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ABSTRACT World-wide incidence rate of prostate cancer has progressively increased with time especially
with the increased proportion of elderly population. Early detection of prostate cancer when it is confined to
the prostate gland has the best chance of successful treatment and increase in surviving rate. Prostate cancer
occurrence rate varies over the three prostate regions, peripheral zone (PZ), transitional zone (TZ), and central
zone (CZ) and this characteristic is one of the important considerations is development of segmentation
algorithm. In fact, the occurrence rate of cancer PZ, TZ and CZ regions is respectively. at 70-80%, 10-20%,
5% or less. In general application of medical imaging, segmentation tasks can be time consuming for the
expert to delineate the region of interest, especially when involving large numbers of images. In addition,
the manual segmentation is subjective depending on the expert’s experience. Hence, the need to develop
automatic segmentation algorithms has rapidly increased along with the increased need of diagnostic tools
for assisting medical practitioners, especially in the absence of radiologists. The prostate gland segmentation
is challenging due to its shape variability in each zone from patient to patient and different tumor levels in
each zone. This survey reviewed 22 machine learning and 88 deep learning-based segmentation of prostate
MRI papers, including all MRI modalities. The review coverage includes the initial screening and imaging
techniques, image pre-processing, segmentation techniques based on machine learning and deep learning
techniques. Particular attention is given to different loss functions used for training segmentation based
on deep learning techniques. Besides, a summary of publicly available prostate MRI image datasets is
also provided. Finally, the future challenges and limitations of current deep learning-based approaches and

suggestions of potential future research are also discussed.

INDEX TERMS MRI, prostate cancer, deep learning, automatic algorithms, prostate gland.

I. INTRODUCTION

Prostate cancer is a significant global public health issue and
has ranked as the second world’s prevalent cancers in male
after lung cancer. Diagnosis of prostate cancer has become
a challenging task with a progression rate of 1 in 6 men
affected throughout their lives, and 1 in 36 died from the dis-
ease, being the second most common cause of death among
men [1], [2]. According to the study in [3], prostate cancer
ratio is the highest in the United States (USA) at 21% whereas
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itranges from 1 to 9 in 100,00 men in Northern Europe, North
America, New Zealand, and Australia. In 2019, among the
various types of cancer, including breast cancer, lung can-
cer, colon, and rectum cancer, prostate cancer has recorded
174,650 new prostate cancer cases, and 31,620 cancer deaths
in the U.S. [4]. The survival rate of individuals affected with
prostate cancer is relatively high. However, human aging
factors would exacerbate the disease and spread cancer to
other organs if left untreated.

Most prostate tumors start out as benign tumors which
does not have cancerous cell and grow gradually in size,
whereas malignant tumors have cancerous cell and grow at a
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faster rate [5]. Around 85% of diagnosed prostate cancers are
restricted to the prostate gland PZ [6]. The PZ covers 70-80%
of total prostate size, in which if there is a malignant tumour,
it is usually less aggressive than the ones in the CG [7].

In general, the prostate cancer severity level is divided
into 4 stages. In stage I, the cancer cells are localized in the
prostate gland and develop at a gradual rate [8]. Cancer cells
in stage II develop faster compared to stage I. In stage III,
cancer cells have spread to tissues surrounding the prostate
gland, while in stage IV, the cancer cells have metastasized to
other tissues such as lymph nodes and the rectum.

Prostate cancer primary signs are enlisted in [9]-[11], but
the leading cause of prostate cancer is still unclear. A pre-
liminary list of risk factors is drawn up from ongoing work
to classify prostate cancer [12]. The etiology is related to
the following factors: (i) history of the family, (ii) genetic
factors, (iii) ethnicity, (iv) diet and (v) obesity [13], [14].
It is recommended that people conduct the daily physical
exercise, eating green vegetables, fish, vitamin E and mineral
supplements to avoid prostate cancer [15]. A prostate cancer
diagnosis cannot be based solely on risk factors, so allowing
screening makes it possible to detect and treat early. Patients
at the early stage of prostate cancer are most often asymp-
tomatic. However, a common symptom is bladder outflow
obstruction, indicating blockage of the urinary flow due to
the tumour pressing against the urethra.

The article is outlined as follows. In Section II, reviewed
papers related to prostate anatomy, prostatic carcinoma, are
described. Next, Section III prostate screening and imaging
techniques, Section IV image pre-processing techniques and
Section V provides review of prostate MRI segmentation
methods, Section VI prostate segmentation techniques related
papers. Section VII the impact of multiparametric MRI and
evaluation techniques. Section VIII Overview of clinical
application of deep learning for prostate MRI segmentation
and cancer detection. Lastly, Section X summarizes the chal-
lenges, future perspectives and concludes the overall review
work.

To identify related contributions, different digital databases
such as Scopus, PubMed, scienceDirect, [IEEExplore are uti-
lized to collect important literature. The query for papers con-
taining is “‘convolutional,” “‘deep learning,” “‘prostate,” and
“image segmentation” in title or abstract. Additionally, con-
ference proceedings for MICCAI PROMISE1-12, I2CVB,
NCI-ISBI, PROSTATEXx, and PROSTATEx2 are searched
based on each paper’s title. The most recent paper reviewed
in this article is the one published on December 2020 [16].
There are several steps applied to filter and select important
articles in topic. First step is removing duplicated publica-
tions among digital databases. Next, the titles and abstracts of
the publications were checked to examine the relevancy of the
selected articles. Then, full-text reading to find out whether
they are appropriate to be involved in the final set. finally,
only 110 articles met all criteria and were considered fit for
inclusion in this review.
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Il. BACKGROUND

This section provides an overview of prostate anatomy, pro-
static carcinoma, prostate screening, imaging techniques, and
MRI modalities.

A. PROSTATE ANATOMY

The prostate is the gland in the male reproductive organ, and
its primary role is to generate fluid that protects and enriches
sperm. In general, prostate gland is described as being like
a walnut in shape and size, located below the bladder and in
front of the rectum.

The prostate approximate height and depth are 3 cm and
2.5 cm, respectively. Besides, the prostate weight is estimated
to be in the range of 7-16 grams in adults [17]. As human
starts to grow, the initial increase in prostate size occurs
during puberty. The prostate size increases after the age
of 60 [18], which causes benign prostatic hyperplasia (BPH).

The internal structure of the prostate is explained by sev-
eral researchers in [19]-[21]. In the article by McNeal [21],
3D zonal classification of the prostate gland is performed,
showing that the prostate is a glandular organ having four
heterogeneous regions as listed below:

1) Anterior fibromuscular stoma having no glandular

tissue.

2) TZ consists of 5% of glandular tissue.

3) CZ contain 20% of the glandular tissue.

4) PZ contains 70% to 80 % of glandular tissue.

In prostate cancer imaging, the three different zones are
observed, subdivided into the TZ, PZ, and CZ. The CZ and
TZ look similar in medical imaging and collectively named
as a central gland.

B. PROSTATIC CARCINOMA

Countries having a high socio-demographic index have a high
ratio of diagnosing prostatic Carcinoma or prostate cancer.
The prostate cancer or carcinoma is a glandular cancer, and
it is available in the different zones of the prostate at differ-
ent ratio [22]. McNeal et al. [7] experimented 104 ex-vivo
prostate gland, after radical prostatectomy, for zonal dis-
tribution of prostate cancer where tumors are outlined and
their volume is mapped and determined using the Gleason
score [23]. Also, the relative location of the gland with
respect to the transition zone is determined in the study. It is
established that prostate cancer is more likely to come in
a specific region of the prostate. The probability of cancer
cells occuring in three different zones; CZ, PZ, and TZ are
10%, 70%, and 20%, respectively. Since cancer cells are more
likely to develop in the PZ, segmentation of the PZ is critical
in diagnosing prostate cancer.

IIl. PROSTATE CANCER SCREENING AND MRI IMAGING
TECHNIQUES

Initial examination and screening of prostate cancer abnor-
malities in the prostate gland are performed by prostate-
specific antigen (PSA) and digital rectal examination (DRE).
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PSA concentrations are not conclusive evidence for the exis-
tence or absence of prostate cancer. Elevated PSA does
not indicate cancer; in noncancerous circumstances, such
as benign prostatic hyperplasia, PSA is also present. Acute
and chronic prostatitis and physical trauma and inflammation
affect PSA levels. It is challenging to determine PSA testing
accuracy since men with typical PSA values will not undergo
biopsy unless their DRE is abnormal. PSA rates between
4-10 ng/ml do not give physicians the clarity to perform
biopsy [24], [25]. Consecutive biopsy procedures are invasive
and can create several risks for the patient. Therefore, health
care institutions thrive on eliminating the risks related to
biopsy. The prostate health index (PHI) test [26], [27] is
performed to minimize the possibility of negative biopsy. The
prostate health index results are based on a score that provides
information on the probability of having a prostate cancer
and confidence in biopsy decisions [28]. However, with the
availability of MRI, accurate localization of the cancerous
tissues inside the prostate can be performed, thereby limiting
the numbers of unnecessary biopsies [29]. Besides, accurate
localization of cancerous tissues within the prostate gland
during surgery or radiotherapy treatment help avoid damag-
ing the surrounding tissues [22].

Computed tomography (CT) and transrectal ultrasound
(TRUS) are often used to assess prostate cancer regions.
CT scan is mainly used in case that prostate cancer has
reappeared after treatment, and help to determine if the can-
cerous regions are growing into other organs. On the other
hand, TRUS is used to guide a needle during a biopsy and
estimate the prostate size and shape. Both CT and TRUS
have lower resolution than MRI; hence, imaging soft-tissue
contrast is not well-defined resulting in critical information
lost during the early assessment of prostate cancer [30]. Mag-
netic resonance imaging is a promising imaging technique.
The biopsies executed using MRI are more accurate and
less harmful than the biopsy using TRUS [31]. MRI is very
popular in detecting and staging prostate cancer because it
provides better soft-tissue contrast, better resolution and it
is a radiation-free modality. The main disadvantages of MRI
are the high cost, and long acquisition time when imaging
is required. Further details on different MRI sequences are
elaborated in Subsections I11-A,III-B III-C.

A. T1 WEIGHTED MAGNETIC RESONANCE IMAGING
(TTW MRI)

T1W is an imaging protocol that depends on the longitudinal
relaxation of tissue’s net magnetization vector (NVM). TIW
MRI is unable to clearly show the prostate anatomic structure,
so it is mainly used for the detection of post-biopsy bleeding.
A sample of TIW prostate MRI is shown in Figure 1.

B. T2 WEIGHTED MAGNETIC RESONANCE IMAGING
(T2W MRI)

T2W MRI is an imaging protocol that highlights differences
in the T2 relaxation time of tissues. T2W MRI is employed on
a priority-based MR imaging tool for non-invasive prostate
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FIGURE 1. 2D prostate TIW MRI.

(a) (b)

FIGURE 2. 2D prostate T2W MRI (a) axial view, (b) coronal view. The
prostate boundary is marked by the green line.

cancer diagnosis, localization, and staging due to the better
resolution and contrast provided [32]. T2W MRI is usu-
ally performed in three planes; axial, coronal, and sagittal
where cancerous cells appear different in terms of inten-
sity and homogeneity [33]-[35]. The PZ is homogeneous
and hyperintense in normal tissue. In contrast, in malig-
nant tissue, the PZ has low intensity, and both PZ and CG
are homogeneous in malignant tissue compared to healthy
tissue [35], [36]. T2W MRI leads to better recognition of
the three prostate zones; PZ, TZ, and CG [37] are shown
in Figure 2.

C. DIFFUSION-WEIGHTED MRI (DW MRI)

Diffusion-weighted MRI is the advanced MRI technique to
study and diagnose prostate cancer [38]. DW-MRI discerns
water molecules movement by exploiting the variation in the
movement of water molecules in various soft tissues [39].
The growth of prostate cancer demolishes the regular gland
structure and increases cellular density [40], [41]. Higher
cell density has an inverse relation with the diffusion of
water molecules [41], [42]; therefore, water movement are
restricted in prostate cancer regions as compared to healthy
regions [40], [41]. Hence, water molecules diffusion ratio
helps better differentiate between healthy and non-healthy
tissue, as shown in Figure 3. The magnetic gradient is uti-
lized to detect the problem in nuclei spatial location in DW
MRI; by introducing a magnetic gradient, which dephase the
water molecules movement in nuclei [43]. The dephase of
water movement varies among different gradient intensity in
a different location. The second magnetic gradient is applied
to cancel the spin dephasing. The restricted water molecules
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(b)
FIGURE 3. Diffused Weighted T2W MRI in (a) and its ADC map in (b).

will meet the same gradient intensity while the moving water
molecules will face different gradient intensity. The second
magnetic causes the moving water molecule to dephase while
immobile water molecules in phase. The higher the random
motion will cause more loss in signal than lower random
motion [44]. The signal loss is formulated

S = exp(—b x ADC), 1

Here, the b variable represents the attenuation coefficient
and ADC shows apparent diffusion coefficient. When the
value of the attenuation coefficient is zero, then DW MRI is
similar to T2W MRI. In equation 1, different ADC maps can
be generated by varying the b value.

IV. IMAGE PRE-PROCESSING TECHNIQUES

A. IMAGE DENOISING

In MRI images, multiplicative or additive noises can occur.
Thermal noise is the primary source of noise in MRI
images [45]. Thermal noise can be modelled as an addi-
tive, white, and stationary Gaussian random process with
zero mean. The discrete inverse Fourier (DF) transformation
reconstructs the MRI. Since linearity and orthogonal con-
cepts, the MRI image has imaginary and real parts influenced
by Gaussian noise. The magnitude component of the MRI is
affected by the Rician noise. The Rician distribution is similar
to a Rayleigh distribution [46] when SNR is low, while at
high SNR, it looks like a Gaussian distribution [47]. Various
filters have been used to decrease the noise, for instance,
Ozer et al. [48] used the classical median filter; however,
it removes the information of minute structures. Bilateral
filter [49] performs better noise removal, but faces problems
in low-frequency region. More sophisticated methods have
been suggested to solve this issue. Ampeliotis er al. [50], [51]
use wavelet shrinkage [52]. More recently, Non-local mean
(NLM) [53] has shown better performances, but suffers from
a high computational time. BM3D filter [54] performs a
better trade-off compared to NLM or Bilateral Filter other
techniques as it requires less computational time and maintain
good image quality.

B. IMAGE NORMALIZATION
Intensity normalization is applied to reduce variation in the
intensity distribution of MRI images, in which inter-patient
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variability occurred [55]. The application of intensity normal-
ization also improves the comparability of images across dif-
ferent subjects, resulting in better segmentation results. The
variation of intensity can be corrected by scaling the intensity
values using the min-max technique and z-score normaliza-
tion [55], [56]. Min-max approach [56] normalizes the data
by subtracting the minimum value from the image intensity,
and then divide it by subtraction of maximum and minimum
values. The minimum and maximum values are transformed
0 and 1, respectively, while the remaining value is converted
into a decimal value between 0 and 1. Equation describing
normalized intensity, I,,(i) is given by

I.(i) — min(x)

max(x) — min(x)’

I (i) = @)
where I, (i) shows the intensity before normalization, min(x)
and max(x) shows the maximum and minimum values of the
intensity. Z-score normalization [55] preformed the normal-
ization of images by subtracting the mean from the signal
intensity and then divided by the standard deviation of the
signal intensity. Equation of z-score normalization intensity,
I,(i) is given by

L(x) = T_’ 3)

where I,(i) shows the intensity before normalization, simi-
larly, the o and o are the mean and standard deviation of the
signal intensity, respectively.

In prostate MRI scan, the size of prostate gland is com-
paratively small to the background region, and this factor
would result in poor segmentation of the prostate [57]. Thus,
center-cropping technique is employed to reduce the number
of background pixels, eliminating the redundant pixels and as
a result reducing computation time.

C. DATA AUGMENTATION

In medical imaging datasets, large number of training labels
are not available for several reasons. The image delineation
in the data set requires an expert (radiologist), which is
time-consuming and expensive. When deep neural networks
are trained from limited training data, the over-fitting problem
transpires [58]. Data augmentation is a practical approach
to reduce over-fitting and increase the amount of training
data. The training dataset is augmented by generating new
images using various operations, such as rotation, translation,
scaling, and flipping. Then original and augmented images
are used for training the deep convolutional neural network
(DCNN).

V. MRI SEGMENTATION METHODS

In this review, the articles based on machine learning (ML)
and deep learning (DL) are elaborated. General methodol-
ogy for prostate segmentation algorithm development using
machine learning and deep learning is illustrated in Figure 4.
In Figure 5 groups major techniques of prostate segmentation
based on ML and DL approaches.
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FIGURE 4. General methodology of machine learning and deep learning
approaches in prostate segmentation.

A. MACHINE LEARNING-BASED SEGMENTATION

1) ATLAS-BASED SEGMENTATION

Atlas is constructed by a collection of manual segmenta-
tion anatomical structures registered in a specific frame of
coordinates. The atlas then serves as a reference for a new
patient image segmentation. For this reason, the segmentation
problem is treated as a registration problem in atlas-based
segmentation. Thus, mapping a pre-segmented atlas image
to the target image is implemented to perform the atlas
segmentation.

2) DEFORMABLE MODEL-BASED SEGMENTATION
Geometry, physics, and mathematical optimization theories
influenced the deformable model segmentation. Geometry
puts constraints on the form of the object. Physical methods
direct the evolution of the structure in space, and the princi-
ple of optimization guides the object to match the available
data [59]. The internal and external energy has direct impacts
on deformable models. External energies help locate the
boundary with the deformable model, while internal energies
preserve the smoothness of the contour during deformation.

B. DEEP LEARNING-BASED SEGMENTATION

Recent works in deep learning for semantic segmentation has
shown remarkable results. This section provides overviews
of 4 groups of DL-based semantic segmentation that are
applied in segmenting prostate regions and detecting prostate
cancer. The approaches are divided into four groups: feature
encoder, upsampling, resolution increment of features, and
regional proposal-based segmentation techniques.

1) FEATURE ENCODER-BASED TECHNIQUES

Feature encoder-based techniques are the pioneer of deep
learning models that are employed to classify distinct objects.
The basic concept of feature encoder techniques is the
extraction of features from the input data. Stack of con-
volutional layers, activation function (ReLU), and pooling
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layers are applied for feature extraction. The feature encoder
based techniques utilize the trained models over different
datasets and retrain the last layer with the new input. The
AlexNet [60], VGG [61], ResNet [62], and Xception [63]
pre-trained models are the most prevalent methods for feature
extraction. The founder of the deep CNN network (AlexNet)
that won the ImageNet large scale visual recognition chal-
lenge (ILSVRC) with as the top-5 test accuracy of 84.6%,
Krizhevsky et al. [60] introduced the architecture, consisting
of five convolution layers, max-pooling layers, rectified lin-
ear units (ReLUs) as non-linear, three fully-connected lay-
ers, and dropout. Later in 2014, the University of Oxford
Visual Geometry group launched the VGG network [61] and
becomes the runner up for ImageNet ILSVRC. Instead of
using larger receptive fields with few convolution layers, such
as LeNet [64] and AlexNet [60], VGGNet applies several
3 x 3 convolution with limited receptive fields. However, due
to prediction at each pixel level, applying CNN architectures
for segmentation requires a dense layer with large number of
parameters making it computationally expensive.

He et al. introduced ResNet [62], which uses residual
blocks in their architecture as the main building block.
ResNet is the neural network that consists of deep neural
network with large numbers of layers most commonly used
for semantic segmentation. It is hard to train a deep neural net-
work with a large number of layers. The network efficiency
starts degrading due to the vanishing gradient problem with
an increase in the network depth. By adding skip connections,
He et al. [62] effectively solved the problem of the vanishing
gradient. In addition, novel residual blocks are implemented
in which the gradients can easily flow through the shortcut
connection during the passing of back propagation with-
out any issue. Furthermore, Google has updated Inception
model [57] with a depthwise-separable convolution layer
and built an extreme version called Xception network [63].
The depthwise-separable convolution performs channel-wise
convolution (depthwise convolution) and 1 x 1 convolution
(pointwise convolution), producing a lighter and less compu-
tational network.

2) UPSAMPLING-BASED TECHNIQUES

The CNN models utilize a convolution block to generate
feature maps on successive convolutional layers but this will
result in loss of spatial or location information. To address
this issue, first, the spatial information lost during the oper-
ation of downsampling can be recovered by upsampling
and deconvolution. Secondly, the development of recon-
struction approaches for combination low- and high-level
features to improve the spatial accuracy and optimization
techniques. Noh ef al. [65] made use of the principle of
upsampling to build a deconvolution network. The convolu-
tion network reduces the size of feature maps in every con-
volution layer. In contrast, the upsampling network enlarges
the feature maps by applying unpooling and deconvolution
operations on every input feature map from the convolution
block.
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DEFORMABLE
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2D+3D ASM [90] 3D SSM [93]

ASM & IDA [96]

3D AAM [99] SRS [100]

FIGURE 5. Categories of deep learning and machine learning techniques for prostate segmentation.

With the fully convolutional network (FCN) implemen-
tation, Long efal. [66] enabled breakthroughs in deep
learning-based semantic segmentation. FCN uses CNN
architecture and modifies the classification network [57],
[60], [61] into a fully convolutional network, generating a
projected output for arbitrary size. U-Net [67] is another
prominent fully convolutional neural network, which has
been developed for medical image segmentation. The encoder
part consists of successive convolution followed by an
activation function (ReLU), while the decoder part con-
sists of an upsampling layer, which is connected with the
encoder by skip connection. Badrinarayanan et al. [68] devel-
oped an encoder-decoder, fully convolutional neural net-
work called SegNet. The encoder network is identical, like
VGG [61], having no fully connected layers followed by
a decoder network from [69] for pixel-wise classification.
SegNet performed very well in scene and natural image
segmentation tasks.

3) RESOLUTION INCREMENT OF FEATURE-BASED
TECHNIQUES

Resolution increment of feature enhanced the resolution of
feature maps by gathering sufficient information from the
input images with larger receptive fields. The receptive field
can be larger by using a special type of convolution called
atrous convolution. The atrous convolution [70] recovers
the spatial resolution and generates high-resolution feature
maps for dense prediction. The atrous convolution adds a
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specific characteristic to the convolution layer, called “dila-
tion rate,” and can extend the receptive field without los-
ing resolution. Chen et al. [70] developed DeepLab, a deep
convolution neural network. Instead of using deconvolu-
tion, atrous convolution is applied. Later, Chen ef al. [71]
re-examined atrous convolution and developed a new model
called DeepLabV3. The new network was developed in which
atrous convolution is performed parallel by adopting multi-
ple atrous rates to collect multi-scale information. The last
block in ResNet [62] was arranged in a cascaded manner.
Inspired by Alvarez et al. [72], Chen et al. [73] has extended
the DeepLabV3 version and launched the new DeepLabV3+
network. In particular, the work employed a decoder module
with encoder features upsampled by a factor of 4 instead
of 16, as in [71]. The corresponding low-level features
from the network backbone with the same spatial resolution
are then concatenated. The Xception model [63] has been
adopted and applied to both atrous spatial pyramid pool-
ing (ASPP) and decoder modules with a depth-wise separable
convolution. Compared to regular convolution with larger
filters, atrous convolution effectively enlarges the field of
view of filters without increasing the computational time.
In complex prediction tasks, dilated convolution is a simple
but robust alternative to deconvolution.

4) REGIONAL PROPOSAL-BASED TECHNIQUES

Regional proposed networks (RPNs) have been developed
to detect objects in images using selective search method.
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The RPN generates a proposal for objects in the images using
scales and aspect ratios. The generated proposals are then uti-
lized to classify the objects. Girshick et al. [74] implemented
the first region-based convolutional neural network (R-CNN)
for the detection of objects. The R-CNN applied a selective
search method [75] that extracts 2000 different regions from
an image having the highest probability of containing an
object. CNN [64] extracts the features of each region, which
is then fused with created regions. At last, the support vector
machine (SVM) classifies the features into a set of classes.
Girshick et al. [76] modified the architecture of R-CNN [74]
with Rol pool (Region of Interest Pooling) and named the
network Fast RCNN. The Rol Pool (Region of Interest Pool-
ing) has improved and increased the training and testing speed
of the network. Furthermore, the microsoft team proposed a
Faster RCNN [77] architecture. They presented a region pro-
posal network (RPN), which generates region proposals with
multiple scales and aspect ratios. The feature maps of RPN
are forwarded to Fast RCNN for object detection. The RPN
and Fast RCNN together increase the accuracy and decrease
the computational cost. He et al. [78] performed pixel-level
image segmentation by extending Faster R-CNN to a Mask
regional convolutional neural network (Mask-RCNN). The
FCN is fitted on each ROI to extract features for predicting
an object mask in a pixel-to-pixel manner, in parallel with
the existing branch for bounding box recognition. Moreover,
in mask RCNN, the Rol pooling layer is replaced with region
of interest alignment (RolAlign), that preserves exact spatial
locations.

VI. PROSTATE MRI SEGMENTATION TECHNIQUES -
RELATED PAPERS

Radiologist workloads have been increasing over the years in
line with an increasing number of cancer patients. One of the
time-consuming tasks is zonal segmentation of prostate gland
for assessing the severity of tumor or cancer staging. Besides,
reviewing MRI scans for cancer staging can be time con-
suming and error prone. The goal of automatic segmentation
techniques is to help reduce doctors’ workloads and improve
patient outcomes. In this section, we have highlighted some
crucial works on prostate segmentation based on machine
learning and deep learning techniques.

Computer-based innovations have played a significant
role in the area of medical applications. The automatic
and semi-automatic methods help the physicians in man-
agement and analysis of clinical data. Visualisation tech-
nologies demonstrate great value in simulation and real-time
application of clinical procedures. Before the breakthrough
of deep learning, automatic and semi-automatic machine
learning-based techniques were implemented for segmenta-
tion of prostate MRI images. Many researchers have applied
machine learning-based techniques, most common ones are
atlas-based and deformable model-based for segmentation of
prostate gland MRI images.

The arrangement of this section is according to the cat-
egories of DL and ML segmentation techniques as shown
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in Figure 5. The first two sections cover segmentation of
prostate grouped into atlas-based and model-based tech-
niques. The subsequent three sections cover segmentation
of prostate based on deep learning techniques, arranged in
5 groups of DL-based segmentation, feature encoder, upsam-
pling, resolution increment, regional proposal and GAN.
Also, a section for multi-parametric MRI on segmentation
and prostate cancer detection is also included.

A. ATLAS-BASED PROSTATE MRI SEGMENTATION -
RELATED PAPERS

A summary of atlas-based prostate segmentation methods is
tabulated in Table 1. The abbreviation of private (Pv) dataset
are the ones originating from independent research groups
that had acquired sufficient patient data and providing the
ground truth for training and testing of tha algorithm. Most
of the time, these data are not publicly available. The per-
formance segmentation are listed using DSC values whereas
for papers, where the work also involved classification of
prostate cancer, accuracy (ACC) of the detection is reported.

In the early work of atlas-based prostate segmenta-
tion, from 2008 to 2010, proposed methods [79]-[82] was
focussing on segmenting the WG of the prostate rather
than segmenting the different parts of the prostate. Only at
the beginning of 2012, with the increasing need for zonal
segmentation, proposed atlas-based segmentation methods
were developed for separating the different parts of the
prostate [83]-[88].

Klein et al. [79] performed segmentation of the prostate
gland using multi-atlas segmentation where the localized
mutual information similarity measure is utilized to match
manually segmented atlas with the images. Martin et al. [80]
has introduced the probabilistic-based automatic segmen-
tation of the prostate gland 3D MRI images. Probabilistic
segmentation is achieved by registering a new image to a
probabilistic atlas and applying a statistical shape model
and feature model to refine prostate gland segmentation.
Langerak et al. [81] presented an atlas-based approach using
geometric transformation to register image samples with the
related mask to the target image. The iterative method for
performance level estimation (SIMPLE) is utilized to gen-
erate required labels from the deformed labels to perform
prostate gland segmentation. Dowling et al. [82] developed
the multi-atlas label fusion approach to localize the prostate
region in MRI images. The fused multi-atlas are mapped to
each MRI scan using rigid, affine and non-rigid registration.

Litjens et al. [83], implemented the method of
Klein et al. [79] using multiparametric MRI and evalu-
ated the segmentation method by majority voting and
simultaneous truth and performance level estimation
(STAPLE) [89]. Qiu ef al. [84] performed segmentation of
prostate glands by employing a global optimization tech-
nique. Giannini et al. [85] developed a two-stage process:
probability maps are generated using prostate volume, and
then using the generated maps, segmentation is performed to
locate the suspected area of prostate gland. Zhang et al. [86]
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TABLE 1. Summary of the atlas-based prostate segmentation, cancer detection techniques and their performance.

Tl e e e e mens |

[79] 2008 | Vv 50 *Registration *Atlas matching 0.87
[80] 2010 | v 36 *Resampling «Atlas-based approach v 0.86+0.02
811 | 2010 | v 100 “Registrati STAPLE 0.9
[81] egistration +SIMPLE .
*Bias field correction *Multi-atlas
82] 2011} v 50 *Histogram equalization | eGradient anisotropic diffusion v 0.860.02
[83] 2011 v 48 - *Multi atlas-based segmentation v v 0.75+0.07, 0.89+0.03
[84] 2014 v 18 - *Continuous max-flow model v v v 0.89+0.03, 0.70+0.06, 0.830+0.02
*Normalization .
[85] 2015 v 88 «Registration *Probability maps v 091
186] | 2016 | v 100 terpolation “LABS v v 0.85:£0.03, 0.7720.06
*Registration
1871 | 2016 50 “Registration “Atlas-based approach N VN 0.81720.05,0.70£12.06,0.62£0.07
*C-mean classifier
*Normalization .
(88] | 2016 | v 13 Noise roanetion Multi-atlas-based approach v 0.895:0.02

Dataset: Pv-Private, Pro-12-PROMISE12.

TABLE 2. Summary of the deformable model-based prostate whole gland (WG) segmentation techniques and their DSC values.

L 2D ASM
[90] 2005 v 26 *Normalization 3D ASM v 0.87
[91] 2009 v 26 *Normalization «Statistical shape model v 0.93+0.3
[93] 2009 | v 20 *Normalization *3D SSM v 0.83+0.09
. . *Deformable model
[92] 2010 | vV v 60 *Registration «Global registration v 0.84+0.03
[95] | 2012 | v 50 *Cropping ) «Deformable model v 0.840.012
*Bias field correction
*Normalization <ASM
[96] 2012 | vV 108 eInterpolation JIDA v 0.88+0.7
*Scaling
*Normalization
[971 2012 | vV 522,29 «Gradient cross correlation *Shape model v 0.84
*Cubic interpolation *Shape context registration
98] 2012 v 30 eneighbor interpolation *AAM v 0.81£0.12
[99] 2012 | v NA *3D AAM v 0.88+0.11
[100] | 2016 v 29 *Registration *SRS v 0.89+0.02
«Stick Filtering
[101] | 2017 v 21,16 * Enhancement *FCM v 0.90+0.17
» Cropping

Dataset: Pv-Private, Pro-12-PROMISE12, NCI-13-NCI-ISBI-2013

developed a local ROI-specific atlas-based (LABS) tech-
nique, which generates a region of interest (ROI) in par-
ticular MRI slices to ensure better registration of atlas
to target images for segmenting prostate WG and TZ.
Chilali ef al. [87] proposed zonal segmentation of prostate
gland technique by registering a target image with atlas and
then obtained the localization of the prostate zone by C-mean
clustering technique. Yang et al. [88] performed 3D prostate
MRI segmentation by local patch-based fusion of the atlas
that was carried out using anatomical signature-based voxel
weighting. The final segmentation of the prostate region is
selected based on the majority voting rule.

B. MODEL-BASED PROSTATE MRI SEGMENTATION -
RELATED PAPERS

A summary of 10 model-based whole gland (WG) prostate
segmentation methods is tabulated in Table 2 covering the
work from 2005 until 2016. The segmentation techiques
was mostly developed on private datasets collected by the
research institution and two publicly available dataset of
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PROMISE-12 and NCI-ISBI 2013. Zhu et al. [90] have intro-
duced a 2D+43D hybrid network for better segmentation
of the prostate MRI using 3D MRI data. Vikal et al. [91]
performed 3D MRI volumes segmentation using a sta-
tistical appearance shape model (3DASM). The statistical
shape model output is compared with the manual seg-
mentation. Two different locally collected datasets having
33 and 15 MRI images are used to evaluate the algorithm.
Gao et al. [92] developed an algorithm that registers the MR
images to learn shape before segmenting the prostate gland.
Makni et al. [93] developed a mathematical model of the sta-
tistical 3D shape model (SSM) [94], which can be deformed
to match the contours of the prostate. Markov fields have also
been used to collect knowledge about voxel neighborhoods.
The iterative conditional mode algorithm estimates the final
optimum labels based on Bayesian a posteriori classification.
Chandra et al. [95], introduced a deformable model approach
to segment the prostate gland, including seminal vesicles
automatically. A deformable model trained on-the-fly and
designed to be a model of patient-specific triangulated shape
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and image attributes trained throughout its initialization. The
image attribute model is integrated to deform the initial-
ized shape by template matching image attributes (via nor-
malized cross-correlation) to the scan characteristics. The
resulting deformations are regularized over the shape via
well-established simple shape smoothing algorithms, which
are then made anatomically valid via an optimized shape
model.

Toth and Madabhushi [96] developed the level-set
segmentation method to make proper use of the gradient,
intensity, statistical and geometric information to perform
precise segmentation and localization of the prostate gland.
Yin et al. [97] implemented an automated 3D MRI prostate
segmentation method. Cross-correlation of the normalized
gradient fields is used to detect the prostate displacement
and size, and a graph search algorithm is then used to
refine the boundaries. The experimental results of testing
their methodology are calculated on a 551-image dataset. 3D
ASM is less robust when volumetric data is sparse in one
dimension. The data of 13 patients is utilized for testing the
hybrid ASM network. Maan and van der Heijden [98] applied
the shape context registration with active appearance model
(AAM) to perform segmentation of 3D prostate T2W MRI.
Shape context registration registers every training case to
the segmented reference image. Then, the final segmentation
is performed by an AAM. Ghose et al. [99] developed a
3D automatic segmentation of the prostate using multiple
AAM with global registration for shape restriction. Shape
and appearance information is derived by principal compo-
nent analysis (PCA). The algorithm is evaluated on 15 MRI
images. Khalvati er al. [100] performed segmentation of the
prostate gland by registering the volume data against each
other using sequential registration-based segmentation (SRS)
algorithm.

Rundo et al. [101] developed a Fuzzy C-Means (FCM)
clustering algorithm-based automatic prostate gland segmen-
tation approach using multispectral T1-weighted (T1W) and
T2-weighted (T2W) MRI images. The prostate gland was
effectively segmented using this unsupervised machine learn-
ing technique.

In general, a fair comparison for the conventional methods
of atlas-based and deformable-based segmentation cannot
really be performed since most of the techniques use private
datasets except for [87] and [98] that used PROMISE-12
dataset. The performance of both atlas-based [87] and
deformable-based [98] WG segmentation is comparable in
terms of DSC values, recorded at 0.817 and 0.81. The best
performance for WG segmentation recorded by both meth-
ods using private dataset is at 0.90 for atlas-based [81] and
0.93 for deformable-based [91]

C. DEEP LEARNING-BASED PROSTATE SEGMENTATION
LITERATURE WORK

After the breakthrough of deep learning, the deep convolu-
tional neural network (DCNN) ia considered to be effective
in semantic segmentation applications. The DCNN employed
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labelling to each pixel with a class of objects/non-objects.
Semantic segmentation plays a significant role in the under-
standing of image which are essential for image analysis
tasks. In general, the DL-based segmentation techniques can
be groups in to 5 classes as illustrated in Figure 5. Details on
the related papers being grouped according the 5 classes are
presented in the subsequent sections.

1) FEATURE ENCODER-BASED PROSTATE MRI
SEGMENTATION - RELATED PAPERS

A summary of papers on feature encoder-based segmentation
techniques are listed in Table 3. The work can be either
on segmentation or combination of segmentation and clas-
sification. The results for segmentation are presentation in
DSC values whereas when segmentation is integrated into the
prostate cancer detection framework, the results are reported
in terms of accuracy.

Liao et al. [102] developed an unsupervised deep learn-
ing framework called independent subspace analysis (ISA)
network. The ISA network extracts useful features from
the input data. Subsequently, the extracted features are uti-
lized by sparse label propagation to perform segmentation.
Yanrong Guo et al. [103] has introduced a novel hybrid
model by integrating a deformable model with stacked sparse
auto-encoder (SSAE). The features extracted from deep
learning are matched to the atlas by a sparse matching pro-
cess. Cheng ef al. [104] merged the supervised atlas-based
active appearance model (AAM) with CNN. The method
employed the volume of interest (VOI) created by AAM as an
input to CNN model (appreciable features), which improved
prostate segmentation accuracy.

Jia et al. [105] developed hybrid approach and probabilis-
tic atlas are built by deformable registration via attribute
matching and mutual-saliency weighting (DRAMMS) algo-
rithm [106], and then patches are extracted from the selected
atlas ROI to perform segmentation using ensemble DCNN
network. Clark ef al. [107] modified U-Net with inception
residual blocks [108] to perform whole prostate gland (WG)
and transitional zone (TZ) segmentation using DW MRI
images. Mun et al. [109] developed baseline convolutional
neural network (BCNN) with a residual feature for 3D MRI
segmentation. All the blocks contain three layers of convo-
lution, but there is a shortcut connection to sum the output
of the first layer with the output of the second layer in the
encoding blocks. There is no corresponding connection in
the decoding part. The downsampling part extracted feature
maps are reused in the upsampling part utilizing long con-
nections and element-wise sum. The network managed the
MRI slices as a data sequence to assist the segmentation
process in the apex and base region. Brosch et al. [110]
implemented a hybrid technique of convolutional neural net-
work and shape-based model. Shape-based model utilizing
3D generalize through transformation (GHT) [111] to local-
ize the boundary points of the prostate. CNN is applied to
the output of the shape-based model to refine the segmen-
tation of prostate MRI images. Karimi et al. [112] extracted
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TABLE 3. Summary of the feature encoder-based prostate MRI segmentation, cancer detection techniques and their performance.

[102] | 2013 | v 30 *Patch Extraction *Stacked ISA v 0.867+0.02
Bias *Field Correction *SSAE
(1031 | 2015 v 66 *Histogram Matching *Deformable model v 0.871£0.04
. *ANN
[104] | 2016 v 120 «Patch Extraction «CNN v 0.925
*Reslicing *Atlas
[105] | 2017 | v v 12,50 Normalization “DCNN v 0.91
(o7 | 2017 | v 104 Vianual segmentation “DCNN v 0.93,0.88, 0.97
[109] | 2017 v 50 *Data ion *BCNN v 0.86
[124] | 2017 v 172 «Bilinear interpolation *Co-trained CNN 0.903
[110] | 2018 v 50 + Data augmentation «CNN v 0.905+0.017
* Contrast enhancement
*Data augmentation *Shape model
(121 | 2018 | v v 49,50 *B-spline interpolation *CNN v 088
*Data augmentation *TDN N
[113] | 2018 | v v 360, 112 “Cropping «CNN v AUC=0.962
*Bias filed correction
[114] | 2018 v 50 *Random deformation *DDSP ConNet v 0.857
«Centre cropping
*Normalization *Patch extraction
[115] | 2018 v 112 «Data ion *DCNN AUC=0.944
* N4 correction
«[sotropic upsampling *HNN
(tol | 2019 v v N 130, 10, 50 *Reorientation «Short Connection v 092,090
*Scaling
(9] | 2019 | v 240 normalization *AlexNet v 0.95
*Data ion
[120] | 2020 v 112 Nil 3D CNN v 0.86+0.05
*Registration
[121] | 2020 | v 377 *Resampling «3D CNN v 0.65,0.89
*Cropping
«Data augmentation «3D CNN
(1221 | 2020 | v 330 «Cropping <Ellipsoid formula \ 0.871
sLinear Interpolation
[125] | 2020 v v 89, 50 *Normalization *3D Multistream CNN v 0.925, 0.939
*Cropping

Dataset: Pv-Private, Pro-12-PROMISE12, Pro-Ex-PROSTATEX, Pro-Ex2-PROSTATEx2, NCI-13-NCI-ISBI-2013.

the information about the variable shape of the prostate by
shape-based model and then applied CNN to refine the seg-
mentation of prostate gland MRI images. Wang et al. [113]
performed the detection of prostate cancer using a tissue
deformation network (TDN) with CNN. The TDN provide
method for registration of the mp-MRI modalities. The com-
bination of both TDN and CNN extracts and classifies the
features more accurately.

Liu et al. [114] developed a novel CNN technique called
densely dilated spatial pooling convolutional network (DDSP
ConNet) trained with benign loss function to perform seg-
mentation of prostate MRI. The DDSP network combining
atrous convolution with global pooling enhanced the seg-
mentation performance of CNN. Song ef al. [115] built a
patch-based version of the DCNN model focused on a com-
bination of multiparametric MRI (mp-MRI) data to differen-
tiate between cancerous and noncancerous tissues.

Cheng etal. [116] implemented holistically nested
net (HNN) with short connection to perform whole gland
and central gland segmentation of prostate MRI images. Post
processing was applied to refine the segmented images.

Liu et al. [117] created a new deep learning-based method
for automatic prostate zone segmentation that includes a fully
CNN with a novel feature pyramid attention mechanism.
The proposed CNN, in particular, was made up of three
sub-networks: an enhanced deep residual network (based
on the ResNet50) [62], a pyramid function network with
focus [118], and a decoder. The ResNet50 was used to
deal with heterogeneous prostate anatomy by incorporating
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high-level semantic functionality, and the pyramid network
with attention was used to collect details at multiple scales.

Abdelmaksoud et al. [119] developed a technique for
automatic diagnosis of prostate cancer. The prostate gland
segmentation is obtained using level set technique, which
utilizes the nonnegative matrix factorization (NMF) approach
for better feature extraction in localizing the prostate gland.
Lastly, CNN is applied for classifying the cancerous and non-
cancerous tissue in the ADC map. Eppendorf et al. [120] have
introduced a deep learning approach for the quick deformable
distribution of clinical target volume contours from pretreat-
ment to fractional scans. The three different trained CNNs
were evaluated with various loss functions, based on contour
overlap, prediction of the deformation field, and a hybrid of
the two. Arif ef al. [121] developed a 3D CNN to segment and
identified the prostate lesion in mp-MRI of low-risk patients.
Lee et al. [122] developed 3D CNN of prostate T2W MRI for
TZ and then compared the performance of segmentation with
traditional volume measurements obtained with the ellipsoid
formula [123].

Yang et al. [124] developed a novel CNN approach to auto-
matically segment the prostate region and the lesion location
in the prostate region in registered DWI and T2W MRI.

Based on Table 3 the performance of feature encoder-based
segmentation using PROSTATEx for WG segmentation has
the best DSC score at 0.925 [125]. The good performance
of the method can be attributed to the architecture of
multi-stream 3D CNN architecture that simultaneously pro-
cesses anisotropic multi-planar MRI images; axial, sagittal
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TABLE 4. Summary of the upsampling-based prostate MRI segmentation, cancer detection techniques and their performance.

*B-spline interpolation

[153] | 2016 v 50 -Histogram matching *V-Net v 0.869
*Resampling
«Cropping *3D FCN
[126] | 2018 v 583 *Padding «Skip-connections 0.903
*Normalization
*Croping
[127] | 2018 | v v 50 *Resizing *3D DM-net v 0.89043.09, 0.95£0.53
*Normalization
[131] | 2018 v 60, 50 *Windowed sinc interpolation *PS-Net v 0.85
[151] | 2018 v 50 3D U-Net v 0.921
[152] [ 2018 | v v 53,50, 60 *Data ion *Aniso-3D U-Net 0.60, 0.85
. *NMF
[128] | 2019 | v 26 Nil .CNN 0.93
[132] | 2019 v 50 *Data augmentation “FCNN v 0.873
*Normalization
«Cropping
[134] | 2019 v 19 eInterpolation *U-Net 0.794, 0.692
*Normalization
[135] | 2017 | v 1234 «Data ion *U-Net v 0.885
*B-spline interpolation
[154] | 2017 v 50 *Histogram matching *3D U-Net v 0.869
«Data ion
*Normalization *FL
[136] | 2019 | v 397 Cropping *MFL v 0.57340.1
*Rigid transformation *SD-CRF
[137] | 2019 v 50 *Denoising «Cascaded U-Net v 0.856
*Resizing
[138] | 2019 v 50 *Resizing '3]?SFGCN v 0.91£0.2
[139] | 2019 v 19 *Normalization *U-Net 0.587, 0.888
. *Nested V-net3d
[140] | 2019 v 50 *Resizing “Vonet2d v 0.92
. *FCN
[141] | 2019 v 19 *Rescaling .LSTM v 0.86
[142] | 2019 v 991 *Data augmentation :1\1\//[[?]2 v 0.88
[144] | 2019 Nil «3D/2D hybrid U-Net v 0.87
*Denoising
[145] | 2019 v 50 *Resampling «Cascaded U-Net v 0.878
*Resizing
[146] | 2019 | v v 60, 19,21 * Cropping *USE-Net 0.76, 0.915
[133] | 2019 v 112 *Data ion *ED-DenseNet 0.871+0.06
*Data balancing
[147] | 2020 | v v 39, 50 *Resizing 2D U-Net v 0.87,0.89
*Normalization
[148] | 2020 v 50 *Normalization *DENN v 0.848
*Atlas
[149] | 2020 v 50 'S]\’I““difrd.‘z,“f“’“ +AdaResU-Net v 0.849
*Normalization
*Resizing
*Normalization
[150] | 2020 v 60, 50 «Nearest neighbor interpolation 3D U-shaped v 0.91,0.91
«Bilinear interpolation

Dataset: Pv-Private, Pro-12-PROMISE12, Pro-Ex-PROSTATEX, Pro-Ex2-PROSTATEX2, QIN-P-QIN-PROSTATE-Repeatability,
NCI-13-NCI-ISBI-2013, I2CVB-Initiative for Collaborative Computer Vision Benchmarking.

and coronal to produce a high-resolution prostate segmen-
tation. The segmented outputs of all CNN are ensembled at
the post-processing step. Training of the proposed network
with triple-plane MRI images has enhanced the performance
of prostate gland segmentation.

On the other hand, based on PROMISE-12, the best perfor-
mance is reported by [116] with DSC for WG segmentation
at 0.92. The method employs multiscale and multilevel learn-
ing, using 2-D nested networks with short connections for
addressing the issue of ambiguity in segmentation of apex and
base regions. In addition, post processing steps was applied
to refine the segmented images.

2) UPSAMPLING-BASED PROSTATE MRI SEGMENTATION -
RELATED PAPERS

A summary of upsampling-based prostate segmenta-
tion related papers from 2008 until 2020 is tabulated
in Table 4. Here, segmentation performance are evalu-
ated in terms of DSC values. For papers that implemented
segmentation techniques for prostate cancer detection,
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their results are presented in the form of classification
accuracy [126]-[128] and free-response receiver operating
characteristics (FROC) [129].

In the paper by Mehrtash ef al. [126] 3D FCN is developed
with a skip connection for prostate MRI segmentation and
localization of biopsy needles in MRI images. The encoder
consists of a convolution layer with ReLu and max pooling
layers to extract and save feature maps. To et al. [127] devel-
oped 3D deep dense multipath neural network (3D DM-Net),
which employs DenseNet [130] in encoder network. The
decoder network has residual blocks and grouped convolu-
tion, which help to produce the fine segmentation output.
The validation of the model is performed on private as well
as PROMISE-12 challenge datasets. Tain ef al. [131] fine
tuned the last layer of FCN and performed segmentation of
prostate MRI using mp-MRI. Reda et al. [128] developed an
automatic detection and localization technique of prostate
cancer in DWI MRI. The level set model utilizes non negative
matrix factorization (NMF) to combine the features inten-
sity and shape information of prostate volume for accurate
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segmentation. Then, feature maps are estimated at five values
for the ADC map of the prostate regions.

In [132], Hassanzadeh et al. introduced a new segmenta-
tion technique based on eight different 3DFCN and structure
of short connections to perform segmentation of prostate MRI
images. Yuan et al. [133] developed a novel encoder-decoder
densely connected convolutional network (ED-DenseNet).
Dense residual connections are employed in between convo-
lutional layers in the encoder and decoder network, and joint
loss function is used in the decoder to evaluate network seg-
mentation efficiency based on reconstruction and prediction
error.

Jensen et al. [134] introduced U-Net based CNN for zonal
prostate T2W MRI segmentation on z-score normalized data
from two scanners, 1.5-T GE and 3-T Siemens. For seg-
mentation of CG and PZ, the DSC is used for performance
evaluation of the proposed CNN techniques. Zhu et al. [135]
developed a deep encoder-decoder with additional super-
vised layers to perform the segmentation of prostate on
MRI images. Yang etal [124] developed a novel CNN
approach to automatically segment the prostate region and the
lesion location in the prostate region in registered DWI and
T2W MRI

Cao et al. [136] presented a CNN for prostate region seg-
mentation and detection of lesions with focal loss and dense
conditional random field (SD-CRF). Focal loss balances the
classes and improved detection with post-processing and
dense conditional random field (SD-CRF). Lietal. [137]
developed dense U-Net for segmentation of prostate MRI.
The output of the first U-Net is fed into the second U-Net
to refine the segmentation.

Zhong et al. [138] developed a 3D fully convolutional
network-Savitzky-Golay (FCN-SG) with long skip connec-
tion and the Parametric Rectified Linear Unit (PReLU)
being the activation function. To further refine segmentation
results, Savitzky-Golay (SG) filtering is employed as the
post-processing step.

Huang er al. [139] implemented U-Net for segmen-
tation of prostate cancer tissue in mp-MRI; Dynamic
contrast-enhanced (DCE) and DWI MRI images. Ocal and
Barisci [140] fused the Nested 3D dimensional volumetric
convolutional neural network (Nested-Vnet3d) and 2D volu-
metric convolutional neural network (V-net2d) for segmenta-
tion of prostate trained and tested on PROMISE-12 challenge
dataset. In [141], Kang et al. proposed a 3D segmentation
technique using volumetric convolutional network and tem-
poral stream modeled using recurrent neural networks with
long short-term memory (LSTM) units. Ma et al. [142] mod-
ified the U-Net with multi-scale dilated convolution (MDC)
and pooling block (MPB) to extract and encode multi-level
features. The attention gate [143], along with adversarial loss,
resulted in enhanced PZ segmentation.

Van et al. [144] implemented a hybrid 2D/3D deep learn-
ing approach to automatically locate and segment prostate
organs on clinically acquired mp-MRI. In another work
by Chen et al. [145], a cascaded Dense-U-Net is used for
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segmentation of prostate gland in three stages. In the first
stage, Dense-U-Net is applied to acquire prostate gland seg-
mentation for each MRI slice. In the 2nd stage, the morpho-
logical operation is applied to refine the segmented output.
Lastly, the MRI slices containing the prostate region are
resized to normalize the prostate region scale before feeding
to Dense-U-Net for final segmentation.

Rundo et al. [146] introduced a new U-Net-based seg-
mentation method called USE-Net, which uses blocks of
Squeeze-and-Excitation (SE) in both the U-Net encoder and
decoder architecture. The network was trained and tested
on multi-dataset to generalize both intra-and cross-dataset.
Their results revealed that the SE blocks allow recalibration of
adaptive features, thus providing an excellent generalization
of cross-datasets.

Astono et al. [147] implemented a simple 2D U-Net model
for prostate segmentation based on a private dataset of
T2 weighted MRI images with fixed 2D resolution and voxel
size across the entire dataset.

Da Silva et al. [148] developed coarse segmentation that
applies the intrinsic manifold simple linear iterative cluster-
ing algorithm and probabilistic atlas to combine local texture
and spatial knowledge in a deep CNN model along with the
particle swarm optimization algorithm to distinguish prostate
and non-prostate tissues.

Baldeon-Calisto et al. [149] developed a novel technique
called AdaResU-Net. Here, the U-Net with a residual learn-
ing framework is implemented, which has improved the seg-
mentation of prostate in MRI images.

Zhou et al. [150] implemented a novel 3D U-shaped neu-
ral network for prostate gland MRI segmentation. The net-
work has three key features: a resolution-aware convolutional
downsampling layer, a residual instance-batch-normalization
(IBN) block structure, and a case-wise loss function. Also,
in the inference stage, a coarse-to-fine iterative segmentation
is used to achieve high precision segmentation.

Meyer et al. [151] developed a 3D system for segmentation
of prostate multiplanar MRI images. The multiplanar MRI
improved the segmentation performance for the whole gland
and also base and apex regions. The short and long residual
convolution enhanced the prostate MRI segmentation accu-
racy, and the rank in the open challenge of PROMISE-12
dataset in 3D segmentation.

Mooij et al. [152] introduced aniso-3DU-Net for
segmentation of anisotropy MRI volumes of prostate.
Milletari et al. [153] performed the 3D segmentation of
prostate gland MRI using volumetric CNN with a novel
objective function.

Yu et al. [154] implemented residual connections within
the 3DCNN to perform segmentation of prostate MRI vol-
umes and evaluated the network using DSC, hausdorff dis-
tance (HD), average boundary distance (ABD) and relative
absolute volumes difference (RVD).

Yuan ef al. [133] developed a novel encoder-decoder
densely connected convolutional network (ED-DenseNet).
Dense residual connections are employed in between

97889



IEEE Access

Z. Khan et al.: Recent Automatic Segmentation Algorithms of MRI Prostate Regions

TABLE 5. Summary of the resolution increment-based prostate MRI segmentation, cancer detection techniques and their performance.

[155] | 2019 | v 15 *3D DSA-FCN v 0.852
*Resampling
[171] 2019 v v 81,50 *Random cropping scascaded U-Net v 0.925
*Normalization
*Denoising
[157] | 2019 v 19 * Cropping * DeepLabV3+ with Xception Model v v 0.70, .81
*Resizing
« Bias field correction
[158] 2019 v 50 *Data augmentation *HD-Net v 0.93
* Scaling
L. *ResNet101
[159] | 2019 v v 60, 50 Resizing “DDSP v 0.95
[160] | 2019 v 60 Dt esizing *Encoder-Decoder networks v | v 0.732,0.892
*Data augmentation
«Intensity mapping
[162] 2019 v 50 * Normalization *P-DNN v 0.841
*Resizing
*Resizing
[163] | 2019 v 50 *Padding *Z-Net v 0.85
+Cutting
Interpolation «CNN
[164] | 2019 v 112 +Affine co-registration SLM AUC =0.54
*Normalization
[166] | 2019 | v 566 *Data ation *Modified U-Net v v 0.89+0.01, 0.860.01
[1671 | 2019 19 “NiBias correction lechnique +3D U-Net v 0.799, 0.855, 0.908, 0.920
Histogram normalization
*Resampling
(1681 | 2019 | v 50 Trilinear intcrpolation +3D CNN v 0.60+1.7
eIntensity Cliping
Scaling
*Randomly sampling
[169] | 2019 | v 346 Patch extraction *ResNet v v 0.71,0.93
*Data augmentation
[170] 2019 v 50 *Normalization *3D dilated U-Nets v 0.88+0.4
*Resampling
[171] 2019 v v 81,50 *Random cropping *BOWDANet v 0.925
*Normalization
*Registration *Deeplab
[129] 2019 v 417 *Normalization *FocalNet FROC=0.897, 0.879
*Variation *U-Net
[161] 2019 v 232 *Normalization *Adapted U-Net v 0.89+0.03
[156] | 2019 | v 163 *Cropping *Cascaded U-Net v v 0.927+0.04, 0.793+0.10
.. *MDP
[172] | 2020 | v v v 50, 60, 32 *Resizing «DDPG v 0.936
*Resizing
+Cropping
[173] | 2020 v 60 *Normalization *DeepLabV3+ v v v 0.789, 0.928, 0.919
«Data augmentation
+2D patches
(174] | 2020 v v v 50, 60,19 Nopesing “SAML v 0876
*Normalization
[175] 2020 v 50 *Normalization *V-net Light (VnL) v 0.86
[176] 2020 v 15 3D affine transformation «Chan-vese active contour v 0.907
[177] 2020 v v 60,50 «Data Augmentation *CDA-Net v 0.928, 0.926
(78] | 2020 | v 50 NohoIsing «Supervise U-Net v 0.895
*Normalization
-Bi;ls\iog::riglt:zoa::g;ion 3D Multistream Network
[1791 | 2020 | v v 202, 60 D . *PAM v v 0.785, 0.908, 0.806, 0.901
ata augmentation
N *RRB
+Cropping
[180] | 2020 v v 60, 19 'Clj""e cropping MS-Net volv|v 0.915,0.912,0.921
*Normalization
*Bias correction
[181] | 2020 v 112 *Resampling 3D U-Net v v v 0.893, 0.825, 0.79, 0.788
*Normalization

Dataset: Pv-Private, Pro-12-PROMISE12, Pro-Ex-PROSTATEx, QIN-P-QIN-PROSTATE-Repeatability,
NCI-13-NCI-ISBI-2013, I2CVB-Initiative for Collaborative Computer Vision Benchmarking.

convolutional layers in the encoder and decoder network,
and joint loss function is used in the decoder to evaluate
network segmentation efficiency based on reconstruction and
prediction error.

3) RESOLUTION INCREMENT-BASED PROSTATE MRI
SEGMENTATION - RELATED PAPERS

A summary of papers on resolution increment-based seg-
mentation techniques are listed in Table 5. Majority of the
papers reported results on segmentation of prostate except
for two papers, [129], [155] which have proposed detection
of prostate cancer by integrating segmentation techniques in
their classification framework. Here, the results is expressed
in terms of area under the ROC curve (AUC) and FROC.
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In the paper by Wang et al. [156] novel technique called
deeply supervised FCN is developed with concatenated
atrous convolution (3D DSA-FCN) for segmentation of
prostate volumes. Concatenated atrous convolution gathers
multi-scale contextual information which improves localiza-
tion of the prostate. In another paper by Zhu ef al. [157],
coarse segmentation of DWI MRI images is obtained by
using morphological methods and watershed transform. The
output of coarse segmentation is used to acquire the region of
interest (ROI). The ROI is resized to 192 x 192 and then fed
into a cascaded U-Net architecture for zonal segmentation of
prostate MRI images.

Khan et al. [158] implemented DeepLabV3+ with Xcep-
tion network is a backbone to perform an automatic zonal
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segmentation for T2W prostate MR images of two different
MRI scanners. The deep networks is trained with Dice loss
function which performed better in terms of zonal segmenta-
tion using depth separable convolutions.

Jia et al. [159] developed a novel technique called hybrid
discriminative network (HD-Net). The pyramid convolution
block and the residual refinement block are implemented in
HD-Net to collect multi-scale spatial contextual information
of the prostate region. Later, the multi-scale features are
combined to minimize the propagation loss.

In [160], Geng et al. introduced an encoder-decoder net-
work with large receptive field to gather broader context using
dense dilated pyramid pooling (DDSP) and the resampling of
features at different scales provide more accurate classifica-
tion of an arbitrary scale area.

DeepLabV3+ network with backbone ResNetl8 [62] is
implemented by Khan et al. [161] for zonal segmentation
of prostate MRI using NCI-ISBI2013 dataset. In [162]
Ghavami et al. evaluated six different deep convolutional
neural networks for segmentation of prostate T2W MRI
images. Yan et al. [163] has developed a network called prop-
agation deep neural network (P-DNN) to combine multi-level
features as a single model. The P-DNN network utilized
the convolution and pooling layers (CP-layer) to extract
high-level features to accurately identify the prostate position
and shape identification. The output of CP-layer is refined in
the propagation layer (P-layer), while the loss-layer (L-layer)
correlates between the network output and manual segmen-
tation. Zhang et al. [164] developed a novel technique called
Z-Net. The novel approach is dense, having more layers that
preserve more information to segment the prostate boundary
better than the U-Net [67].

Lapa et al. [155] developed a convolutional neural net-
work by replacing backpropagation with semantic learning
machine (SLM) neuroevolution algorithm. The SLM net-
work enhanced the prostate MRI images segmentation per-
formance compared to XmasNet [165] for the PROSTATEx
challenge dataset. Motamed et al. [166] introduced a transfer
learning technique to perform the whole gland and transition
zone segmentation by implementing a modified U-Net and
loss function. In [167], Alkadi et al. performed the zonal
segmentation and detection of PZ and CG by applying a 3D
encoder-decoder convolutional neural network.

Zaffino et al. [168] developed a convolutional neural net-
work for the automatic segmentation of multiple closely
spaced brachytherapy catheters in intraoperative MRI.

In [169], Xu et al. performed segmentation of prostrate
by implementing a ResNet network. The features are uti-
lized in the training of residual networks for better seg-
mentation of prostate lesions. Pan et al. [170] developed a
two-stage 3D dilated model based on 3D dilated U-Nets with
post-processing for the segmentation of prostate MRI. The
method first localize the prostate followed by segmentation
for better prostate segmentation. Cao et al. [129] have devel-
oped a multi-class CNN tool, FocalNet, for the identification
of prostate cancer in mp-MRI. Gleason score (GS) is used to
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assess the level of aggressiveness of the prostate lesions hence
allowing the FocalNet to collect enough information for good
assessment of the lesion.

In [171], Zhu et al. developed a novel network called
boundary-weighted domain adaptive neural network
(BOWDA-Net) to solve the issue of intricate edges and vari-
able anatomical structure of prostate MRI images. Advanced
transfer learning helped the BOWDA-Net to address the
issue of small number of MRI slices, and boundary loss
function helped in giving precise boundary segmentation
of prostate in MRI images. [172], proposed segmentation
of prostate MRI is to be computed as a Markov decision
process which is based on deep reinforcement learning (DRL)
algorithm. The agent is trained by deep deterministic policy
gradient (DDPG) to localize the region of interest (ROI) in
prostate MRI images in multistep manner. Khan et al. [173]
evaluated encoder-decoder network for segmentation prostate
and its zone. The images of the dataset are centre cropped,
normalized, and 2D patches are extracted to achieve better
segmentation.

Liueral. [174] have presented a novel shape-aware
meta-learning scheme (SAML) for segmentation of the med-
ical images. The SAML approach roots in the episodic
training technique of meta-learning, to facilitate robust opti-
mization by simulating the domain change during model
training with meta-train and meta-test sets. Besides, two
shape-aware loss functions have been used to regularize the
meta optimization process. Yaniv et al. [175] modified the
V-Net [153] network by replacing 3D convolutions with novel
3D Light modules. The new network depreciates the num-
ber of parameters without affecting the segmentation results.
Singh et al. [176] implemented atlas-based method, along
with partial volume (PV) correction algorithm to segment the
PZ and TZ of the prostate. Finally, an active contour model
of 3D Chan-Vase with morphological operations is utilized to
obtain the final area of the prostate.

Lu et al. [177] developed a cascaded dual attention net-
work (CDA-Net) for segmentation of prostate MRI scan. The
CDA-Net extracts the region of interest (ROI) by applying
RAS-Faster RCNN, and then multi-scale features are utilized
by applying a residual convolutional block and soft-attention
mechanism (RAU-Net) to locate the targeted region pre-
cisely. Hambarde et al. [178] implemented a deeply super-
vised U-Net network with radiomic features. A large number
of radiomic features are extracted by the proposed network to
locate the prostate gland precisely. Qin et al. [179] proposed
a 3D multi-scale discriminative network with pyramid atten-
tion module (PAM) and residual refinement block (RRB) for
zonal segmentation of prostate MRI bi-parametric images.
The class imbalance issue is resolved by multi-directional
edge loss which is a wavelet decomposition-based method,
and PAM is utilized to extract the multi-scale discriminative
features.

Liu et al. [180] have introduced a new network called
the multi-site network (MS-Net), which have improved the
prostate segmentation by learning generic representations
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TABLE 6. Summary of the regional proposal-based prostate MRI whole gland (WG) segmentation, cancer detection techniques and their performance.

[182] | 2018 80 *Resizing *UR-Net v 0.936
[183] | 2019 78 N'RCS‘?'"‘D'. Mask RCNN v 0.87

*Normalization

*Resizing

[184] 2020 120,42 | eBi-linear interpolation *Mask RCNN v 0.82+0.05

*Normalization

* Z-score normalization
[185] 2020 v 344 + Image registration (;(RF-RNN v AUROC=0.615
N . *XmasNet
+Cube interpolation

Dataset: Pv-Private, Pro-Ex-PROSTATEX, Pro-Ex2-PROSTATEX2.

from multi-site data. The MS-Net utilized the domain-
specific batch normalization (DSBN) layer in the network
backbone to counterbalance the inter-site data heterogeneity
and learned high-level information from multi-site data.

In [162] Ghavami et al. evaluated six different deep con-
volutional neural networks for segmentation of prostate T2W
MRI images. In another paper by Zhu et al. [157], coarse
segmentation of DWI MRI images is obtained by using mor-
phological methods and watershed transform. The output of
coarse segmentation is used to acquire the region of interest
(ROI). The ROl is resized to 192 x 192 and then fed into a cas-
caded U-Net architecture for zonal segmentation of prostate
MRI images.

Zavala-Romero et al. [181] introduced a 3D multi stream
U-Net for zonal segmentation of prostate MRI images. More-
over, the images of the dataset are normalized, and linear
interpolation is used to the uniform resolution of MRI slices.
The preprocessing of the dataset has enhanced the segmenta-
tion of the prostate MRI images.

From Table 4 and Table 5, it is clear that the upsampling-
based method [127] and the resolution increment-based
method [160] have recorded the best DSC score of 0.95 using
the PROMISE-12 dataset, which is the highest DSC value
recorded for a common dataset.

4) REGIONAL PROPOSAL-BASED PROSTATE MRI
SEGMENTATION - RELATED PAPERS
The list of papers on regional proposal-based segmentation
techniques, mainly segmenting the WG region, is presented
in Table 6. In the work by Zhueral. [182] a network
called UR-Net is developed by implementing the U-Net in
a combination with a recurrent neural network (RNN) layer.
Feldman et al. [183] implemented Mask-RCNN for segmen-
tation and localization of the prostate and the dominant
intraprostatic lesion (DIL) on multiparametric ADC and T2W
MRI (mp-MRI) images. Dai et al. [184] proposed segmenta-
tion of prostate and intraprostatic lesions (ILs) using mask
region convolutional neural networks (Mask RCNN). T2W
MRI images are utilized for segmentation of prostate, and for
intraprostatic lesions (ILs) segmentation, the combination of
apparent diffusion coefficient (ADC) and T2W MRI images
are used. After re-sampling using bi-linear interpolation,
the ADC map is rigidly registered to the T2W MRI.

To improve the classification efficiency of XmasNet,
Lapa et al. [185] applied Conditional Random Fields as a
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Recurrent Neural Network (CRF-RNN) with a Convolutional
Neural Network (CNN) architecture to the PROSTATEx17
Challenge dataset. Therefore, without the need for two
separate training procedures, the proposed method creates
CRF-XmasNet, a hybrid end-to-end trainable network com-
posed of an initial CNN component for feature extraction
and a CRF-based probabilistic graphical model component
for organised prediction. Experimental tests show that the
approach show improvement in terms of classification accu-
racy and training time. The results are reported in terms of
statistical significant of different architectures with/without
embedding the CRF-RNN and the very deep networks of
VGGI16 and AlexNet.

Limited works are using the regional proposal-based
segmentation which has recorded the best DSC score
of 0.936 with private dataset by the 2020 work of
Zhu et al. [182]. Based on PROSTATEX2, its performance
for WG segmentation of 0.88 DSC score but this is far less
than the feature encoder-based method which was proposed
in 2019 that achieved 0.92 DSC score [116].

5) GENERATIVE ADVERSARIAL NETWORK (GAN)-BASED
PROSTATE MRI SEGMENTATION - RELATED PAPER

The list of papers on prostate segmentation based on GAN is
presented in Table 7. Generative adversarial network [186]
implements a generator network as a neural network that
takes a random variable as input and applies a transformation
function to generate similar distribution data as in the target
distribution. In contrast, the second network, called discrim-
inator, distinguishes the difference between the distribution
of generated data and if real data — both networks work as
adversaries.

Kohl et al. [187] proposed an approach by implementing
FCN with adversarial training. The prostate cancer region
is better detected by using adversarial loss in the seg-
mentation CNN network. Jia ef al. [188] proposed a 3D
adversarial pyramid anisotropic network (3D APA-Net). The
network applies 3D ResNet [62] to perform volumetric seg-
mentation, and then GAN is utilized to refine the seg-
mentation. The proposed method is tested on the online
dataset: PROMISE-12 and NCI-ISBI 2013 dataset, respec-
tively. Zhang et al. [189] developed Bi-attention adversarial
network for prostate cancer segmentation. The generator net-
work generates the predicted input image mask using U-Net
as the backbone. The generator efficiency increases more
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TABLE 7. Summary of the GAN-based prostate MRI segmentation techniques and their performance.

*Upsampling

RACIED

[187] | 2017 | v 152 *Registration GAN v 0.41+0.28
[189] | 2019 v 120 «Data augmentation *GAN v 0.864
[190] | 2019 v 50 *Denoising «cGAN v v v 0.734+0.18, 0.778+0.15, 0.742+0.16
*U-Net
[191] | 2020 v 50 *Resizing :gisfgilll\tly-aware v 0.909+0.02, 0.901+0.01
Attention mechanism
*Normalization
[192] | 2019 v 60 *Resizing *DGMNet v 0.93+0.12
*Centre cropping
[188] | 2019 50,60 | -Dias field correction +3D-APA-Net v vV 0.8940.1, 0.8640.02, 0.860£0.01
estandardization
[196] | 2020 99, 50 'g‘“‘s‘z‘“g . +SegDGAN v 0.925, 0.889
*Data augmentation
*Scaling «U-Net 0.76+0.10, 0.73+0.20, 0.789+0.12,
[195] | 2020 | v 60 *Zero padding *CycleGAN v
*Data augmentation «cGAN 0.72+0.03, 0.70+0.03, 0.757+0.02
[16] 2020 50 *«cGAN v 0.889

Dataset: Pv-Private, Pro-12-PROMISE12, NCI-13-NCI-ISBI-2013.

by distinguishing the generator expected mask and the true
mask with a discriminator network with adversarial learning.
Grall et al. [190] implemented conditional Generative Adver-
sarial Network (cGAN) for the segmentation of prostate MRI.
The trained network is evaluated by adding noise from the
training data to the test data. Finally, post-processing is per-
formed to refine the output of the segmentation.

Nie et al. [191] developed a framework for prostate MRI
segmentation. The developed framework consists of a seg-
mentation network, confidence network, and difficulty aware
attenuation mechanism. The confidence network generates
a confidence map to provide information about the seg-
mented region. Difficulty aware attenuation mechanism
improves the segmentation process by injecting confidence
learning with adversarial learning. Girum et al. [192] devel-
oped a novel technique called deep generative model neu-
ral network (DGMNet) for the segmentation of prostate
MRI. Jia et al. [193] performed the efficient segmentation of
prostate MRI by implementing a 3D global encoder-decoder
network with an adversarial network. Multi-level hybrid
global convolution blocks and boundary refinement blocks
are used in the decoder part of the network. Hu et al. [194]
developed a novel GAN called prostateGAN. The author
combines the idea of DCGAN and cGAN to generate prostate
DW MRI images with a specified glean score. The network is
trained with a dataset of 104 patients having a 1490 prostate
DW MRI slice. The 3D convolutional layer, along with the
adversarial loss function, achieved prostate gland better local-
ization and classification.

Cem Birbiri et al. [195] evaluated the cGAN, Cycle
GAN and U-Net for the segmentation of prostate T2W
MRI. Among the evaluated networks, the cGAN performed
very well in terms of DSC for the mp-MRI dataset. Jun
He et al. [16] implemented the conditional GAN (cGAN)
with adversarial loss and feature matching loss for the seg-
mentation of prostate MRI. During the training of cGAN,
the high-level information is learned by the adversarial
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training, while multi-scale discrimination refined the prostate
boundary.

From Table 7, the GAN-based prostate segmentation
started to gain popularity in 2017 and its best performance
using PROMISE-12 is by SegDGAN at 0.925 DSC score for
WG segmentation [196]. The proposed method comprises a
fully convolutional generative network of densely connected
blocks and a discriminative network with multi-scale feature
extraction. Notably, the method employed the mean absolute
error and the Dice coefficient for optimized objective func-
tion, giving improved segmentation accuracy.

VII. THE IMPACT OF MULTIPARAMETRIC MRI

In clinical practises, it is important to utilize various imaging
modalities for accurate prostate segmentation. One of every
five cancer diagnoses is a prostate cancer [197] Traditionally,
prostate cancer is diagnosed by biopsy but there is evidence
of an unequivocal benefit of multiparametric MRI-targeted
biopsies for more systematic biopsies in diagnosis of prostate
cancer.

As the biopsy is planned, prostate MRI scanning helps in
locating the target area, and therefore reduces the number
of unnecessary biopsies by half, minimises over-diagnosis
of clinically insignificant prostate cancer, and increases the
identification of clinically meaningful prostate cancer [198].
T2W MRI has good resolution and contrast are preferred to
be utilized for the staging and localization of prostate cancer.
In zonal segmentation the diagnosis of prostate cancer is
challenging in CG because of the difficulty in differentiating
between normal and malignant tissue with low-SI. The DW
MRI measures the movement of water molecules in the soft
tissue of the prostate gland.

For better contrast of prostate tissue, DCE MRI is
used since it exploits the vascularity characteristic of tis-
sues [199]. Prior to scanning the DCE MRYI, intravenous con-
trast media, normally gadolinium-based, is inserted into the
patient. In comparison to T2-W MRI alone, DCE MRI with
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TABLE 8. Summary of the mp-MRI prostate segmentation techniques and their performance.

+Stick Filtering (Deformable)
[101] 2017 v TIW, T2W 21,16 *Enhancement “FCM v 0.90+0.17
+ Cropping
*Data augmentation (Feature Encoder)
[113] | 2018 | v T2W, ADC 360, 112 -Crg in *TDN v AUC=0.962+0.0107
opping *CNN
[139] | 2019 T2W,ADC 19 «Normalization (Upf[‘}f'l‘\}’c'[‘“g) 0.91+0.375
*Resizing (Regional Proposal)
[183] | 2019 | v T2W, ADC 78 “Normalization “Mask RCNN v 0.87+0.04
*Scaling ES%NCI 0.7620.10, 0.73+0.20, 0.789+0.12,
[195] | 2020 | v T2W, DWI, ADC 60 *Zero padding CycleGAN v
«Data augmentation -céAN 0.72+0.03, 0.70£0.03, 0.757+0.02
 Z score Normalization | (Regional Proposal)
[185] 2020 T2W, ADC, PDW 344 « Image Registration *CRF-RNN v AUROC=0.615
*Cube Interpolation *XmasNet

Dataset: Pv-Private, Pro-12-PROMISE12, Pro-Ex-PROSTATEX,
12CVB-Initiative for Collaborative Computer Vision Benchmarking.

T2-W MRI has shown to improve sensitivity of prostate
cancer detection. Furthermore, the use of magnetic resonance
spectroscopy (MRSI) in conjunction with MRI has shown to
improve identification and diagnosis of prostate cancer [200].

Images from various MRI modalities reveal a great deal
of variation between patients’ prostate glands. The prostate
organ may appear in various locations in images, and the sig-
nal intensity may be distorted during the acquisition process
by noise or artefacts.

Computerized image interpretation systems are being
developed to aid in assessment of prostate mp-MRI images,
and their relationship between imaging and pathologic
assessment [201]. A list of mp-MRI prostate segmenta-
tion and prostate cancer detection is given in Table 8.
Rundo et al. [101] deformable model Fuzzy C-means clus-
tering technique to perform the segmentation of prostate
mp-MRI, TIW and T2W that is driven only by an image
appearance model. Wang et al. [113] implemented the tissue
deformation network (TDN) and CNN concatenated together
to perform the detection of prostate cancer in mp-MRIL
In short, the TDN is for automated prostate detection and
registration of T2W and ADC whereas the dual-path CNN
is for clinically significant (CS) prostate cancer detection.
Huang et al. [139] developed U-Net based network for seg-
mentation of prostate cancer region in mp-MRI. The mp-MRI
of T2W and ADC has enhanced the localization of prostate
cancer in mp-MRI images. Feldman et al. [183] performed
better segmentation and localization of the prostate and
the dominant intraprostatic lesion (DIL) on multiparametric
ADC and T2W MRI (mp-MRI) images using Mask-RCNN.
In [116] a trained deep neural network is utilized to extract
features from mp-MRI and used it for segmentation of WG
and CG yielding DSC equal to 0.92 and 0.90, respectively.
Cem Birbiri er al. [195] evaluated different deep neural net-
works (cGAN, Cycle GAN and U-Net) for the segmenta-
tion of prostate mp-MRI dataset. The DSC values for [195]
in Table 8 are listed for 3 GAN-based deep neural networks
for private and PROMISE-12 datasets. Lapa er al. [185]
performed the prostate cancer detection using 3 mp-MRI
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modality; T2W, ADC and proton density weighted (PDW)
utilizing a hybrid network of CRF-RNN and CNN. The
AUROC value in Table 8 is listed for the best model which
is CRG-VGG16 model. Armato et al. [202] used multipara-
metric magnetic resonance images of PROSTATEx Chal-
lenge and PROSTATEx-2 Challenge to perform computerised
classification of clinically relevant prostate lesions and com-
puterised evaluation of Gleason Grade Group in prostate
cancer. In the task of detecting clinically important prostate
cancers, computer-aided diagnosis (CAD) algorithm using
mp-MRI is shown to increase sensitivity but it decreases
specificity, giving more false positives [203]. The lack of
a public mp-MRI dataset of the prostate with well-defined
performance indicators to compare mp-MRI CAD systems
has been a major roadblock to development.

VIIl. OVERVIEW OF CLINICAL APPLICATION OF DEEP
LEARNING FOR PROSTATE MRI SEGMENTATION AND
CANCER DETECTION
Development of computer-aided diagnosis (CAD) algorithms
has been an active research field among the medical image
processing community. In particular, the clinically useful
algorithms are developed to assist clinicians, as decision
support in diagnosis of prostate cancer and reducing unnec-
essary biopsies. In fact, prostate MRI is known to reduce
unnecessary biopsies by 25%, reduce over-diagnosis of clin-
ically insignificant prostate cancer, and improve detection of
clinically significant cancer, which is defined as the one with
biopsy Gleason score greater than 7 [204], [205]. This has
motivated 3 grand challenges, PROMISE12 on prostate MRI
segmentation [206] and PROSTATEx and PROSTATEx-2 on
prostate cancer detection. Besides, the competitions pro-
mote discussion on the clinical implication of the proposed
methods and facilitate direct comparison of the proposed
algorithm. The subsequent discussion focuses mainly on the
PROSTATEx and PROSTATEX-2 challenge due to its clinical
motivation and involvement.

Using mp-MRI, the two tasks to be completed in
the PROSTATEx and PROSTATEX-2 competitions are
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(1) classification of clinically significant prostate lesions
and (2) determination of Gleason Grade Group in prostate
cancer. A thorough analysis on the results PROSTATEx and
PROSTATEX-2 Challenge is provided by Armato et al. [202].
The results from PROSTATEx Challenges are in agreement
with clinical practice with the highest AUC value of 0.95 indi-
cating the great potential of the proposed method in reducing
the number of unnecessary biopsies. The PROSTATEx-2
Challenge demonstrates that classification of 5-class patho-
logic Gleason Grade Group is a more difficult task than
to discriminate between clinically significant and clinically
insignificant cancer regions. From a clinical perspective,
the focus of the algorithm development should be on dis-
criminating between low- and high-grade cancers so that the
number of biopsies can be reduced.

A. COMMON PROBLEMS IN PROSTATE MRI
SEGMENTATION

Data scarcity is the main limitation in the segmentation of
medical images via DCNN, usually leading to over-fitting,
which refers to a model that performs well on a training
dataset but does not perform well on new data. In the majority,
medical image analysis tasks, sufficient dataset with con-
cerned masks are not available for training of DCNN because
the dataset delineation is time-consuming and sometimes
prone to error due to less number of experts in this field.
Special care must be taken during DCNN training with lim-
ited images to prevent over-fitting. Consequently, by reducing
the layers or parameters, the complexity of DCNN can be
reduced or, without changing the network architecture, focus
on methods that artificially augment [207], [208] the training
data.

1) CLASS IMBALANCE

The region of interest in prostate MRI occupies a small
region, which causes the issue of class imbalance. The main
challenges of prostate MRI segmentation are addressing
imbalanced data. Class imbalanced data can lead to unstable
DCNN training for prostate MRI segmentation, which is
biased towards the larger-region class. The loss function can
be used as a systematic way to improve the low dominant
class, improve the learning process, and avoid being trapped
in local minima. In order to overcome the imbalance class
present in the data collection, larger weights are allocated for
labels with fewer total pixels and smaller weights for labels
with more total pixels. Loss functions are one of the primary
ingredients in methods for deep learning-based segmentation
of medical images. More than 20 loss functions for various
segmentation tasks have been proposed in the past four years
where mostly used for segmentation process [209].

a: LOSS FUNCTION

Five different types of loss functions are elaborated in this
article, which are used in prostate MRI images segmentation
as summarized in Figure 6.
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FIGURE 6. 5 classes of loss functions and its sub classes used for
development of deep learning-based prostate MRI segmentation.

b: DISTRIBUTION-BASED LOSS
2) CROSS-ENTROPY (CE) LOSS
The most widely used loss function for image segmentation
tasks is the cross-entropy loss. The cross-entropy loss tests
the class predictions for each pixel vector separately and then
combines all pixels. The imbalanced classes weight in images
might affect the classifier decision.

In Long et al. [66] applied CE loss to address the issue of
class imbalance. Mathematically, CE can be calculated as

Lossce =— ) ) ¥, logfi, “)

ieN ieL
where jzf predicted segmentation class, yf is the target or the

ground truth segmentation label, N is the set of all target
labels, and L is the set of all labels.

3) WEIGHTED CROSS ENTROPY (WCE) LOSS

In prostate MRI scan, background regions dominate the
remaining classes. Therefore, the weights of multiple classes
are included in the cross-entropy as follows [173], [207].

Losswee = — Y _ Y wiyllogd, ®)

ieN ieL

where j/f predicted segmentation class, yf is the target or the
ground truth segmentation label and w; represents the weight
assigned to the i — th label.

4) FOCAL LOSS (FL)

Originally, focal loss was introduced for the task of detec-
tion. The focal loss encourages the model to down-weight
and concentrates training on hard negatives [210]. Formally,
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the FL is described by adding a modulating factor for the loss
of cross-entropy and a class balance parameter,

Lossp(Pr) = —at(l — Py)"log(Py), Q)

where p; € (—1,41) is the estimated probability for the
class. The y is a parameter which smoothly adjusts the rate
of weight and setting y > 0 can reduce the relative loss of
classified samples. It should be noted that the focal loss is
equal to the original cross-entropy loss when y = 0.

a: REGION-BASED LOSS

The goal of regional loss functions is to minimize the incom-
patibility or maximize the overlap between ground truth and
predicted segmentation regions.

5) DICE LOSS (DSL)

For medical image segmentation, the common loss function is
Dice loss, which measures the difference between the sample
predicted and the actual sample [153]. The Dice loss scale
from O to 1 and the maximum Dice overlap value is 1.

N ~
23 i Yiyi
N N 2’
2im1 Vi T im1Y;
where the sum run over all test images, J; is the predicted

segmentation class and y; is the target or the ground truth
segmentation label.

N

Losspsy = 1 —

6) INTERSECTION OVER UNION LOSS (I0U) LOSS
IoU loss [211] is similar to Dice loss and designed for opti-
mization of segmentation metrics.

yy
yUy

where R(y, y) is the penalty term for predicted segmentation
class y and the ground truth segmentation label y.

Lossjoy =1 — + R(®, ), (8

a: BOUNDARY-BASED LOSS

Boundary-based loss is aimed at reducing the difference
between ground truth and segmentation image. In general,
boundary-based loss functions are used with a region-based
loss to achieve more robust training.

7) BOUNDARY-BASED LOSS (BL)

In order to calculate the distance between two boundaries
differently, boundary losses use integrals across boundaries
rather than unbalanced integrals across regions to mitigate the
difficulty of a highly unbalanced region [212], [213].

Losspr = / ¢G(p)se(p)dp, ©))
Q
where p € € is a point on boundary G. The level set

function ¢G(p) encodes the distance between each point g,
and softmax probability outputs of the network sy (p).
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a: COMPOUND LOSS
Compound loss function applied to the prostate segmentation
applications is described as follows:

8) DICE FOCAL LOSS

The Dice Focal loss function is a combination Dice and focal
loss to be minimized the loss during the segmentation of small
volumes [214].

« TP,(c)

L =C-
opr go TPp(c) + aFNp(c) + BFPy(c)

C-1 N

—* ]lv > 2 8@ = pa(©) log(pu(c)),

c=0 n=1

(10)

where TP,(c), FN,(c) and FP,(c) are the true positives,
false negatives and false positives for class c, respectively,
determined by the predictive probabilities. Here, p,(c) is the
expected likelihood for voxel n being class ¢, g,(c) is the
ground truth for voxel n being class ¢, C is the total number
of classes. The trade-off between Dice loss and focal loss is
A, o and B are the trade-offs of penalties for false negatives
and false positives, N shows the total number of the voxel.

a: ADVERSARIAL LOSS

9) FEATURE MATCHING LOSS

The feature matching loss function [215] is applied to reg-
ularise the GAN generator and prevent it from over training
the discriminator. The generator is trained to produce features
that fit the expected values. In addition, the discriminator
selects those features that are most selective between the
actual data and the generated data. The feature matching loss
function of a network, E is

Fx) =ming Y _j =1 |Ex ~ paaaEj(x) — E|

~ N(O, L) E(G(z: )% (11)

where x is the real data sample from the data distribution
Pdata»> Z 1S a noise vector, Ej(x) is the output feature map of
the hidden layer j and N (0, I,;;) is the normal distribution of
data.

10) MINIMAX LOSS

In GAN, the generator network try to minimize the objective
function F(x), while the discriminator try to maximize the
function.

F(x) = mingmaxq[Ex ~ pdatallog(Da(x)) + E;

~ pellog(1 — Da(Gg(2)))] 12)

where E, is the expected value over all real data instances,
Dg(x) is the discriminator’s estimate of the probability that
data instance x is real, G,4(z) is the generator output when
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TABLE 9. Summary of publicly available MRI dataset for prostate segmentation and prostate cancer (CaP) detection.

PROMISE12 2012 v WG 50 (s)
NCI-ISBI-2013 2017 v WG, CG, PZ 60 (s)

12CVB 2015 v v v v WG,CG,PZ, CaP 19 (s)
PROSTATEXx Challenge 2016 v v v v 5-Gleason Grade Group 538 (1)
PROSTATEX-2 Challenge 2017 v v v v 5-Gleason Grade Group 162 (i)
QIN-PROSTATE Repeatability | 2018 v v WG, PZ, TZ 15 (s)

given noise z, E; is the expected value over all random
inputs to the generator. In effect, the expected value over
all generated fake instances Gg(z) and Dgy(x) is the dis-
criminator’s estimate of the probability that a fake instance
is real.

B. EVALUATION TECHNIQUES

The segmentation performance of algorithm are evaluated by
comparing the segmented image, P to the reference man-
ually segmented image, 7. Evaluation metrics are calcu-
lated by per slice comparison and then taking the average
for every patient. Different quantitative metrics for eval-
uating model performance are described in the following
subsections.

1) DICE SIMILARITY COEFFICIENT (DSC)

The segmentation performance of prostate MRI is evaluated
based on intersection between manually segmented image
and predicted segmented image sets using Dice similar-
ity coefficient (DSC) [206]. In essence, DSC measures the
resemblance of elements between predicted segmented image
and manually segmented image sets given as

__ITNPl
DSC =2—"1"" « 100, (13)
IT|+|P|

where |T| and | P| represent the number of elements in manu-
ally segmented image and predicted segmented image sets,
respectively. The DSC values range between 0 to 1, with
1 indicating the best-case scenario.

2) SENSITIVITY (SEN)
In a two-class scenario, sensitivity measures the correct detec-
tion ratio of true positives, given as

|TP|
SEN = — 1 % 100, (14)
|TP| + |FN |

where TP is the number of ““true positive,” that positive pixels
correctly identified, FP is the number of ‘“‘false positive”
that negative pixels incorrectly identified, and FN is the
number of ‘““false negative” that positive pixels that have been
incorrectly identified.
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3) SPECIFICITY (SP)
Specificity measures the correct detection ratio of true
negatives,

ITN|

= % 100. (15)
|TN| + |FP|

4) RELATIVE VOLUME DIFFERENCE (RVD)
Relative volume difference [216] is computed as follow:

T
RVD = (% — 1) x 100, (16)
where |T'| and |P| represent the number of elements in refer-
ence mask and predicted mask image sets, respectively

5) 95% HAUSDORFF DISTANCE (HD)

95% Hausdorff distance measure 95th percentile of the max-
imum distance of reference image set to nearest point in
predicted image set [217]. 95% Hausdorff distance can be
computed as follow:

HD(P,T) = max[d(T, P),d(P, T)], a7

where T and P are finite set.

6) AVERAGE SURFACE DISTANCE (ASD)
Average surface distance [218] can be computed as follows:

ASD = d(T,P),d(P,T)] (18)

o |
IT|+ |P|
7) AVERAGE ABSOLUTE DISTANCE (AAD)

Average absolute distance measures the distance from refer-
ence mask boundary to the predicted mask boundary. AAD
can be computed as follows:

AAD = %[d(T, P)] (19)

8) MAXIMUM ABSOLUTE DISTANCE (MAD)

Maximum absolute distance can be computed as follows:
MAD = max[d(T, P)] (20)

IX. PUBLICLY AVAILABLE PROSTATE MRI DATASETS

The publicly available prostate MRI dataset are presented

in Table 9, detailing the MRI modality, ground truth label and
number of images or subjects. There are mainly 3 groups of
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dataset depending on ground truth label; solely on segmenta-
tion, solely on CaP classification or staging and combined
segmentation and classification. The PROMISE12 [206],
NCI-ISBI 2013 and QIN-PROSTATE Repeatability are only
for segmentation but the I2CVB [33] can be used for devel-
opment of zonal segmentation and cancer detection methods.
On the other hand, both PROSTATEx and PROSTATEx-2
are used for development of diagnostic classification of clin-
ically significant prostate lesions, whereas the ground truth
is labelled using 5-class of Gleason Grade Group which
was graded by an experienced pathologist [202]. Basically,
the PROSTATEX is a subset of PROSTATEx-2. Both chal-
lenges aim to promote the advancement of image based
computational techniques and thereby reducing unnecessary
biopsies. The dataset summarized in Table 9 can be found in
their corresponding websites as listed below.

1) https://PROMISE-12.grand-challenge.org/.

2) https://wiki.cancerimagingarchive.net/display/DOIl/
NCI-ISBI4-20134-Challenge %3 A+4-Automated +
Segmentation+of+
Prostate+Structures.

3) https://i2cvb.github.io/.

4) https://wiki.cancerimagingarchive.net/display/Public/
SPIE-AAPM-NCI+PROSTATEx+Challenges.

5) https://www.aapm.org/GrandChallenge/
PROSTATEX-2/default.asp.

6) https://wiki.cancerimagingarchive.net/display/
Public/QIN-PROSTATE-Repeatability.

A new accessible dataset of prostate 3T MRI collection
consisting of 11 patients with 229 T2-weighted MR slices
collected from Universiti Kebangsaan Malaysia Medical
Center (UKMMOC) is available at http://bit.ly/prostatehukm.
The images were acquired using a 3-Tesla Siemens TIM MRI
scanner with surface coil. The image dimensions are 384 x
384 and 320 x 320, with thickness of 3 mm. The dataset image
masks are labeled for 2 classes, whole prostate gland (WG),
and background. The dataset was used in the evaluation of
patch-wise FCN, SegNet, U-Net and DeepLabV3+ [173].

A. DISCUSSION
In this review, we explored the techniques of machine learn-
ing and new, deep-learning segmentation methods of dif-
ferent modalities prostate MRI. The latest state-of-the-art
segmentation approaches are mainly based on CNN for the
segmentation of prostate MRI and can be categorized into
four groups: feature encoder based techniques, upsampling
based techniques, increased resolution based techniques and
region-based proposal. The detail of the literature work
of machine learning and deep learning methods is given
in Table 1, 2, 3, 4, 5, 6 and 7. In addition, the use of the
generative adversarial network with CNN for segmentation
of prostate MRI is given in Table 7.

In light of the review on 8-group of segmentation tech-
niques; atlas, deformable model, feature encoder, upsam-
pling, resolution increment of features, and regional proposal,
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we can draw the following summary of trend on the segmen-
tation work.

Clearly the atlas and deformable based segmentation
remained popular from 2005 only until 2017. This is mainly
due to the major breakthrough of deep learning technique,
which started to gain interest after the introduction of Ima-
geNet dataset in 2009. The earliest deep learning prostate
segmentation method was in 2013, which was based on
a feature encoder framework In fact, hybrid of feature
encoder with deformable [103] and atlas [105] was proposed
in 2015 and 2017, respectively. However, beyond 2017, there
was no new hybrid of deep learning + atlas/deformable
model being proposed. Notably, over the period of 2013 to
2020, a total of 7 segmentation methods based on fea-
ture encoder was proposed which means at the rate of
1 paper/year.

The upsampling method started to be used for prostate MRI
segmentation in 2016 and until 2020, there were 25 papers
proposed for prostate segmentation which is equivalent to
6.25 papers/year. The regional proposal method only has
4 proposed methods from 2018 to 2020 which is at the
rate of 2 papers/year. Prostate segmentation methods based
on GAN also have a low number of papers, with 9 papers
published from 2017 to 2020, equivalent to 3 papers/year.
On the other hand, the resolution method is considered as the
most popular among the 5 deep learning methods since there
were 28 papers published on the method in just over 1 year,
from 2019 to 2020.

In the medical image dataset confronting an issue of class
differences, to resolve this issue, the different loss function is
explained in this survey, as shown in Figure 6.

The challenging task with prostate MRI is the delineation
of the prostate that varies from patient to patient and having
an impact in different modalities. Making a fair distinction
between quantitative analysis of the various studies is not
easy. This fact is interpreted by different factors which play
its part.

Large dataset with precise annotation by the radiologist and
pathologist are still lacking. Different datasets are utilized
for the assessment of the developed algorithm and faces a
lack of standardization regarding experimental evaluation.
The similar view concluded by [219] supporting the above
argument, that experimental results are not validated using
common datasets which results in the inability to compare
the various studies.

The literature work shows that deep convolutional neu-
ral networks have performed better than machine learning
techniques. Several deep learning methods have been trained
and tested on personal data and publicly available datasets,
which provide a better platform for transparent evaluation and
comparison of DCNN and also to exploit the capabilities of
DCNN in segmentation of prostate MRI.

Enhanced feature-based techniques are computationally
less expensive, and have fewer parameters than the feature
encoder based techniques, upsampling based techniques and
increased resolution based techniques.
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The main problem in research on prostate cancer diagnosis
is the availability of a large dataset with precise annotation
by the radiologist and pathologist. Especially, the process of
annotation of prostate MRI needs sufficient effort to find the
pathology in the MRI images.

X. FUTURE CHALLENGES, PERSPECTIVE AND
CONCLUSION

Based on this survey, it is apparent that the ability of DCNN to
learn the appropriate features of input images has given them
an edge over traditional methods of prostate MRI segmenta-
tion. The benefit is pre-processing steps: data augmentation,
generative adversarial network, and patch extraction provide
sufficient data to enhance the performance of DCNN net-
works. Moreover the availability of public prostate datasets
and the development of advanced deep neural networks as
well as powerful hardware for computing play vital roles in
better prostate segmentation.

This review article has presented an overview of the seg-
mentation work of prostate MRI covering the traditional
method of atlas and deformable model as well and DCNN
methods. The background provides information regarding
the anatomy, carcinoma and prostate screening and MRI
imaging techniques. The methods used for preprocessing
of MRI dataset and prostate segmentation are explained in
detail in the literature. Moreover, current challenges and
possible future research directions have given insight chal-
lenges and future perspective. Finally, this survey provide
sufficient understanding about the DCNN techniques that
have performed very well in prostate MRI segmentation, and
also provide information regarding the current and future
challenges.
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