Using ProtBERT-BFD embed-
dings, we compared four different pooling strategies for
collapsing per-residue (token-level) embeddings, the dimen-
sions of which differ for proteins of different length, into rep-
resentations of fixed length. These were min-, max-, and
mean-pooling, as well as, the concatenation of those three
(concat). The first two (min/max) performed almost fourteen
percentage points worse for location (Q10) and about three for
membrane/other (Q2) compared to the others (mean/concat,
SOM Table 8, available online). While mean-pooling and con-
cat performed similarly for the classification task (membrane/
other), mean-pooling outperformed concat for location by
about ten percentage points (SOM Table 8, available online).
In the following, we used only mean-pooling to benchmark
the per-protein/sentence-level predictions.

Comparison of pLMs. The per-protein prediction of loca-
tion largely confirmed the trend observed for per-residue
secondary str: All pLMs introduced here (marked by * in
SOM Table 9, available online) clearly outperformed the un-
contextualized word2vec-based approaches (DeepProtVec;
Fig. 7, SOM Table 9, available online). Except for ProtTXL
and ProtXLNet, all transformers trained here outperformed
the previous ELMo/LSTM-based solution (DeepSeqVec).
Increasing the corpus for pre-training the pLMs 10-fold
appeared inconsequential (Prot* versus Prot*-BFD in Fig. 7
and SOM Table 9, available online). In contrast, fine-tuning
ProtT5 models already trained on BFD using UniRef50
improved (Prot*/Prot*-BFD versus Prot*-U50 in Fig. 7 and
SOM Table 9, available online). Although most embedding-
based approaches were outperformed by the SOA using
MSAs (DeepLoc), both best ProtT5 models outperformed
DeepLoc without MSAs: Q10, Fig. 7 and SOM Table 9, avail-
able online.

Similar for Membrane/Other. Results for the classification
into membrane/other (Q2; SOM Table 9, available online),
largely confirmed those obtained for location (Q10) and sec-
ondary structure (Q3/Q8): (1) ProtT5 pLMs fine-tuned on
UniRef50 performed best without MSAs, (2) the 10-fold
larger pre-training BFD had no noticeable effect, (3) our best
pLMs outperformed existing transformer pLMs (ESM-1b)
(Fig. 7). In contrast to location and secondary structure, addi-
tionally pre-training on UniRef50 appeared not to increase
performance (SOM Table 9, available online) and both
ProtT5 remained 1-2 percentage points below DeepLoc.

3.3 Fast and Reliable Predictions From Embeddings
We compared the time needed to generate representations
for EI/MSA-based prediction methods and pLMs by gener-
ating MSAs and embeddings for each protein in the human
proteome (20,353 proteins with median length of 415). We
used the fastest method available, namely MMseqs2 [45],

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

B ProtT5-XL-U50 EEE NetSurfP-2.0

100

90

80
m 70 t o,
© b
60 ¢ ¢

$

50

‘ .
40 vt

¢

30
1 <=10 >10

Neff threshold

Fig. 5. Effect of MSA size. We used our new test set (NEW364) to ana-
lyze the effect of the size of an MSA upon secondary structure prediction
(Q3) for the two top methods (both reaching Q3=84.3%): NetSurfP-2.0
(using MSA) and ProtT5-XL-U50 (not using MSA). As proxy for MSA
size served Neff, the number of effective sequences [74] (clustered at
62 percent PIDE): leftmost bars: MSAs with Neff=1, middle: Neff& <
10, right: Neff>10. As expected ProtT5-XL-U50 tended to reach higher
levels than NetSurfP-2.0 for smaller families. Less expected was the
almost on par performance for larger families.

with parameters established by NetSurfP-2.0 to generate
MSAs (SOM for more details, available online). MMseqs2
was about 16 to 28-times slower than the fastest pLMs (Pro-
tElectra and ProtBert), and about 4 to 6-times slower than
our best model (ProtT5-XL; Fig. 8. ProtT5-XL, required on
average 0.12 seconds to generate embeddings for a human
protein, completing the entire human proteome (all proteins
in an organism) in only 40 minutes.

We also investigated the cross-effect of sequence length
and batch-size (SOM Table 10, available online) on the infer-
ence speed of different pLMs. When using a single Nvidia

7.5

+BERT-BFD

+ R=0.62

T5-XL-U50

7.0

Electra

+ 4 T5-XXL-U50

+
BERT T5-XXL-BFD

6.5

+ Albert

+TXL-BFD

XLNet
. ef

TXL

log10(Num. samples in K)

72 74 76 78 80 82 84
Q3(NEW364)

Fig. 6. Number of pre-training correlated with performance. We plotted 3-
state secondary structure prediction performance (Q3) on NEW364 for
all pLMs trained here against the number of samples seen during pre-
training (training steps times global batch-size in K). For simplicity, we
dropped the ”Prot” prefix from all models. Despite the vastly different
pLMs, the high Spearman’s p of 0.62 indicated a common trend: more
pre-training samples: better prediction.

7121

9?0 I Q10 localization

&L eggo £ ﬁ%,p I Q2 membrane/other
NG ‘WQ}? ‘@%ﬁ-\%ﬁ * large BFD pre-training

S0y

Per-protein accuracy
(sentence-level pooling)

no LM / MSA input
evolutionary information

protein LMs this work

others 'no MSA'

Fig. 7. Per-protein (sentence-level) performance: The prediction of loca-
tion in 10 states (lower bars in cyan: Q10: percentage of proteins with 1
of 10 classes correctly predicted) and the classification of membrane/
other (higher bars in magenta: Q2: percentage of proteins correctly clas-
sified in either of two classes). Embeddings were derived from pLMs by
mean-pooling, i.e., averaging over the length of the entire protein
(Fig. 1). Abbreviations as in Table 4 except for one method using neither
pLMs nor MSA (no LM no MSA: DeeplLoc-BLOSUM®62 [16]), and two
methods using MSAs (MSA input evolutionary information): the current
state-of-the-art (SOA) method (performance marked by horizontal thin
lines in magenta and cyan) DeepLoc [16], and LocTree2 [77]. Almost all
pLMs outperformed LocTree2 and a version of DeepLoc not using MSAs
(DeepLoc-BLOSUME62). Only, ProtT5-XXL-U50 and ProtT5-XL-U50 out-
performed the SOA. A recent method optimized location prediction from
ProtT5 embeddings through a light-attention mechanism; it clearly out-
performed the SOA without using MSAs (LA_ProtT5 & LA_ProtT5-U50
[78]). The top row shows the complete range from 0-100, while the lower
row zooms into the range of observed differences.

Quadro RTX 8000 with half precision on varying batch-sizes
(1,16,32) as well as sequence lengths (128, 256, 512), ProtBert
and ProtElectra provided the fastest inference with an aver-
age of 0.007 seconds per protein when using a batch size of
32, followed by ProtT5-XL and ProtAlbert (0.025s). The
batch-size of most pLMs could have been increased on the
same hardware but was limited to allow a direct compari-
son between all models, due to large memory requirements
for ProtT5-XXL. The script for running this benchmark is
freely available as part of our github repository.

4 DISCUSSION

4.1 Substantial Computing Resources Needed
to Cope

HPC Supercomputers such as Summit [1] and Google’s
cloud TPU Pod [2], combined with optimized libraries such
as IBM’s DDL [7] and Horovod [6] set the stage for training
LMs with billions of free parameters on terabytes of data in
hours or days. Increasing model size improves performance
for some NLP applications [12], although the massive data
challenges the communication between thousands of nodes
and divergence between large batches during training.
Here, we presented some solutions to overcome these chal-
lenges for training protein LMs (pLMs) by fully utilizing 20
percent of Summit for TransformerXL [51], one TPU Pod
V3-512 for Bert [49], Electra [48], Albert [50] and XLNet [11],

7122
Evolutionary Language
Information (EI) Modelling (LM)
252 » EI
« LM
200
E
Y 146 145
£
H
100
0
® 4 & LD S @S
Q-"&&g)&‘?j} IS
: T QS 9
QY Q@\ <© g < < Q@\ A

Fig. 8. Inference speed comparison: The time required to generate pro-
tein representations for the human proteome (20.353 proteins) is com-
pared using either our protein LMs or mmseqs2 (protein sequence
search tool [45] used to generate evolutionary information; NetSurfP-2.0
[15] parameters are used). Here, we used mmseqgs2 (red bar) to search
each protein in the human proteome against two large protein database
(UniRef90 and UniRef100 with 113M and 216M proteins, respectively).
Only embedding or search time is reported, i.e., no pre-processing or
pre-training was measured. mmseqs2 was run on an Intel Skylake Gold
6248 processor with 40 threads, SSD and 377GB main memory, while
protein LMs were run on a single Nvidia Quadro RTX 8000 with 48GB
memory using half precision and dynamic batch size depending on
sequence length (blue bar).

and a mix of TPU Pod V3-256, V3-512, and V3-1024 for
ProtT5-XL and ProtT5-XXL [47]. This implied the parallel
use of 5616 GPUs on Summit or 256/512/1024 TPU cores
on a TPU Pod, while avoiding training divergence with spe-
cialized optimizers such as LAMB [55] up to a global batch
size of 44K samples (here: protein sequences).

4.2 Training pLMs Longer Most Important

Mostly, we proxied the relevance of information extracted
by pre-trained pLMs through the performance of the subse-
quent supervised tasks trained exclusively on embeddings
from pre-trained pLMs. Using pLMs only as static feature
extractors, we considered the pLM to improve (or to be better)
when the supervised task using embeddings from this pLM
as input reached higher performance.

BFD - Biggest Data to Pre-Train. We trained our pLMs on
the largest protein database ever used for this purpose,
namely BFD [33], more than an order of magnitude larger
than the standard UniProt [23]. Although bigger did not
equate better supervised performance, several pLMs
improved through pre-training on more data (UniRef100
versus BFD, Table 1). Nevertheless, the performance
increase appeared small given the 10-fold larger data set
(e.g., AQ3(ProtBert-BFD/UniProt)=1.3%). In contrast, the
pre-training protocol by which we first trained on the larger
but more noisy (more mistakes in sequences) and redun-
dant BFD and then continued pre-training using the
smaller, less redundant UniRef50, improved performance
significantly for both ProtT5 versions (AQ3(ProtT5-XL-
BFD/U50)=2.8% and AQ3(ProtT5-XXL-BFD/U50)=1.4%).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

The improvement through refined pre-training for ProtT5-
XL (3B parameters) exceeded that for ProtT5-XXL (11B
parameters), presumably, because it saw more samples
when continuing pre-training for a similar amount of time
(limited by resources).

This highlighted a remarkable trend common across the
wide diversity of pLMs and data sets: the performance of
supervised downstream tasks using embeddings from pre-
trained pLMs increased with the number of samples pre-
sented during pre-training (Fig. 6; Spearman’s p=0.62). We
could not observe a similarly consistent trend for model
size. However, this might be attributed to some trade-off:
training for more steps might require models with sufficient
capacity to absorb the information of the corpus. For
instance, while ProtBERT-BFD (420M parameters) saw
around 27B proteins during pre-training, it fell short com-
pared to ProtT5-XL-BFD (3B parameters) which saw only
around 5B proteins (Figs. 4, SOM Tables 6, 7, available
online). This finding aligned with results from NLP suggest-
ing that larger models absorb information faster and need
less training to achieve similar performance [79]. However,
the comparison between, e.g., ProtT5-XL and ProtT5-XXL
suggested a possible cap to this trend, as larger models see
fewer samples in the same amount of computing power.
The clear correlation between performance and samples
combined with the need for sufficient model size
spotlighted the crucial role of substantial computing resour-
ces (HPC, TPUs, and GPUs): big data needs large models
need loads of computational resources.

4.3 pLMs Learned Global Constraints

Some rudimentary information about how proteins are
formed, shaped, and function has been learned by the
pLMs during pre-training: all our pLMs (ProtT5, ProtBert,
ProtElectra, ProtAlbert, ProtTXL, ProtXLNet) extracted
valuable information as revealed by visualizing embed-
dings without further supervised training on labeled data.
The comparisons to randomly initialized pLMs highlighted
two other aspects. First, how easy it is to incorrectly imagine
patterns when projecting from high-dimensional spaces into
2D: although the random pLMs contained no information,
some annotations might have suggested the opposite (Fig. 3
top row untrained). Second, the pLMs extracted important
global constraints about protein structure and function
(lower row in Fig. 3). These span from the most local (indi-
vidual token level) biophysical features of amino acid build-
ing blocks (e.g., hydrophobicity, charge, and size, Fig. 3 A),
over global classifications into structural classes (Fig. 3 B),
to the macroscopic domains of life (Fig. 3 C). Global struc-
tural (e.g., overall secondary structure content, Fig. 3 B) and
biochemical (e.g., transmembrane, SOM Fig. 14B, available
online) properties appeared most distinctive. In contrast,
local features relying on short motifs were less separated
(EC-numbers: Fig. 14F, location: Fig. 14C, available online)
but still clustered, e.g., for secreted / extracellular proteins or
hydrolases.

On a more fine-grained level, the visual analysis of the
attention mechanism at the core of each Transformer, con-
firmed the pLMs to have even picked up more subtle signals
of short functional motifs. Specifically, a few attention heads
of ProtAlbert zoomed into the four residues most important

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

to coordinate zinc-binding (SOM Fig. 11, available online).
Although limited in scope [66], such an analysis provided
some explanation about the inner workings of Transformers
not needing large sets of experimental annotations (labels).
On top, the resulting interpretations of the AI/ML might be less
biased than experimental annotations. For instance, data-
bases with annotations of protein function such as Swiss-
Prot [80] and of protein structure such as PDB [44] are
extremely biased by today’s experiments [75], [81], [82].

4.4 pLMs Top Without MSAs - Al Without El

The t-SNE and UMAP analyses revealed the pLMs to have
extracted some understanding of the language of life. As pre-
diction is the acid test for understanding, we extracted the
pLM embeddings as input to predicting aspects of protein
structure. Overall, the results confirmed [56] that evolution-
ary information (EL i.e., methods using multiple sequence
alignments MSAs) significantly outperformed most pLMs
not using such information, except for ProtT5-XL (on all
per-residue and per-protein tasks, Figs. 4, 7 and SOM Tables
7, 6,9, available online). ProtT5-XL eliminated this gap from
embeddings-only input: on some tasks/data sets, it outper-
formed the current state-of-the-art (SOA) MSA-based
method, on others it remained slightly behind. Newer
pLMs using context improved over both previous pLM-
based approaches [56] (8-9 percentage points in Q3), other
transformers [53] (2-4 percentage points in Q3), and over
non-contextualized word2vec-type approaches [83], [84]
(18-22 percentage points in Q3).

The performance differences between two data sets
(CASP12 and NEW364) highlighted another problem. While
it is clear that we need to reduce redundancy within the
evaluation set and between it and all development sets, it is
less clear how to exactly do this. In focusing on CASP12 and
NEW364, we approached two different assumptions.
CASP12 mostly measures how well predictions will be for
proteins with unseen structures. A comprehensive rigorous
realization of data sets following this perspective has
recently been published [85]. NEW364, on the other hand,
builds on the assumption that the maximal redundancy is
defined by sequence similar to protein in the PDB. In this sense,
we interpreted results for CASP12 as a lower and those for
NEW364 as an upper limit. The NEW364 comparisons also
highlighted the importance to constantly create up-to-date
data sets with enough non-redundant proteins never used
for development by any of the methods assessed.

pLMs so Powerful to Render Simple Baseline Effective. While
pre-training pLMs is computationally costly, training super-
vised models using embeddings as input requires much less
energy. For instance, the logistic regression trained on top of
ProtBERT-BFD was already competitive with substantially
more complex CNNs or LSTMs in predicting secondary
structure (SOM Table 5, available online). In another exam-
ple, a parameter-free nearest neighbor lookup using distan-
ces from pLM embeddings sufficed to outperform
homology-based inference for predicting protein function
[86]. This suggested that pLMs are particularly suitable
when so few experimental annotations (labels) are available
that the complexity of modern deep learning becomes pro-
hibitive. In fact, all supervised solutions presented here that

7123

reached the SOA were much less complex (fewer free
parameters) than the El-based methods they reached. We
focused on the development of pLMs using performance on
supervised tasks to rank without optimizing particular
supervised solutions. Others have already begun surmount-
ing El-based methods by custom-designing pLM-based sol-
utions [78] possibly even through end-to-end systems [30],
[87]. Such solutions can even compete when MSAs are abso-
lutely essential, e.g., for predicting effects of single amino
acid variants (SAVs) [88].

Bi-Directionality Crucial for pLMs. In NLP uni-directional
(auto-regressive) and bi-directional (auto-encoding) models
perform on par [12], [89]. In contrast, the bi-directional con-
text appeared crucial to model aspects of the language of life.
While auto-encoding models such as Albert [50] utilize con-
text to both sides during loss calculation, auto-regressive
models such as TransformerXL [51] consider only context to
one side. Performance increased substantially from uni-
directional ProtTXL to bi-directional ProtXLNet (Fig. 4, SOM
Tables 6, 7, available online). This might be compensated for
by first pre-training on sequences and their reverse and then
concatenating the output of uni-directional LMs applied on
both directions. While this does not allow the LM to use bi-
directional context during training, it allows supervised net-
works to combine context derived independently from both
sides. For instance, ELMo [8] concatenates the embeddings
derived from a forward and a backward LSTM. The protein
LM version of ELMo (SeqVec) outperformed the uni-direc-
tional ProtTXL but not the bi-directional ProtXLNet. The dif-
ference in model size (SeqVec = 93M versus ProtXLNet =
409M) and in pre-training data (SeqVec = 30M versus ProtAl-
bert=224M) might explain some of this effect. Nevertheless,
pure uni-directionality as used in TransformerXL appeared
detrimental for modeling protein sequences.

4.5 Have pLMs Reached a Ceiling?

Short answer: clearly not. For instance, since first submitting
this work (July 2020), the mark has been pushed substan-
tially higher. More generally, adopting techniques from
NLP to proteins opens new opportunities to extract infor-
mation from proteins in a self-supervised, data-driven way.
New protein representations may complement existing sol-
utions, most successful when combining evolutionary infor-
mation” and machine learning [21], [22], [31], [90]. Here we
showed for the first time that pLM embeddings input to rel-
atively simple supervised learning models can reach similar
levels of performance without using EI and without opti-
mizing the supervised training pipeline much. However,
the gain in inference speed for pLMs compared to tradi-
tional solutions using EI/MSAs is so significant that large-
scale predictions become, for the first time since 30 years,
feasible on commodity hardware. For instance, the best-per-
forming model ProtT5-XL-U50 can run on a Nvidia TitanV
with 12GB vRAM. Nevertheless, given the pLMs described
here and elsewhere [34], [52], [53], [56], [91], [92], [93], we
might expect an upper limit for what pLMs can learn

7. Throughout this work, we used evolutionary information (EI) as
synonymous for using multiple sequence alignments (MSAs). Whether
pLMs do not implicitly extract EI will have to be proven in separate
publications.

7124

through masked language modeling (or auto-regressive
pre-training). This work could establish three findings. (1)
Less noisy and less redundant corpora (e.g., UniRef50)
improved over larger but more noisy and redundant cor-
pora (e.g., BFD). (2) In our perspective of limited resources,
it was most important to use the resources for long-enough
training because the number of samples seen during pre-
training correlated with the prediction performance of
downstream tasks. Ultimately, this seemed to originate
from a trade-off between sufficient model size and sample
throughput. (3) The bi-directional outperformed the uni-
directional models tested. However, given the advances of
protein LMs over the course of the reviewing of this work,
we have seen no evidence for having reached a limit for
pLMs, yet.

Many Open Questions. Answers to the following questions
might advance the status-quo. (1) Would the addition of
auxiliary tasks such as next-sentence or sentence-order pre-
diction offered by BERT or Albert suit protein sequences? A
suggestion might be incorporating structure information
[94] or evolutionary relations [92], [95]. (2) Might the effi-
ciency of training transformer pLMs improve through
sparse transformers [96] or attention optimized with local-
ity-sensitive hashing (LSH) [97] as introduced recently by
the Reformer model [98] or more recent work of linear
Transformers [99]? (3) Which data set, pre-processing,
redundancy reduction and training batch sampling should
be used to improve? (4) How much will it improve to tailor
the supervised training pipeline to particular tasks? We
treated secondary structure or location prediction more as
proxies to showcase the success of protein LMs than as an
independent end. (5) Will the combination of EI and AI [95]
bring the best protein predictions of the future, or will the
advantages of single-protein predictions (speed, precision)
win out? In fact, single-protein predictions also have the
advantage of being more precise in that they do not provide
some implicit average over a protein family.

Overall, our results established that the combination of
HPC solutions for training protein LMs and subsequent
training of supervised prediction methods scaled up to the
largest data sets ever used in the field. Only the combination
of these different domains conclusively demonstrated that
pLMs reach up to or even above the performance of the best
methods in the field combining EI and Al without ever
exploiting multiple sequence alignments.

5 CONCLUSION

Here, we introduced many novel protein language models
(pLMs) and proved that embeddings extracted from the last
PLM layers captured constraints relevant for protein struc-
ture and function. Although neither the usage of the largest
ever database (BFD) to pre-train pLMs, nor that of very
large models generated the most informative embeddings.
Instead, pre-training sufficiently long on considerable diver-
sity made a difference, and more recent pLMs performed
best. Using embeddings as exclusive input to relatively
small-size CNN/FNN models without much optimization
yielded methods competitive in predicting secondary struc-
ture, sub-cellular location and in classifying proteins into
membrane/other. In fact, for the first time, new small-size

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

supervised solutions based on pLM embedding input
reached levels of performance challenging the state-of-the-
art (SOA) methods based on evolutionary information (EI)
taken form multiple sequence alignment (MSA) input. In
contrast, the models presented here never used MSAs. This
will save immense expenses when routinely applying
embedding-based protein predictions to large data sets, but
it also opens a path toward protein-specific rather than fam-
ily-averaged predictions. Ultimately, joining the strengths
of three different, yet complementary, fields (HPC, NLP
and computational biology) affected the advance. Self-
supervised pre-training combined with transfer-learning
tapped into the gold-mines of unlabeled data opening the
door for completely novel perspectives (and solutions) on
existing problems.

6 AVAILABILITY

We made all protein LMs trained here publicly available at our
ProtTrans repository “https:/ /github.com/agemagician/
ProtTrans/”. This repository also holds jupyter python note-
books with various tutorials, e.g., on how to extract embed-
dings or visualize attention using freely available online
resources (Google Colab). Additionally, secondary structure
predictions for ProtT5-XL-U50 are available through the Pre-
dictProtein [25] webserver: “https:/ / predictprotein.org/”.

ACKNOWLEDGMENTS

The authors would like to thank Tim Karl, TUM, and Jian
Kong, TUM, for invaluable help with hard- and software,
Inga Weise, TUM, and Aline Schmidt, TUM, for support
with many other aspects of this work, Florian Matthes,
TUM, for his generous support and encouragement, crucial
support and feedback from NVIDIA, in particular to Ulrich
Michaelis, Ada Sedova, Geetika Gupta, Axel Koehler, Fred-
eric Pariente, Jonathan Lefman, and Thomas Bradley, and
many at ORNL without whom no aspect of this work could
have been realized, particular thanks to John Gounley,
Hong-Jun Yoon, Georgia Tourassi, Bill, Brian, Junqi, Gra-
ham, and Verdnica (ORNL Summit). The authors would
also like to thank Jack Wells (ORNL) for opening the door
to kicking off this project. From IBM, the authors would like
to thank Nicolas Castet and Bryant Nelson for their help to
fix issues and enhance the performance of IBM PowerAL
From Google, the authors would like to thank Jamie Kinney,
Alex Schroeder, Nicole DeSantis, Andrew Stein, Vishal Mis-
hra, Eleazar Ortiz, Nora Limbourg, Cristian Mezzanotte,
and all TFRC Team for helping to setup a project on Google
Cloud and solving Google cloud issues. No ProtTrans
model was easily publicly available without support from
the Hugging Face team, including Patrick von Platen, Julien
Chaumond, and Clement Delangue. The authors would
also like to thank Konstantin WeiSenow for helping with
grant writing and providing early results for the structure
prediction task. The authors would also like to thank both
Adam Roberts and Colin Raffel for help with the T5 model,
and the editor and the anonymous reviewers for essential
criticism, especially, for suggesting to compare t-SNEs to
randomly initialized models. The authors would also like to
thank Leibniz Rechenzentrum (LRZ) for providing access

https://github.com/agemagician/ProtTrans/
https://github.com/agemagician/ProtTrans/
https://predictprotein.org/

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING

to DGX-1(V100) for the testing phase. This work was sup-
ported in part by Software Campus 2.0 (TUM) through the
German Ministry for Research and Education (BMBEF), in
part by the Alexander von Humboldt foundation through
the German Ministry for Research and Education (BMBF),
in part by the Deutsche Forschungsgemeinschaft under
Grant DFG-GZ: RO1320/4-1, and in part by NVIDIA with
the donation of 2 Titan GPUs used for the development
phase. The work of Martin Steinegger was supported in part
by the National Research Foundation of Korea under Grants
2019R1A6A1A10073437 and NRF-2020M3A9G7103933, in
part by the New Faculty Startup Fund and the Creative-Pio-
neering Researchers Program through Seoul National Univer-
sity. The work of Rostlab was supported in part by Google
Cloud and in part by Google Cloud Research Credits Program
to fund this project under Covid19 HPC Consortium grant.
This work used resources of the Oak Ridge National Labora-
tory (ORNL) Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Grant DE-
AC05-000R22725, and resources of TPU pods under Tensor-
Flow Research Cloud grant. A. Elnaggar and M. Heinzinger
contributed equally to this work.

REFERENCES

[1] J. Wells et al., “Announcing supercomputer summit,” Oak Ridge
Nat. Lab., Oak Ridge, TNUSA, Tech. Rep., 2016.

[2] N.P. Jouppi et al., “In-datacenter performance analysis of a ten-
sor processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archi-
tecture, Toronto, ON, Canada, Jun. 2017, pp. 1-12.

[3] M. Abadi ef al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” 2016, arXiv:1603.04467.

[4] A. Paszke et al., “PyTorch: An imperative style, high-perfor-
mance deep learning library,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 8026-8037.

[5] D. Kirk, “NVIDIA cuda software and GPU parallel computing
architecture,” in Proc. 6th Int. Symp. Memory Manage., Montreal,
Quebec, Canada, Oct. 2007, pp. 103-104.

[6] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distrib-
uted deep learning in TensorFlow,” 2018, arXiv:1802.05799.

[71 M. Choetal., “PowerAI DDL,” 2017, arXiv:1708.02188.

[8] M. E. Peters et al., “Deep contextualized word representations,”
2018, arXiv:1802.05365.

[9] J. Howard and S. Ruder, “Universal language model fine-tuning

for text classification,” 2018, arXiv:1801.06146.

A. Vaswani ef al., “Attention is all you need,” in Proc. Adv. Neural

Inf. Process. Syst., 2017, pp. 5998-6008.

Z. Yang et al., “XLNet: Generalized autoregressive pretraining

for language understanding,” 2020, arXiv:1906.08237.

M. Shoeybi et al., “Megatron-LM: Training multi-billion parame-

ter language models wusing model parallelism,” 2020,

arXiv:1909.08053.

C. B. Anfinsen and E. Haber, “Studies on the reduction and refor-

mation of protein disulfide bonds,” J. Biol. Chem., vol. 236, no. 5,

pp- 1361-1363, 1961.

B. Rost and C. Sander, “Bridging the protein sequence-structure

gap by structure predictions,” Annu. Rev. Biophys. Biomol. Struct.,

vol. 25, pp. 113-136, 1996.

M. S. Klausen et al., “NetSurfP-2.0: Improved prediction of pro-

tein structural features by integrated deep learning,” Proteins

Struct. Function Bioinf., vol. 87, no. 6, pp. 520-527, 2019.

J.J. A. Armenteros et al., “DeepLoc: Prediction of protein subcel-

lular localization using deep learning,” Bioinformatics, vol. 33,

no. 21, pp. 3387-3395, Nov. 2017.

J. Yang et al., “Improved protein structure prediction using pre-

dicted interresidue orientations,” Proc. Nat. Acad. Sci., vol. 117,

no. 3, pp. 1496-1503, Jan. 2020.

A. Kulandaisamy et al., “Pred-MutHTP: Prediction of disease-

causing and neutral mutations in human transmembrane

proteins,” Hum. Mutat., vol. 41, no. 3, pp. 581-590, 2020.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

7125

M. Schelling, T. A. Hopf, and B. Rost, “Evolutionary couplings
and sequence variation effect predict protein binding sites,” Pro-
teins Struct. Function Bioinf., vol. 86, no. 10, pp. 1064-1074, 2018.
M. Bernhofer et al., “TMSEG: Novel prediction of transmem-
brane helices,” Proteins Struct. Function Bioinf., vol. 84, no. 11,
pp- 1706-1716, 2016.

B. Rost and C. Sander, “Improved prediction of protein second-
ary structure by use of sequence profiles and neural networks,”
Proc. Nat. Acad. Sci., vol. 90, pp. 7558-7562, 1993.

B. Rost and C. Sander, “Prediction of protein secondary structure at
better than 70% accuracy,” |. Mol. Biol., vol. 232, pp. 584-599, 1993.
T. U. Consortium, “UniProt: A worldwide hub of protein knowl-
edge,” Nucleic Acids Res., vol. 47, no. D1, pp. D506-D515, Jan. 2019.
M. Steinegger, M. Mirdita, and J. S6ding, “Protein-level assembly
increases protein sequence recovery from metagenomic samples
manyfold,” Nat. Methods, vol. 16, no. 7, pp. 603-606, 2019.

M. Bernhofer ef al., “Predictprotein-predicting protein structure
and function for 29 years,” Nucleic Acids Res., vol. 49, pp. W535—
W540, 2021.

P. Radivojac ef al., “Protein flexibility and intrinsic disorder,”
Protein Sci., vol. 13, no. 1, pp. 71-80, 2004.

N. Perdigao, “Unexpected features of the dark proteome,” Proc.
Nat. Acad. Sci., vol. 112, no. 52, pp. 15898-15903, 2015.

T. A. Hopf et al., “Three-dimensional structures of membrane
proteins from genomic sequencing,” Cell, vol. 149, no. 7,
pp- 1607-1621, 2012.

B. Rost and A. Valencia, “Pitfalls of protein sequence analysis,”
Curr. Opin. Biotechnol., vol. 7, no. 4, pp. 457-461, 1996.

J.John et al., “High accuracy protein structure prediction using deep
learning,” in Fourteenth Critical Assessment of Techniques for Protein
Structure Prediction (Abstract Book), 2020. [Online]. Available:
https:/ /predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf
B. Rost and C. Sander, “Combining evolutionary information
and neural networks to predict protein secondary structure,”
Proteins Struct. Function Genet., vol. 19, pp- 55-72,1994.

B. E. Suzek et al., “UniRef clusters: A comprehensive and scalable
alternative for improving sequence similarity searches,” Bioinfor-
matics, vol. 31, no. 6, pp. 926-932, Mar. 2015.

M. Steinegger and J. Soding, “Clustering huge protein sequence
sets in linear time,” Nat. Commun., vol. 9, no. 1, pp. 1-8, Jun. 2018.
A. Madani et al., “ProGen: Language modeling for protein gener-
ation,” 2020, arXiv:2004.03497.

E. Asgari, A. C. McHardy, and M. R. Mofrad, “Probabilistic vari-
able-length segmentation of protein sequences for discriminative
motif discovery (DiMotif) and sequence embedding (ProtVecX),”
Sci. Rep., vol. 9, no. 1, pp. 1-16, 2019.

L. Coin, A. Bateman, and R. Durbin, “Enhanced protein domain
discovery by using language modeling techniques from speech rec-
ognition,” Proc. Nat. Acad. Sci., vol. 100, no. 8, pp. 4516-4520, 2003.
C. Chelba ef al., “One billion word benchmark for measuring
progress in statistical language modeling,” 2014, arXiv:1312.3005.
M. M. Lin and A. H. Zewail, “Hydrophobic forces and the length
limit of foldable protein domains,” Proc. Nat. Acad. Sci., vol. 109,
no. 25, pp. 9851-9856, 2012.

L. van der Maaten and G. Hinton, “Visualizing data using t-
SNE,” |. Mach. Learn. Res., vol. 9, no. Nov, pp. 2579-2605, 2008.
J.-M. Chandonia, N. K. Fox, and S. E. Brenner, “SCOPe: Classifi-
cation of large macromolecular structures in the structural classi-
fication of proteins—extended database,” Nucleic Acids Res., vol.
47,no. D1, pp. D475-D48]1, Jan. 2019.

Y. Yang, “Sixty-five years of the long march in protein secondary
structure prediction: The final stretch?,” Brief. Bioinf., vol. 19,
no. 3, pp. 482-494, 2018.

J. A. Cuff and G. J. Barton, “Evaluation and improvement of
multiple sequence methods for protein secondary structure pre-
diction,” Proteins Struct. Function Bioinf., vol. 34, no. 4, pp. 508—
519, 1999.

L. A. Abriata ef al., “Assessment of hard target modeling in
CASP12 reveals an emerging role of alignment-based contact
prediction methods,” Proteins Struct. Function Bioinf., vol. 86,
pp- 97-112,2018.

H. M. Berman et al., “The protein data bank,” Nucleic Acids Res.,
vol. 28, no. 1, pp. 235-242, Jan. 2000.

M. Steinegger and J. Soding, “MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets,” Nat.
Biotechnol., vol. 35, no. 11, pp. 1026-1028, 2017.

https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf

7126

[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]
[61]
[62]

[63]

[64]
[65]
[66]
[67]
[68]

[69]

[70]

[71]

[72]

[73]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

G. Wang and R. L. Dunbrack, Jr, “PISCES: A protein sequence
culling server,” Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.
C. Raffel et al., “Exploring the limits of transfer learning with a
unified text-to-text transformer,” 2019, arXiv:1910.10683.

K. Clark et al., “Electra: Pre-training text encoders as discrimina-
tors rather than generators,” 2020, arXiv:2003.10555.

J. Devlin et al., “BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” 2019, arXiv:1810.04805.

Z. Lan et al., “ALBERT: A lite BERT for Self-supervised learning
of language representations,” 2020, arXiv:1909.11942.

Z. Dai et al., “Transformer-XL: Attentive language models
beyond a fixed-length context,” 2019, arXiv:1901.02860.

R. Rao et al., “Evaluating protein transfer learning with TAPE,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 9689-9701.

A. Rives et al., “Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences,”
2019, bioRxiv:622803.

A. Nambiar et al., “Transforming the language of life: Trans-
former neural networks for protein prediction tasks,” 2020,
bioRxiv:2020.06.15.153643.

Y. You et al., “Large batch optimization for deep learning: Train-
ing BERT in 76 minutes,” 2019, arXiv:1904.00962.

M. Heinzinger et al., “Modeling aspects of the language of life
through transfer-learning protein sequences,” BMC Bioinf.,
vol. 20, no. 1, Dec. 2019, Art. no. 723.

F. Limited, “Press release announcing Supercomputer Fugaku,”
RIKEN, Tokyo, Japan, Tech. Rep., Dec. 2019. [Online]. Available:
https:/ /www.fujitsu.com/global/about/resources/news/
press-releases/2019/1202-01.html

N. Hammer ef al., “Extreme scale-out super-MUC phase 2 - les-
sons learned,” 2016, arXiv:1609.01507.

Google TPU. Accessed: Jun. 2020. [Online]. Available: https://
cloud.google.com/tpu/docs/systemarchitecture

Nvidia Apex. Accessed: Mar. 2020. [Online]. Available: https://
github.com/NVIDIA /apex

T. D. Le et al., “TFLMS: Large model support in tensor-flow by
graph rewriting,” 2019, arXiv:1807.02037.

J. Feng and D. Huang, “Optimal gradient checkpoint search for
arbitrary computation graphs,” 2019, arXiv:1808.00079.

K. Jarrett et al., “What is the best multi-stage architecture for
object recognition?,” in Proc. IEEE 12th Int. Conf. Comput. Vis.,
2009, pp. 2146-2153.

A. Bairoch, “The ENZYME database in 2000, ” Nucleic Acids Res.,
vol. 28, no. 1, pp. 304-305, 2000.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2016, arXiv:1409.0473.
S. Vashishth ef al., “Attention interpretability across NLP tasks,”
2019, arXiv:1909.11218.

R. M. Rao et al., “Transformer protein language models are unsu-
pervised structure learners,” 2020, bioRxiv:2020.12.15.422761v1.

J. Vig, “A multiscale visualization of attention in the transformer
model,” 2019, arXiv:1906.05714.

S. Henikoff and J. G. Henikoff, “Amino acid substitution matri-
ces from protein blocks,” Proc. Nat. Acad. Sci., vol. 89, no. 22,
pp- 10915-10919, Nov. 1992.

A. Drozdetskiy ef al., “Jpred4: A protein secondary structure predic-
tion server,” Nucleic Acids Res., vol. 43, no. W1, pp. W389-W3%4,
2015.

S. Wang et al., “Raptorx-property: A web server for protein struc-
ture property prediction,” Nucleic Acids Res., vol. 44, no. W1,
pp. W430-W435, 2016.

S. Wang et al., “Protein secondary structure prediction using deep
convolutional neural fields,” Sci. Rep., vol. 6, 2016, Art. no. 18962.
R. Heffernan et al., “Capturing non-local interactions by long
short-term memory bidirectional recurrent neural networks for
improving prediction of protein secondary structure, backbone
angles, contact numbers and solvent accessibility,” Bioinformatics,
vol. 33, no. 18, pp. 2842-2849, 2017.

[74]

[75]

[76]

(771

[78]
[79]
[80]
[81]
[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

D. S. Marks et al., “Protein 3D structure computed from evolu-
tionary sequence variation,” PloS One, vol. 6, no. 12, Dec. 2011,
Art. no. e28766.

B. H. Dessailly et al., “PSI-2: structural genomics to cover pro-
tein domain family space,” Structure, vol. 17, no. 6, pp. 869-881,
2009.

T. Kosciolek and D. T. Jones, “Accurate contact predictions using
covariation techniques and machine learning,” Proteins Struct.
Function Bioinf., vol. 84, pp. 145-151, 2016.

T. Goldberg, T. Hamp, and B. Rost, “LocTree2 predicts localiza-
tion for all domains of life,” Bioinformatics, vol. 28, no. 18,
pp. i458-i465, Sep. 2012.

H. St ark et al., “Light attention predicts protein location from the
language of life,” 2021, bioRxiv:2021.04.25.441334.

T. B. Brown et al., “Language models are few-shot learners,”
2020, arXiv:2005.14165.

A. Bairoch and B. Boeckmann, “The swiss-prot protein sequence
data bank,” Nucleic Acids Res., vol. 19, no. Suppl, 1991, Art. no. 2247.
P. Radivojac, “Protein flexibility and intrinsic disorder,” Protein
Sci., vol. 13, no. 1, pp. 71-80, 2004.

A. Schafferhans et al.,, “Dark proteins important for cellular
function,” Proteomics, vol. 18, pp. 21-22, 2018.

T. Mikolov ef al., “Distributed representations of words and
phrases and their compositionality,” 2013, arXiv:1310.4546.

E. Asgari and M. R. Mofrad, “Continuous distributed representa-
tion of biological sequences for deep proteomics and genomics,”
PloS ONE, vol. 10, no. 11, 2015, Art. no. e0141287.

M. AlQuraishi, “ProteinNet: A standardized data set for machine
learning of protein structure,” BMC Bioinf., vol. 20, no. 1,
pp. 1-10, 2019.

M. Littmann ef al., “Embeddings from deep learning transfer go
annotations beyond homology,” Sci. Rep., vol. 11, no. 1, pp. 1-14,
2021.

M. AlQuraishi, “End-to-end differentiable learning of protein
structure,” Cell Syst., vol. 8, no. 4, pp. 292-301, Apr. 2019.

C. Marquet et al.,, “Embeddings from protein language models
predict conservation and variant effects,” Hum. Genetics, early
access, Jun. 3, 2021, doi: 10.21203/rs.3.rs-584804 / v1.

S. Rajbhandari et al., “ZeRO: Memory optimization towards
training a trillion parameter models,” 2019, arXiv:1910.02054.

B. Rost, “PHD: Predicting one-dimensional protein structure by
profile based neural networks,” Methods. Enzymol., vol. 266, pp.
525-539, 1996.

E. C. Alley et al., “Unified rational protein engineering with
sequence-based deep representation learning,” Nat. Methods,
vol. 16, no. 12, pp. 1315-1322, Dec. 2019.

S. Min et al., “Pre-training of deep bidirectional protein
sequence representations with structural information,” 2020,
arXiv:1912.05625.

J. J. A. Armenteros et al., “Language modelling for biological
sequences—curated datasets and baselines,” 2020, bioRxiv:2020.
03.09.983585.

T. Bepler and B. Berger, “Learning protein sequence embeddings
using information from structure,” 2019, arXiv:1902.08661.

R. Rao et al., “MSA transformer,” 2021, bioRxiv:2021.02.12.430858.
R. Child et al., “Generating long sequences with sparse trans-
formers,” 2019, arXiv:1904.10509.

P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. Thirtieth
Annu. ACM Symp. Theory Comput., 1998, pp. 604-613.

N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient
transformer,” 2019, arXiv:2001.04451.

M. Zaheer et al., “Big bird: Transformers for longer sequences,”
2020, arXiv:2007.14062.

M. Elrod-Erickson, T. E. Benson, and C. O. Pabo, “Highresolution
structures of variant zif268-DNA complexes: Implications for
understanding zinc finger-DNA recognition,” Structure, vol. 6,
no. 4, pp. 451-464, 1998.

https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1202-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1202-01.html
https://cloud.google.com/tpu/docs/systemarchitecture
https://cloud.google.com/tpu/docs/systemarchitecture
https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex
http://dx.doi.org/10.21203/rs.3.rs-584804/v1

Ahmed Elnaggar is currently working toward the
PhD degree with the Technical University of
Munich. His research interests include self-super-
vised learning on various modalities, such as text,
protein, source code, images, and speech, using
high-performance computing.

Michael Heinzinger is currently working toward the
PhD degree with Rostlab, TUM, Munich. His
research focuses on learning, evaluating, and
understanding representations for protein sequen-
ces from unlabeled data with the goal to empower
peers with the computational tools necessary to
unravel more fundamental biological truths.

Christian Dallago performs research on the
interface of biology, machine learning, and soft-
ware engineering, with the goal of improving
human health through intelligent machines.

Ghalia Rehawi received the M.Sc. degree in
informatics from the Technical University of
Munich. She is currently working toward the PhD
degree with Helmholtz Zentrum Mdunchen. Her
research interests include the application of
machine and deep learning techniques in
genome and transcriptome analysis.

Yu Wang received the PhD degree in genomics
and bioinformatics from the Technical University
of Munich in 2011. He studied Al from Katholieke
Universiteit Leuven, Belgium. He later moved to
Munich, Germany, and joined MIPS, Helmholtz
Zentrum Munchen. He is currently a CTO of Med
Al Technology (Wu Xi) Ltd., working on trans-
forming healthcare with Al in China.

Llion Jones is currently a senior software engi-
neer with Google for more than nine years. He
was a YouTube engineer before working on
machine learning. He was on the original team of
researchers who developed the popular trans-
former model and worked on the initial code base
and on the attention visualizations.

ELNAGGAR ETAL.: PROTTRANS: TOWARD UNDERSTANDING THE LANGUAGE OF LIFE THROUGH SELF-SUPERVISED LEARNING 7127

Tom Gibbs is currently a developer relations
manager with Supercomputing Business Unit,
NVIDIA. He has more than 40 years of experience
in large scale simulation and modeling, with an
emphasis on grand challenge science problems.
His research interests include Al for science, the
convergence of simulation and experiment, quan-
tum computing, and classical simulation of high-
energy physics.

Tamas Feher received the PhD degree from the
University of Greifswald. He is currently an Al
developer technology engineer with NVIDIA. His
research interests include accelerating deep
learning and machine learning workloads on
GPUs.

Christoph Angerer received the PhD degree
from ETH Zurich, Switzerland. He is currently a
senior manager with the Autonomous Driving
Team, NVIDIA. His team is concerned with
designing, implementing, and optimizing Al-
based solutions for advanced learning and
automation.

Martin Steinegger is currently an assistant pro-
fessor with Biology Department, Seoul National
University. His group develops novel computa-
tional methods that combine big data algorithms
and machine learning to gain insights into unex-
plored microbial communities.

Debsindhu Bhowmik is currently a computa-
tional scientist with the Computational Sciences
and Engineering Division and Health Data Scien-
ces Institute, Oak Ridge National Laboratory. His
research interests include understanding com-
plex biological and genetic phenomena and
studying disordered systems by implementing
new generation large scale simulation blended
with deep learning and scattering techniques.

Burkhard Rost currently chairs Comp Biol and
Bioinformatics, TUM Munich. He rooted the leap
through combining evolutionary information and
machine learning and the launch of PredictPro-
tein as first Internet prediction server. For more
than 30 years, the Rostlab contributed influential
methods for protein prediction, headed the Inter-
national Society for Computational Biology
(ISCB) and has been dedicated to teaching and
raising diversity and gender balance.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

