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Abstract—This article presents ORB-SLAMB3, the first system
able to perform visual, visual-inertial and multimap SLAM with
monocular, stereo and RGB-D cameras, using pin-hole and fisheye
lens models. The first main novelty is a tightly integrated visual-
inertial SLAM system that fully relies on maximum a posteriori
(MAP) estimation, even during IMU initialization, resulting in
real-time robust operation in small and large, indoor and outdoor
environments, being two to ten times more accurate than previous
approaches. The second main novelty is a multiple map system
relying on a new place recognition method with improved recall
that lets ORB-SLAMS3 survive to long periods of poor visual infor-
mation: when it gets lost, it starts a new map that will be seamlessly
merged with previous maps when revisiting them. Compared with
visual odometry systems that only use information from the last few
seconds, ORB-SLAM3 s the first system able to reuse in all the algo-
rithm stages all previous information from high parallax co-visible
keyframes, even if they are widely separated in time or come from
previous mapping sessions, boosting accuracy. Our experiments
show that, in all sensor configurations, ORB-SLAM3 is as robust
as the best systems available in the literature and significantly more
accurate. Notably, our stereo-inertial SLAM achieves an average
accuracy of 3.5 cm in the EuRoC drone and 9 mm under quick
hand-held motions in the room of TUM-VI dataset, representative
of AR/VR scenarios. For the benefit of the community we make
public the source code.

Index Terms—Computer vision, inertial navigation, simult-
aneous localization and mapping.

I. INTRODUCTION

NTENSE research on visual simultaneous localization and
mapping (SLAM) systems and visual odometry (VO), using
cameras either alone or in combination with inertial sensors,
has produced, during the last two decades, excellent systems,
with increasing accuracy and robustness. Modern systems rely
on maximum a posteriori (MAP) estimation which, in the case
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of visual sensors, corresponds to bundle adjustment (BA), ei-
ther geometric BA that minimizes feature reprojection error, in
feature-based methods, or photometric BA that minimizes the
photometric error of a set of selected pixels, in direct methods.

With the recent emergence of VO systems that integrate loop

closing techniques, the frontier between VO and SLAM is more
diffuse. The goal of visual SLAM is to use the sensors on-board
a mobile agent to build a map of the environment and compute
in real time the pose of the agent in that map. In contrast, VO
systems put their focus on computing the agent’s ego-motion
and not on building a map. The big advantage of a SLAM map
is that it allows matching and using in BA previous observa-
tions performing three types of data association (extending the
terminology used in [1]).

1) Short-term data association: matching map elements
obtained during the last few seconds. This is the only data
association type used by most VO systems, which forget
environment elements once they get out of view, resulting
in continuous estimation drift even when the system moves
in the same area.

2) Mid-term data association: matching map elements that
are close to the camera whose accumulated drift is still
small. These can be matched and used in BA in the same
way than short-term observations and allow to reach zero
drift when the systems move in mapped areas. They are
the key to the better accuracy obtained by our system
compared against VO systems with loop detection.

3) Long-term data association: matching observations with
elements in previously visited areas using a place recog-
nition technique, regardless of the accumulated drift (loop
detection), the current area being previously mapped in a
disconnected map (map merging), or the tracking being
lost (relocalization). Long-term matching allows to reset
the drift and to correct the map using pose-graph (PG) op-
timization or, more accurately, using BA. This is the key to
SLAM accuracy in medium and large loopy environments.

In this work, we build on ORB-SLAM [2], [3] and ORB-

SLAM visual-inertial [4], the first visual and visual-inertial
systems able to take full profit of short-term, mid-term, and long-
term data association, reaching zero drift in mapped areas. Here,
we go one step further providing multimap data association,
which allows us to match and use in BA map elements coming
from previous mapping sessions, achieving the true goal of a
SLAM system: building a map that can be used later to provide
accurate localization.
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TABLE I
SUMMARY OF THE MOST REPRESENTATIVE VISUAL (TOP) AND VISUAL-INERTIAL (BOTTOM) SYSTEMS, IN CHRONOLOGICAL ORDER
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1 Last source code provided by a different author. Original software is available at [50].
2Source code available only for the first version, SVO 2.0 is not open source.
3MSCKEF is patented [51], only a reimplementation by a different author is available as open source.

This is essentially a system paper, whose most important
contribution is the ORB-SLAM3 library itself [5], the most
complete and accurate visual, visual-inertial, and multimap
SLAM system to date (see Table I). The main novelties of
ORB-SLAM3 are as follows.

1y

2)

A monocular and stereo visual-inertial SLAM system
that fully relies on MAP estimation, even during the in-
ertial measurement unit (IMU) initialization phase. The
initialization method proposed was previously presented
in [6]. Here, we add its integration with ORB-SLAM
visual—inertial [4], the extension to stereo-inertial SLAM,
and a thorough evaluation in public datasets. Our results
show that the monocular and stereo visual-inertial sys-
tems are extremely robust and significantly more accurate
than other visual-inertial approaches, even in sequences
without loops.

Improved-recall place recognition. Many recent visual
SLAM and VO systems [2], [7], [8] solve place recogni-
tion using the DBoW?2 bag of words library [9]. DBoW2
requires temporal consistency, matching three consecutive
keyframes to the same area, before checking geometric
consistency, boosting precision at the expense of recall. As

3)

aresult, the system is too slow at closing loops and reusing
previously mapped areas. We propose a novel place recog-
nition algorithm, in which candidate keyframes are first
checked for geometrical consistency, and then for local
consistency with three covisible keyframes, which in most
occasions are already in the map. This strategy increases
recall and densifies data association improving map ac-
curacy, at the expense of a slightly higher computational
cost.

ORB-SLAM Atlas. The first complete multimap SLAM
system able to handle visual and visual—inertial systems
in monocular and stereo configurations. The Atlas can
represent a set of disconnected maps and apply to them
all the mapping operations smoothly: place recognition,
camera relocalization, loop closure, and accurate seam-
less map merging. This allows to automatically use and
combine maps built at different times, performing in-
cremental multisession SLAM. A preliminary version
of ORB-SLAM Atlas for visual sensors was presented
in [10]. Here we add the new place recognition system, the
visual-inertial multimap system, and its evaluation on
public datasets.
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4) An abstract camera representation making the SLAM
code agnostic of the camera model used and allow-
ing to add new models by providing their projec-
tion, unprojection, and Jacobian functions. We pro-
vide the implementations of pin-hole [11] and fisheye
[12] models.

All these novelties, together with a few code improvements,
make ORB-SLAM3 the new reference visual and visual—inertial
open-source SLAM library, being as robust as the best systems
available in the literature and significantly more accurate, as
shown by our experimental results in Section VII. We also
provide comparisons between monocular, stereo, monocular-
inertial, and stereo-inertial SLAM results that can be of interest
for practitioners.

II. RELATED WORK

Table I presents a summary of the most representative visual
and visual—inertial systems, showing the main techniques used
for estimation and data association. The qualitative accuracy and
robustness ratings included in the table are based on the results
presented in Section VII and the comparison between parallel
tracking and mapping (PTAM), large-scale direct monocular
SLAM (LSD-SLAM), and ORB-SLAM reported in [2].

A. Visual SLAM

Monocular SLAM was first solved in MonoSLAM [13], [14],
[52] using an extended Kalman filter (EKF) and Shi-Tomasi
points that were tracked in subsequent images doing a guided
search by correlation. Mid-term data association was signifi-
cantly improved using techniques that guarantee that the fea-
ture matches used are consistent, achieving hand-held visual
SLAM [53], [54].

In contrast, keyframe-based approaches estimate the map
using only a few selected frames, discarding the informa-
tion coming from intermediate frames. This allows to per-
form the more costly, but more accurate, BA optimization at
keyframe rate. The most representative system was PTAM [16]
that splits camera tracking and mapping into two parallel
threads. Keyframe-based techniques are more accurate than
filtering for the same computational cost [55], becoming the
gold standard in visual SLAM and VO. Large-scale monocular
SLAM was achieved in [56] using sliding-window BA and
in [57] using a double-window optimization and a covisibility
graph.

Building on these ideas, ORB-SLAM [2], [3] uses oriented
fast and rotated brief (ORB) features, whose descriptor provides
short-term and mid-term data association, builds a covisibility
graph to limit the complexity of tracking and mapping, and
performs loop closing and relocalization using the bag-of-words
library DBoW?2 [9], achieving long-term data association. To
date, it is the only visual SLAM system integrating the three
types of data association, which we believe is the key to its
excellent accuracy. In this work, we improve its robustness in
pure visual SLAM with the new Atlas system that starts a new
map when tracking is lost and its accuracy in loopy scenarios
with the new place recognition method with improved recall.
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Direct methods do not extract features, but use directly the
pixel intensities in the images, and estimate motion and structure
by minimizing a photometric error. LSD-SLAM [20] was able
to build large-scale semidense maps using high gradient pixels.
However, map estimation was reduced to PG optimization,
achieving lower accuracy than PTAM and ORB-SLAM [2]. The
hybrid system semi-direct visual odometry (SVO) [23], [24]
extracts FAST features, uses a direct method to track features
and any pixel with nonzero intensity gradient from frame to
frame, and optimizes camera trajectory and 3-D structure using
reprojection error. SVO is extremely efficient, but, being a pure
VO method, it only performs short-term data association, which
limits its accuracy. Direct sparse odometry (DSO) [27] is able
to compute accurate camera poses in situations where point
detectors perform poorly, enhancing robustness in low textured
areas or against blurred images. It introduces local photometric
BA that simultaneously optimizes a window of seven recent
keyframes and the inverse depth of the points. Extensions of
this work include stereo [29], loop closing using features and
DBoW?2 [58], [59], and visual-inertial odometry [46]. Direct
sparse mapping (DSM) [31] introduces the idea of map reusing
in direct methods, showing the importance of mid-term data
association. In all cases, the lack of integration of short-, mid-,
and long-term data association results in lower accuracy than
our proposal (see Section VII).

B. Visual-Inertial SLAM

The combination of visual and inertial sensors provides ro-
bustness to poor texture, motion blur, and occlusions and, in the
case of monocular systems, makes scale observable.

Research in tightly coupled approaches can be traced back to
multi-state constraint kalman filter (MSCKF) [33] where the
EKF quadratic cost in the number of features is avoided by
feature marginalization. The initial system was perfected in [34]
and extended to stereo in [35] and [36]. The first tightly coupled
VO system based on keyframes and BA was OKVIS [38], [39]
which is also able to use monocular and stereo vision. While
these systems rely on features, ROVIO [41], [42] feeds an EFK
with photometric error using direct data association.

ORB-SLAM-VI [4] presented for the first time a visual—
inertial SLAM system able to reuse a map with short-term,
mid-term, and long-term data association, using them in an
accurate local visual-inertial BA based on IMU preintegra-
tion [60], [61]. However, its IMU initialization technique was
too slow, taking 15 s, which harmed robustness and accuracy.
Faster initialization techniques were proposed in [62] and [63]
based on a closed-form solution to jointly retrieve scale, gravity,
accelerometer bias and initial velocity, as well as visual features
depth. Crucially, they ignore IMU noise properties and minimize
the 3-D error of points in space, and not their reprojection errors,
that is the gold standard in feature-based computer vision. Our
previous work [64] shows that this results in large unpredictable
eITors.

VINS-Mono [7] is a very accurate and robust monocular-
inertial odometry system with loop closing thatuses DBoW2 and
4 degrees of freedom (DoF) PG optimization and map-merging.
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Feature tracking is performed with Lucas—Kanade tracker, be-
ing slightly more robust than descriptor matching. In VINS-
Fusion [44], it has been extended to stereo and stereo-inertial.

VI-DSO [46] extends DSO to visual-inertial odometry,
proposing a BA that combines inertial observations with the
photometric error of selected high gradient pixels, which renders
very good accuracy. As the information from high gradient pixels
is successfully exploited, the robustness in scene regions with
poor texture is also boosted. Their initialization method relies
on visual—-inertial BA and takes 20-30 s to converge within 1%
scale error.

The recent BASALT [47] is a stereo-inertial odometry system
that extracts nonlinear factors from visual-inertial odometry
to use them in BA and closes loops matching ORB features,
achieving very good to excellent accuracy. Kimera [8] is a novel
outstanding metric-semantic mapping system, but its metric
part consists in stereo-inertial odometry plus loop closing with
DBoW2 and PG optimization, achieving similar accuracy to
VINS-Fusion.

In this work, we build on ORB-SLAM-VI and extend it to
stereo-inertial SLAM. We propose a novel fast initialization
method based on MAP estimation that properly takes into ac-
count visual and inertial sensor uncertainties and estimates the
true scale with 5% error in 2 s, converging to 1% scale error
in 15 s. All other systems discussed above are visual—inertial
odometry methods, some of them extended with loop closing,
and lack the capability of using mid-term data associations. We
believe that this, together with our fast and precise initialization,
is the key to the better accuracy consistently obtained by our
system, even in sequences without loops.

C. Multimap SLAM

The idea of adding robustness to tracking losses during explo-
ration by means of map creation and fusion was first proposed
in [65] within a filtering approach. One of the first keyframe-
based multimap systems was [66], but the map initialization
was manual and the system was not able to merge or relate
the different submaps. Multimap capability has been researched
as a component of collaborative mapping systems, with sev-
eral mapping agents and a central server that only receives
information [67] or with bidirectional information flow as in
C2TAM [68]. MOARSLAM [69] proposed a robust stateless
client-server architecture for collaborative multidevice SLAM,
but the main focus was the software architecture and did not
report accuracy results.

More recently, CCM-SLAM [70], [71] proposes a distributed
multimap system for multiple drones with bidirectional infor-
mation flow, built on top of ORB-SLAM. Their focus is on
overcoming the challenges of limited bandwidth and distributed
processing, while ours is on accuracy and robustness, achieving
significantly better results on the EuRoC dataset. SLAM [72]
also proposes a multimap extension of ORB-SLAM?2 but keeps
submaps as separated entities while we perform seamless map
merging, building a more accurate global map.

VINS-Mono [7] is a VO system with loop closing and mul-
timap capabilities that rely on the place recognition library
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Fig. 1. Main system components of ORB-SLAM3.

DBoW?2 [9]. Our experiments show that ORB-SLAM3 is 2.6
times more accurate than VINS-Mono in monocular-inertial
single-session operation on the EuRoC dataset, thanks to the
ability to use mid-term data association. Our Atlas system also
builds on DBoW?2 but proposes a novel higher recall place recog-
nition technique and performs a more detailed and accurate map
merging using local BA, increasing the advantage to 3.2 times
better accuracy than VINS-Mono in multisession operation on
EuRoC.

III. SYSTEM OVERVIEW

ORB-SLAM3 is built on ORB-SLAM?2 [3] and ORB-SLAM-
VI [4]. Itis a full multimap and multisession system able to work
in pure visual or visual-inertial modes with monocular, stereo,
or RGB-D sensors, using pin-hole and fisheye camera models.
Fig. 1 shows the main system components that are parallel to
those of ORB-SLLAM?2 with some significant novelties, which
are summarized next.

1) Atlas is a multimap representation composed of a set
of disconnected maps. There is an active map where
the tracking thread localizes the incoming frames and is
continuously optimized and grown with new keyframes
by the local mapping thread. We refer to the other maps
in the Atlas as the nonactive maps. The system builds a
unique DBoW?2 database of keyframes that is used for
relocalization, loop closing, and map merging.

2) Tracking thread processes sensor information and com-
putes the pose of the current frame with respect to the
active map in real time, minimizing the reprojection error
of the matched map features. It also decides whether
the current frame becomes a keyframe. In visual-inertial
mode, the body velocity and IMU biases are estimated by
including the inertial residuals in the optimization. When
tracking is lost, the tracking thread tries to relocalize the
current frame in all the Atlas’ maps. If relocalized, tracking
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isresumed, switching the active map if needed. Otherwise,
after a certain time, the active map is stored as nonactive,
and a new active map is initialized from scratch.

3) Local mapping thread adds keyframes and points to the
active map, removes the redundant ones, and refines the
map using visual or visual-inertial BA, operating in a
local window of keyframes close to the current frame.
Additionally, in the inertial case, the IMU parameters are
initialized and refined by the mapping thread using our
novel MAP-estimation technique.

4) Loop and map merging thread detects common regions
between the active map and the whole Atlas at keyframe
rate. If the common area belongs to the active map, it
performs loop correction; if it belongs to a different map,
both maps are seamlessly merged into a single one, which
becomes the active map. After a loop correction, a full BA
is launched in an independent thread to further refine the
map without affecting real-time performance.

IV. CAMERA MODEL

ORB-SLAM assumed in all system components a pin-hole
camera model. Our goal is to abstract the camera model from
the whole SLAM pipeline by extracting all properties and func-
tions related to the camera model (projection and unprojection
functions, Jacobian, etc.) into separate modules. This allows our
system to use any camera model by providing the corresponding
camera module. In ORB-SLAM3 library, apart from the pin-hole
model, we provide the Kannala—Brandt [12] fisheye model.

As most popular computer vision algorithms assume a pin-
hole camera model, many SLAM systems rectify either the
whole image or the feature coordinates to work in an ideal
planar retina. However, this approach is problematic for fisheye
lenses that can reach or surpass a field of view (FOV) of 180°.
Image rectification is not an option as objects in the periphery
get enlarged and objects in the center lose resolution, hindering
feature matching. Rectifying the feature coordinates requires
using less than 180° FOV and causes trouble to many computer
vision algorithms that assume uniform reprojection error along
the image, which is far from true in rectified fisheye images.
This forces to crop out the outer parts of the image, losing the
advantages of large FOV: faster mapping of the environment
and better robustness to occlusions. Next, we discuss how to
overcome these difficulties.

A. Relocalization

A robust SLAM system needs the capability of relocalizing
the camera when tracking fails. ORB-SLAM solves the relocal-
ization problem by setting a perspective-n-points solver based
on the ePnP algorithm [73], which assumes a calibrated pin-hole
camera along all its formulation. To follow up with our approach,
we need a PnP algorithm that works independently of the cam-
era model used. For that reason, we have adopted maximum
likelihood perspective-n-point algorithm [74] that is completely
decoupled from the camera model as it uses projective rays as
input. The camera model just needs to provide an unprojection
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function passing from pixels to projection rays, to be able to use
relocalization.

B. Nonrectified Stereo SLAM

Most stereo SLAM systems assume that stereo frames are rec-
tified, i.e., both images are transformed to pin-hole projections
using the same focal length, with image planes coplanar, and are
aligned with horizontal epipolar lines, such that a feature in one
image can be easily matched by looking at the same row in the
other image. However, the assumption of rectified stereo images
is very restrictive and, in many applications, is neither suitable
nor feasible. For example, rectifying a divergent stereo pair or
a stereo fisheye camera would require severe image cropping,
losing the advantages of a large FOV.

For that reason, our system does not rely on image rectifica-
tion, considering the stereo rig as two monocular cameras having
the following:

1) a constant relative SE(3) transformation between them;

2) optionally, acommon image region that observes the same

portion of the scene.

These constrains allow us to effectively estimate the scale of
the map by introducing that information when triangulating new
landmarks and in the BA optimization. Following up with this
idea, our SLAM pipeline estimates a 6 DoF rigid body pose,
whose reference system can be located in one of the cameras or
in the IMU sensor, and represents the cameras with respect to
the rigid body pose.

If both cameras have an overlapping area in which we have
stereo observations, we can triangulate true scale landmarks the
first time they are seen. The rest of both images still has a lot of
relevant information that is used as monocular information in the
SLAM pipeline. Features first seen in these areas are triangulated
from multiple views, as in the monocular case.

V. VISUAL-INERTIAL SLAM

ORB-SLAM-VI [4] was the first true visual-inertial SLAM
system capable of map reusing. However, it was limited to
pin-hole monocular cameras, and its initialization was too slow,
failing in some challenging scenarios. In this work, we build
on ORB-SLAM-VI providing a fast and accurate IMU initial-
ization technique and an open-source SLAM library capable of
monocular-inertial and stereo-inertial SLAM, with pin-hole and
fisheye cameras.

A. Fundamentals

While, in pure visual SLAM, the estimated state only includes
the current camera pose, in visual-inertial SLAM, additional
variables need to be computed. These are the body pose T; =
[R;, p:] € SE(3) and velocity v; in the world frame, and the
gyroscope and accelerometer biases, bY and b¢, which are
assumed to evolve according to a Brownian motion. This leads
to the state vector

S; ={T;,v;,b],b{}. (1)
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For visual-inertial SLAM, we preintegrate IMU measure-
ments between consecutive visual frames, 7 and 7 + 1, follow-
ing the theory developed in [60] and formulated on manifolds
in [61]. We obtain preintegrated rotation, velocity, and position
measurements, denoted as AR, 11, Av; ;41, and Ap; 41, as
well as a covariance matrix Yz, ,,, for the whole measurement
vector. Given these preintegrated terms and states S; and S, 41,
we adopt the definition of inertial residual rz, , , from [61]
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TAR; 41 — Log (ARi7i+1Ri Ri+1)
T 2
Tave 1 = Ry (Vigr — Vi — 8At 1) — AV 2)

1
rap ., =Ry <pj —Pi — Villiip1 — QgAt2> — Apiit1

where Log : SO(3) — R? maps from the Lie group to the vector
space. Together with inertial residuals, we also use reprojection
errors r;; between frame 7 and 3-D point j at position x;;

—II (T T; ' & x;) 3)

rij = Wi

where IT : R? — R"™ is the projection function for the corre-
sponding camera model, u;; is the observation of point j at
image ¢, having a covariance matrix 3;;, Tcg € SE(3) stands for
the rigid transformation from body-IMU to camera (left or right),
known from calibration, and & is the transformation operation
of SE(3) group over R3 elements.

Combining inertial and visual residual terms, visual-inertial
SLAM can be posed as a keyframe-based minimization prob-
lem [39]. Given a set of k + 1 keyframes and its state S, =
{So...Sk} and a set of | 3-D points and its state X =
{x0...x%;-1}, the visual-inertial optimization problem can be
stated as follows:

k
iy (Sl

where K7 is the set of keyframes observing 3-D point j. This
optimization may be outlined as the factor-graph shown in
Fig. 2(a). Note that for reprojection error, we use a robust Huber
kernel pyyp to reduce the influence of spurious matchings, while
for inertial residuals, it is not needed since miss-associations do
not exist. This optimization needs to be adapted for efficiency
during tracking and mapping, but, more importantly, it requires
good initial seeds to converge to accurate solutions.

e +Zszub(|rm||z) @

7=0 ek

Factor graph representation for different optimizations along the system.
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B. IMU Initialization

The goal of this step is to obtain good initial values for the
inertial variables: body velocities, gravity direction, and IMU
biases. Some systems like VI-DSO [46] try to solve from scratch
visual-inertial BA, sidestepping a specific initialization process,
obtaining slow convergence for inertial parameters (up to 30 s).

In this work, we propose a fast and accurate initialization
method based on the following three key insights.

1) Pure monocular SLAM can provide very accurate initial
maps [2], whose main problem is that scale is unknown.
Solving first the vision-only problem will enhance IMU
initialization.

2) As shown in [56], scale converges much faster when it is
explicitly represented as an optimization variable, instead
of using the implicit representation of BA.

3) Ignoring sensor uncertainties during IMU initialization
produces large unpredictable errors [64].

So, taking properly into account sensor uncertainties, we state
the IMU initialization as a MAP estimation problem, split into
the following three steps.

1) Vision-Only MAP Estimation: We initialize pure
monocular SLAM [2] and run it during 2 s, inserting
keyframes at 4 Hz. After this period, we have an up-to-
scale map composed of k = 10 camera poses and hun-
dreds of points, which is optimized using visual-only BA
[Fig. 2(b)]. These poses are transformed to body reference,
obtaining the trajectory To., = [R, PJo.r, where the bar
denotes up-to-scale variables in the monocular case.

2) Inertial-Only MAP Estimation: In this step, we aim to
obtain the optimal estimation of the inertial variables, in
the sense of MAP estimation, using only To., and inertial
measurements between these keyframes. These inertial
variables may be stacked in the inertial-only state vector

yk: = {S7ngab7‘_’0:/€} (5)

where s € R is the scale factor of the vision-only solu-
tion; Ry, € SO(3) is a rotation matrix used to compute
gravity vector g in the world reference as g = Ry4g1,
where gr = (0,0,G)T and G is the gravity magnitude;
b = (b% b9) € R® are the accelerometer and gyroscope
biases assumed to be constant during initialization; and
Vo.r € R is the up-to-scale body velocities from first to
last keyframe, initially estimated from T.y. At this point,
we are only considering the set of inertial measurements
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To.k ={Zo1 ... Zr-11}. Thus, we can state an MAP es-
timation problem, where the posterior distribution to be
maximized is

P(Vk|Zo:ie) < p(Zo:re| Vi) p( Vi) (6)

where p(Zo.x|)x) stands for likelihood and p())y) for

prior. Considering independence of measurements, the

inertial-only MAP estimation problem can be written as
k

Vi, = argmax | p(Vi) [ [ P(Zi-1.i15, Rug, b, ¥i 1, %)

Yk i=1
(N
Taking negative logarithm and assuming Gaussian error
for IMU preintegration and prior distribution, this finally
results in the optimization problem

k

Y = arg min Hb\|§4 + Z lrz, .,
Vi b i=1

%Eilfl ,t ' (8)

This optimization, represented in Fig. 2(c), differs from
(4) in not including visual residuals, as the up-to-scale
trajectory estimated by visual SLAM is taken as constant,
and adding a prior residual that forces IMU biases to
be close to zero. Covariance matrix Y, represents prior
knowledge about the range of values IMU biases may take.
Details for preintegration of IMU covariance Yz, , ; can
be found at [61].

As we are optimizing in a manifold, we need to define
a retraction [61] to update Ry, during the optimization.
Since rotation around gravity direction does not suppose
a change in gravity, this update is parameterized with two
angles (0ag, 0 3g)

RIY = ROSEXp(dag, 6, 0) 9)

with Exp(.) being the exponential map from R? to SO(3).
To guarantee that scale factor remains positive during
optimization, we define its update as

new

s" = 5% exp (ds). (10)

Once the inertial-only optimization is finished, the frame
poses and velocities and the 3-D map points are scaled
with the estimated scale factor and rotated to align the
z-axis with the estimated gravity direction. Biases are
updated and IMU preintegration is repeated, aiming to
reduce future linearization errors.

3) Visual-Inertial MAP Estimation: Once we have a good
estimation for inertial and visual parameters, we can per-
form a joint visual—inertial optimization for further refin-
ing the solution. This optimization may be represented as
Fig. 2(a) but having common biases for all keyframes and
including the same prior information for biases than in the
inertial-only step.

Our exhaustive initialization experiments on the EuRoC
dataset [6] show that this initialization is very efficient, achiev-
ing 5% scale error with trajectories of 2 s. To improve the
initial estimation, visual-inertial BA is performed 5 and 15 s
after initialization, converging to 1% scale error as shown in
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Section VII. After these BAs, we say that the map is mature,
meaning that scale, IMU parameters, and gravity directions are
already accurately estimated.

Our initialization is much more accurate than joint initializa-
tion methods that solve a set of algebraic equations [62]-[64] and
much faster than the initialization used in ORB-SLAM-VI [4]
that needed 15 s to get the first scale estimation or that used
in VI-DSO [46] that starts with a huge scale error and requires
20-30 s to converge to 1% error. Comparisons between different

initialization methods may be found at [6].

In some specific cases, when slow motion does not provide
good observability of the inertial parameters, initialization may
fail to converge to accurate solutions in just 15 s. To get robust-
ness against this situation, we propose a novel scale refinement
technique based on a modified inertial-only optimization, where
all inserted keyframes are included, but scale and gravity direc-
tions are the only parameters to be estimated [Fig. 2(d)]. Note
that, in that case, the assumption of constant biases would not be
correct. Instead, we use the values estimated from mapping, and
we fix them. This optimization, which is very computationally
efficient, is performed in the local mapping thread every 10 s
until the map has more than 100 keyframes or more than 75 s
have passed since initialization.

Finally, we have easily extended our monocular-inertial ini-
tialization to stereo-inertial by fixing the scale factor to one
and taking it out from the inertial-only optimization variables,
enhancing its convergence.

C. Tracking and Mapping

For tracking and mapping, we adopt the schemes proposed
in [4]. Tracking solves a simplified visual-inertial optimization
where only the states of the last two frames are optimized, while
map points remain fixed.

For mapping, trying to solve the whole optimization from (4)
would be intractable for large maps. We use as optimizable vari-
ables a sliding window of keyframes and their points, including
also observations to these points from covisible keyframes but
keeping their pose fixed.

D. Robustness to Tracking Loss

In pure visual SLAM or VO systems, temporal camera occlu-
sion and fast motions result in losing track of visual elements,
getting the system lost. ORB-SLAM pioneered the use of fast
relocalization techniques based on bag-of-words place recogni-
tion, but they proved insufficient to solve difficult sequences in
the EuRoC dataset [3]. Our visual-inertial system enters into
visually lost state when less than 15 point maps are tracked and
achieves robustness in the following two stages:

1) Short-term lost: The current body state is estimated from
IMU readings, and map points are projected in the es-
timated camera pose and searched for matches within a
large image window. The resulting matches are included
in visual—-inertial optimization. In most cases, this allows
to recover visual tracking. Otherwise, after 5 s, we pass to
the next stage.
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2) Long-term lost: A new visual-inertial map is initialized
as explained above, and it becomes the active map.
If the system gets lost within 15 s after IMU initialization, the
map is discarded. This prevents to accumulate inaccurate and
meaningless maps.

VI. MAP MERGING AND LOOP CLOSING

Short-term and mid-term data associations between a frame
and the active map are routinely found by the tracking and
mapping threads by projecting map points into the estimated
camera pose and searching for matches in an image window
of just a few pixels. To achieve long-term data association for
relocalization and loop detection, ORB-SLAM uses the DBoW?2
bag-of-words place recognition system [9], [75]. This method
has been also adopted by most recent VO and SLAM systems
that implement loop closures (Table I).

Unlike tracking, place recognition does not start from an
initial guess for camera pose. Instead, DBoW2 builds a database
of keyframes with their bag-of-words vectors and, given a query
image, is able to efficiently provide the most similar keyframes
according to their bag-of-words. Using only the first candidate,
raw DBoW?2 queries achieve precision and recall in the order of
50%-80% [9]. To avoid false positives that would corrupt the
map, DBoW2 implements temporal and geometric consistency
checks, moving the working point to 100% precision and 30%—
40% recall [9], [75]. Crucially, the temporal consistency check
delays place recognition at least during three keyframes. When
trying to use it in our Atlas system, we found that this delay and
the low recall resulted too often in duplicated areas in the same
or in different maps.

In this work, we propose a new place recognition algorithm
with improved recall for long-term and multimap data associ-
ation. Whenever the mapping thread creates a new keyframe,
place recognition is launched trying to detect matches with any
of the keyframes already in the Atlas. If the matching keyframe
found belongs to the active map, a loop closure is performed.
Otherwise, it is a multimap data association, and then the active
and the matching maps are merged. As a second novelty in
our approach, once the relative pose between the new keyframe
and the matching map is estimated, we define a local window
with the matching keyframe and its neighbors in the covisibil-
ity graph. In this window, we intensively search for mid-term
data associations, improving the accuracy of loop closing and
map merging. These two novelties explain the better accuracy
obtained by ORB-SLAM3 compared with ORB-SLAM?2 in the
EuRoC experiments. The details of the different operations are
explained next.

A. Place Recognition

To achieve higher recall, for every new active keyframe, we
query the DBoW?2 database for several similar keyframes in the
Atlas. To achieve 100% precision, each of these candidates goes
through several steps of geometric verification. The elementary
operation of all the geometrical verification steps consists in
checking whether there is an ORB keypoint inside an image
window whose descriptor matches the ORB descriptor of a map
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point, using a threshold for the Hamming distance between them.
If there are several candidates in the search window, to discard
ambiguous matches, we check the distance ratio to the second-
closest match [76]. The steps of our place recognition algorithm
are as follows.

1) DBoW2 candidate keyframes. We query the Atlas
DBoW?2 database with the active keyframe K, to retrieve
the three most similar keyframes, excluding keyframes
covisible with K,. We refer to each matching candidate
for place recognition as K.

2) Local window. For each K,,, we define a local window
that includes K,,, its best covisible keyframes, and the
map points observed by all of them. The DBoW?2 direct
index provides a set of putative matches between keypoints
in K, and in the local window keyframes. For each of
these 2-D-2-D matches, we have also the 3-D-3-D match
available between their corresponding map points.

3) 3-D aligning transformation. We compute using
RANSAC the transformation T, that better aligns the
map points in K, local window with those of K,. In
pure monocular, or in monocular-inertial when the map is
still not mature, we compute T, € Sim(3); otherwise,
T € SE(3). In both cases, we use Horn algorithm [77]
using a minimal set of three 3-D-3-D matches to find
each hypothesis for T,,,,. The putative matches that, after
transforming the map point in K, by T,,,, achieve a
reprojection error in K, below a threshold give a positive
vote to the hypothesis. The hypothesis with more votes is
selected, provided the number is over a threshold.

4) Guided matching refinement. All the map points in the
local window are transformed with T, to find more
matches with the keypoints in K,. The search is also
reversed, finding matches for K, map points in all the
keyframes of the local window. Using all the matchings
found, T, is refined by nonlinear optimization, where
the goal function is the bidirectional reprojection error,
using Huber influence function to provide robustness to
spurious matches. If the number of inliers after the opti-
mization is over a threshold, a second iteration of guided
matching and nonlinear refinement is launched, using a
smaller image search window.

5) Verification in three covisible keyframes. To avoid false
positives, DBoW2 waited for place recognition to fire in
three consecutive keyframes, delaying or missing place
recognition. Our crucial insight is that, most of the time,
the information required for verification is already in the
map. To verify place recognition, we search in the active
part of the map two keyframes covisible with K, where the
number of matches with points in the local window is over
a threshold. If they are not found, the validation is further
tried with the new incoming keyframes, without requiring
the bag-of-words to fire again. The validation continues
until three keyframes verify T, or two consecutive new
keyframes fail to verify it.

6) VI gravity direction verification. In the visual-inertial
case, if the active map is mature, we have estimated
T.m € SE(3). We further check whether the pitch and
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roll angles are below a threshold to definitively accept the
place recognition hypothesis.

B. Visual Map Merging

When a successful place recognition produces multimap data
association between keyframe K, in the active map M, and a
matching keyframe K, from a different map stored in the Atlas
M,,, with an aligning transformation T,,, we launch a map
merging operation. In the process, special care must be taken
to ensure that the information in M, can be promptly reused
by the tracking thread to avoid map duplication. For this, we
propose to bring the M, map into M,, reference. As M, may
contain many elements and merging them might take along time,
merging is split into two steps. First, the merge is performed in
a welding window defined by the neighbors of K, and K, in
the covisibility graph, and in a second stage, the correction is
propagated to the rest of the merged map by a PG optimization.
The detailed steps of the merging algorithm are as follows.

1) Welding window assembly. The welding window in-
cludes K, and its covisible keyframes, K,, and its co-
visible keyframes, and all the map points observed by
them. Before their inclusion in the welding window, the
keyframes and map points belonging to M, are trans-
formed by T, to align them with respect to M,,.

2) Merging maps. Maps M, and M, are fused together
to become the new active map. To remove duplicated
points, matches are actively searched for M, points in
the M, keyframes. For each match, the point from M,
is removed, and the point in M, is kept accumulating all
the observations of the removed point. The covisibility and
essential graphs [2] are updated by the addition of edges
connecting keyframes from M,,, and M, thanks to the
new mid-term point associations found.

3) Welding bundle adjustment. A local BA is performed
optimizing all the keyframes from M, and M, in the
welding window along with the map points which are
observed by them [Fig. 3(a)]. To fix gauge freedom, the
keyframes of M, not belonging to the welding window
but observing any of the local map points are included
in the BA with their poses fixed. Once the optimization
finishes, all the keyframes included in the welding area can
be used for camera tracking, achieving fast and accurate
reuse of map M,,.

4) Essential-graph optimization. A PG optimization is per-
formed using the essential graph of the whole merged map,
keeping fixed the keyframes in the welding area. This opti-
mization propagates corrections from the welding window
to the rest of the map.

C. Visual-Inertial Map Merging

The visual—inertial merging algorithm follows similar steps
than the pure visual case. Steps 1) and 3) are modified to better
exploit the inertial information.

1) VI welding window assembly: If the active map is ma-

ture, we apply the available T,,, € SE(3) to map M,
before its inclusion in the welding window. If the active
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Fig. 3. Factor graph representation for the welding BA, with reprojection
error terms (blue squares), IMU preintegration terms (yellow squares), and
bias random walk (purple squares). (a) Visual welding BA. (b) Visual-Inertial
welding BA.

map is not mature, we align M, using the available
T, € Sim(3).

2) VI welding bundle adjustment: Poses, velocities, and
biases of keyframes K, and K, and their five last tem-
poral keyframes are included as optimizable. These vari-
ables are related by IMU preintegration terms, as shown
in Fig. 3(b). For M,,, the keyframe immediately before
the local window is included but fixed, while, for M,,
the similar keyframe is included, but its pose remains
optimizable. All map points seen by the above-mentioned
keyframes are optimized, together with poses from K,
and K, covisible keyframes. All keyframes and points
are related by means of reprojection error.

D. Loop Closing

Loop closing correction algorithm is analogous to map merg-
ing but in a situation where both keyframes matched by place
recognition belong to the active map. A welding window is
assembled from the matched keyframes, and point duplicates
are detected and fused creating new links in the covisibility and
essential graphs. The next step is a PG optimization to propagate
the loop correction to the rest of the map. The final step is a global
BA to find the MAP estimate after considering the loop closure
mid-term and long-term matches. In the visual—inertial case, the
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TABLE II
PERFORMANCE COMPARISON IN THE EUROC DATASET (RMS ATE IN M., SCALE ERROR IN %). EXCEPT WHERE NOTED, WE SHOW RESULTS REPORTED BY THE
AUTHORS OF EACH SYSTEM, FOR ALL THE FRAMES IN THE TRAJECTORY, COMPARING WITH THE PROCESSED GT

[ | [ MHOI MH02 MH03 MHO4 MHO5 [ VIOl  VI02 VI03 [ V201 V202 V203 [ Avg'
ORB{E]LAM ATE2S 0071 0067 0071 0082 0060 | 0.015 0020 - 0.021 0018 - | 0.047*
[[’237(]) ATE 0046 0046 0172 3810 0110 | 0089 0107 0903 | 0044 0132 1152 | 0601
Monocular S[;if]) ATE 0100 0.20 0410 0430 0300 | 0070 0210 - 0.110 0.110 1.080 | 0.204*
]?3511\]’[ ATE 0039 0036 0055 0057 0067 | 0095 005 0076 | 0056 0057 0784 | 0.126
OR?(‘)iIr;’?W ATE 0.016 0027 0028  0.38 0072 | 0033 0015 0.033 | 0023 0029 - | 0.041*
ORB'SI]‘AW ATE 0035 0018 0028  0.19 0060 | 0.035 0020 0.048 | 0037 0035 - | 0.044*
VIN?;‘Z’S“’" ATE 0.540 0460 0330 0780 0500 | 0.550 0230 - 0230 0200 - 0.424%
Stereo
S[;Zf]’ ATE 0040 0070 0270  0.170 0120 | 0040 0040 0070 | 0.050 0090 0.790 | 0.159
OR?(‘)%S’)*M3 ATE 0029 0019 0024 0085 0052 | 0.035 0025 0061 | 0041 0028 0521 | 0.084
MCSKE p
o) ATE 0420 0450 0230 0370 0480 | 0340 0200 0.670 | 0.100 0.160 1.130 | 0414
OEZ]IS ATE? 0160 0220 0240 0340 0470 | 0090 0200 0240 | 0.130 0.160 0290 | 0231
R%io ATE® 0210 0250 0250 0490 0520 | 0.00 0100 0.140 | 0.120 0.140 0.140 | 0.224
Monocular | ORBSLAMVI  ATEZ® 0075 0084 0087 0217 0082 | 0027 0028 - 0032 0041 0074 | 0.075*
Inertial [4] scale error®3 0.5 0.8 1.5 3.5 0.5 0.9 0.8 - 0.2 1.4 0.7 1.1%
VINS-Mono 4
o ATE 0084 0105 0074 022 0147 | 0047 0066 0.180 | 0056 0090 0244 | 0.110
VIDSO ATE 0062 0044 0117 0132 0121 | 0059 0067 0096 | 0.040 0062 0.174 | 0.089
[46] scale error L1 05 04 02 08 1.1 11 08 12 03 04 0.7
ORB-SLAMS3 ATE 0.062 0037 0046 0075 0057 | 0049 0015 0.037 | 0.042 0020 0.027 | 0.043
(ours) scale error 1.4 0.3 0.8 0.5 0.3 2.0 0.6 2.2 0.7 0.4 1.0 0.9
VIN%‘E‘S‘O“ ATE? 0166 0152 0125 0280 0284 | 0076 0069 0.114 | 0066 0091 009 | 0.138
BASALT ATE? 0080 0060 0050 0100 0080 | 0040 0020 0030 | 0030 0020 - | 0051
Stereo [47]
Inertial K‘[‘g]er” ATE 0080 009 0110 050 0240 | 0050 0110 0.120 | 0070 0.100 0.190 | 0.119
ORB-SLAM3 ATE 0036 0033 0035 0051 0082 | 0.038 0014 0024 | 0032 0014 0024 | 0035
(ours) scale error 0.6 0.2 0.6 0.2 0.9 0.8 0.6 0.8 1.1 0.2 0.2 0.6

L Average error of the successful sequences. Systems that did not complete all sequences are denoted by * and are not marked in bold.

2Errors reported with raw GT instead of processed GT.

3Errors reported with keyframe trajectory instead of full trajectory.

4Errors obtained by ourselves, running the code with its default configuration.
5Errors reported at [78].

global BA is only performed if the number of keyframes is below
a threshold to avoid a huge computational cost.

VII. EXPERIMENTAL RESULTS

The evaluation of the whole system is split into the following.

1) Single session experiments in EuRoC [79]: Each of the 11
sequences is processed to produce a map, with the four sen-
sor configurations: monocular, monocular—inertial, stereo,
and stereo—inertial.

2) Performance of monocular and stereo visual-inertial
SLAM with fisheye cameras, in the challenging TUM-VI
benchmark [80].

3) Multisession experiments in both datasets.

As usual in the field, we measure accuracy withrms ATE [81],
aligning the estimated trajectory with ground-truth using a
Sim(3) transformation in the pure monocular case, and an SE(3)
transformation in the rest of sensor configurations. Scale error
is computed using s from Sim(3) alignment, as |1 — s|. All

experiments have been run on an Intel Core i7-7700 CPU, at
3.6 GHz, with 32 GB memory, using only CPU.

A. Single-Session SLAM on EuRoC

Table II compares the performance of ORB-SLAM3 using
its four sensor configurations with the most relevant systems in
the state of the art. Our reported values are the median after 10
executions. As shown in the table, ORB-SLAM3 achieves in all
sensor configurations more accurate result than the best systems
available in the literature, in most cases by a wide margin.

In monocular and stereo configurations, our system is more
precise than ORB-SLAM?2 due to the better place recognition
algorithm that closes loops earlier and provides more mid-term
matches. Interestingly, the next best results are obtained by DSM
that also uses mid-term matches, even though it does not close
loops.

In monocular-inertial configuration, ORB-SLAM3 is five to
ten times more accurate than MCSKF, OK VIS, and ROVIO and
more than double the accuracy of VI-DSO and VINS-Mono,
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Fig. 4. Colored squares represent the rms ATE for ten different executions in
each sequence of the EuRoC dataset.

showing again the advantages of mid-term and long-term data
associations. Compared with ORB-SLAM VI, our novel fast
IMU initialization allows ORB-SLAM3 to calibrate the inertial
sensor in a few seconds and uses it from the very beginning,
being able to complete all EuRoC sequences, obtaining better
accuracy.

In stereo-inertial configuration, ORB-SLAM3 is three to four
times more accurate than Kimera and VINS-Fusion. Its accuracy
is only approached by the recent BASALT that, being a native
stereo-inertial system, was not able to complete sequence V203,
where some frames from one of the cameras are missing. Com-
paring our monocular-inertial and stereo-inertial systems, the
latter performs better in most cases. Only for two Machine Hall
(MH) sequences, a lower accuracy is obtained. We hypothesize
that greater depth scene for MH sequences may lead to less
accurate stereo triangulation and, hence, a less precise scale.

To summarize performance, we have presented the median
of ten executions for each sensor configuration. For a robust
system, the median represents accurately the behavior of the
system. But a nonrobust system will show high variance in its
results. This can be analyzed using Fig. 4 that shows with colors
the error obtained in each of the ten executions. Comparison
with the figures for DSO, ROVIO, and VI-DSO published in [46]
confirms the superiority of our method.

In pure visual configurations, the multimap system adds some
robustness to fast motions by creating a new map when tracking
is lost, which is merged later with the global map. This can
be seen in sequences V103 monocular and V203 stereo that
could not be solved by ORB-SLLAM?2 and are successfully solved
by our system in most executions. As expected, stereo is more
robust than monocular, thanks to its faster feature initialization,
with the additional advantage that the real scale is estimated.

However, the big leap in robustness is obtained by our novel
visual-inertial SLAM system, both in monocular and stereo
configurations. The stereo-inertial system has a very slight ad-
vantage over monocular-inertial, particularly in the most chal-
lenging V203 sequence.

We can conclude that inertial integration not only boosts
accuracy, reducing the median ATE error compared to pure
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TABLE III
TUM-VI BENCHMARK [80]: RMS ATE (M) FOR REGIONS WITH
AVAILABLE GROUND-TRUTH DATA

Mono-Inertial Stereo-Inertial
Seq. Xﬂi S(I)i];/iS OKVIS|ROVIO|BASALT S(Bi?/;s L‘E“m%th LC
corridorl 0.63 0.04 0.33 0.47 0.34 0.03 305 |V
corridor2 0.95 0.02 0.47 0.75 0.42 0.02 322 |V
corridor3 1.56 0.31 0.57 0.85 0.35 0.02 300 | v
corridor4 0.25 0.17 0.26 0.13 0.21 0.21 114
corridor5 0.77 0.03 0.39 2.09 0.37 0.01 270 |V
magistralel || 2.19 | 0.56 349 | 452 1.20 0.24 918 |V
magistrale2 || 3.11 0.52 273 13.43 1.11 0.52 561 | v
magistrale3 || 0.40 4.89 1.22 | 14.80 0.74 1.86 566
magistrale4 || 5.12 0.13 0.77 | 39.73 1.58 0.16 688 | v
magistrale5 || 0.85 1.03 1.62 347 0.60 1.13 458 | v
magistrale6 || 2.29 1.30 3.91 X 3.23 0.97 771
outdoors1 || 74.96 | 70.79 X 101.95 | 255.04 | 32.23 2656
outdoors2 ||133.46| 14.98 73.86 | 21.67 64.61 10.42 1601
outdoors3 || 36.99 | 39.63* || 32.38 | 26.10 | 38.26 54.77 1531
outdoors4 || 16.46 | 25.26 19.51 X 17.53 11.61 928
outdoors5 |[130.63| 14.87 13.12 | 54.32 7.89 8.95 1168 | v
outdoors6 |{133.60| 16.84 96.51 | 149.14 | 65.50 10.70 2045
outdoors7 || 21.90 | 7.59 13.61 | 49.01 4.07 4.58 1748 | v
outdoors8 || 83.36 | 27.88 16.31 | 36.03 13.53 11.02 986
room] 0.07 0.01 0.06 0.16 0.09 0.01 146 | v
room2 0.07 0.02 0.11 0.33 0.07 0.01 142 |V
room3 0.11 0.04 0.07 0.15 0.13 0.01 135 | vV
room4 0.04 0.01 0.03 0.09 0.05 0.01 68 |V
roomS 0.20 0.02 0.07 0.12 0.13 0.01 131 |V
room6 0.08 0.01 0.04 0.05 0.02 0.01 67 v
slides1 0.68 0.97 0.86 | 13.73 0.32 0.41 289
slides2 0.84 1.06 2.15 0.81 0.32 0.49 299
slides3 0.69 0.69 2.58 4.68 0.89 0.47 383

Ours are median of three executions.

For other systems, we provide values reported at [82].
*points out that one out of three runs has not been successful.
LC: Loop closing may exist in that sequence.

TABLE IV
RMS ATE (M) OBTAINED BY ORB-SLAM3 WITH FOUR SENSOR
CONFIGURATIONS IN THE ROOM SEQUENCES, REPRESENTATIVE OF AR/VR
SCENARIOS (MEDIAN OF THREE EXECUTIONS)

Mono- Stereo-
Inertial | Inertial
rooml 0.042 0.077 0.009 0.008
room2 0.026 0.055 0.018 0.012
room3 0.028 0.076 0.008 0.011
room4 0.046 0.071 0.009 0.008
room5 0.046 0.066 0.014 0.010
room6 0.043 0.063 0.006 0.006
Avg. 0.039 0.068 0.011 0.009

Seq. Mono | Stereo

TABLE V
MULTISESSION RMS ATE (M) ON THE EUROC DATASET. FOR CCM-SLAM
AND VINS, WE SHOW RESULTS REPORTED BY THE AUTHORS OF EACH
SYSTEM. OUR VALUES ARE THE MEDIAN OF FIVE EXECUTIONS, ALIGNING
THE TRAJECTORIES WITH THE PROCESSED GT

Room Machine Hall Vicon 1 Vicon 2
Sequences MHO1-03 [ MHO1-05 [ V101-103 [ V201-203
ORB-SLAM3 ATE 0.030 0.058 0.058 0.284
Mono
CCM-SLAM
Mono [71] ATE 0.077 - - -
ORB-SLAM3 ATE 0.028 0.040 0.027 0.163
Stereo
ORB-SLAM3 ATE 0.037 0.065 0.040 0.048
Mono-Inertial Scale error 0.4 0.3 1.4 0.9
VINS [7]
Mono-Inertial ATE . 0210 ) }
ORB-SLAM3 ATE 0.041 0.047 0.031 0.046
Stereo-Inertial Scale error 0.6 0.3 0.6 0.8
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Fig.6. Multisession stereo-inertial. Inred, the trajectory estimated after single-
session processing of outdoors1. In blue, multisession processing of magistrale2
first and then outdoors1.

visual solutions, but it also endows the system with excellent
robustness, having a much more stable performance.

B. Visual-Inertial SLAM on TUM-VI Benchmark

The TUM-VI dataset [80] consists of 28 sequences in 6 dif-
ferent environments, recorded using a hand-held fisheye stereo-
inertial rig. Ground-truth for the trajectory is only available at
the beginning and at the end of the sequences, which, for most
of them, represents a very small portion of the whole trajectory.
Many sequences in the dataset do not contain loops. Even if the
starting and ending points are in the same room, point of view

60 80 100

Multisession stereo-inertial result with several sequences from TUM-VI dataset (front, side, and top views).

directions are opposite and place recognition cannot detect any
common region. Using this ground-truth for evaluation amounts
to measuring the accumulated drift along the whole trajectory.

We extract 1500 ORB points per image in monocular-inertial
setup and 1000 points per image in stereo-inertial, after applying
CLAHE equalization to address under and over exposure found
in the dataset. For outdoor sequences, our system struggles with
very far points coming from the cloudy sky, which is very visible
in fisheye cameras. These points may have slow motion that
can introduce drift in the camera pose. For preventing this, we
discard points further than 20 m from the current camera pose,
only for outdoor sequences. A more sophisticated solution would
be to use an image segmentation algorithm to detect and discard
the sky.

The results obtained are compared with the most relevant
systems in the literature in Table III, which clearly shows the su-
periority of ORB-SLAM3 both in monocular-inertial and stereo-
inertial configurations. The closest systems are VINS-Mono
and BASALT, which are essentially visual-inertial odometry
systems with loop closures, and miss mid-term data associations.

Analyzing more in detail the performance of our system, it
gets the lowest error in small and medium indoor environments,
room and corridor sequences, with errors below 10 cm for
most of them. In these trajectories, the system is continuously
revisiting and reusing previously mapped regions, which is one
of the main strengths of ORB-SLAM3. Also, tracked points are
typically closer than 5 m, which makes it easier to estimate
inertial parameters, preventing them from diverging.

In magistrale indoor sequences, which are up to 900 m long,
most tracked points are relatively close, and ORB-SLAM3
obtains errors around 1 m except in one sequence that goes
close to 5 m. In contrast, in some long outdoor sequences, the
scarcity of close visual features may cause drift of the inertial
parameters, notably scale and accelerometer bias, which leads
to errors in the order of 10-70 m. However, ORB-SLAM3 is the
best performing system in the outdoor sequences.

This dataset also contains three really challenging slides se-
quences, where the user descends though a dark tubular slide
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TABLE VI

IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 6, DECEMBER 2021

RUNNING TIME OF THE MAIN PARTS OF OUR TRACKING AND MAPPING THREADS COMPARED TO ORB-SLAM2, oN EUROC V202
(MEAN TIME AND STANDARD DEVIATION IN MS)

RUNNING TIME OF THE MAIN OPERATIONS FOR LOOP CLOSING AND MAP MERGING FOR A MULTISESSION EXPERIMENT ON SEQUENCES V201, V202, AND V203

FrROM EUROC DATASET (MEAN TIME AND STANDARD DEVIATION IN MS)

System ORB-SLAM2 ORB-SLAM3 ORB-SLAM3 ORB-SLAM3 ORB-SLAM3
Sensor Stereo Monocular Stereo Mono-Inertial Stereo-Inertial
Resolution 752 %480 752 %480 752 %480 752x480 752x480
Settings Cam. FPS 20Hz 20Hz 20Hz 20Hz 20Hz
MU - - - 200Hz 200HZ
ORB Feat. 1200 1000 1200 1000 1200
RMS ATE 0.035 0.029 0.028 0.021 0.014
Stereo rect. 3.07£0.80 - 1.32+0.43 - 1.60+0.74
ORB extract 11.2042.00 12.40+£5.10 15.68+4.74 11.98+4.78 15.2244.37
Stereo match 10.38+£2.57 - 3.35£0.92 - 3.38£1.07
Tracking IMU integr. - - - 0.18£0.11 0.2240.20
Pose pred 2.20£0.72 1.8740.68 2.69+0.85 0.09£0.41 0.15£0.71
LM Track 9.89+4.95 4.98+1.65 6.31£2.85 8.22+2.52 11.51£3.33
New KF dec 0.20£0.43 0.04+0.03 0.12+0.19 0.05+0.03 0.18+0.25
Total 37.87+7.49 21.5246.45 31.48+5.80 23.22+14.98 33.0549.29
KF Insert 8.72+3.60 9.25+4.62 8.03£2.96 13.174+7.43 8.53+2.17
MP Culling 0.2540.09 0.09£0.04 0.32£0.15 0.07£0.04 0.24+0.24
Manpin MP Creation 36.88+14.53 22.7848.80 18.23+9.84 30.19+£12.95 23.884+9.97
pping LBA 139.61+124.92 216.95+188.77 | 134.60+136.28 | 121.09+44.81 152.70+38.37
KF Culling 4.37+4.73 18.88+12.217 5.49£5.09 26.25+17.08 11.15£7.67
Total 173.81+£139.07 266.61+207.80 | 158.84+147.84 | 191.50+£80.54 | 196.61+54.52
Map Size KFs 278 272 259 332 135
MPs 14593 9686 14245 10306 9761
TABLE VII

Sensor Monocular Stereo Mono-Inertial | Stereo-Inertial
Resolution 752 %480 752x480 752 %480 752480
Settings Cam. FPS 20Hz 20Hz 20Hz 20Hz
IMU - - 200Hz 200HZ
ORB Feat. 1000 1200 1000 1200
RMS ATE 0.284 0.163 0.048 0.046
Database query 0.96£0.58 1.06£0.58 1.04%0.59 1.02+0.60
Place Recognition | Compute Sim3/SE3 3.61+2.81 5.26+3.79 2.98+£2.26 5.771£3.54
Total 3.92+3.28 5.26£4.39 3.45+2.81 5.89+4.29
Merge Maps 152.03+45.85 68.56+£13.56 129.08+8.26 91.07+5.56
Map Merging Welding BA_ 52.09+14.08 35.57+7.94 103.14+£6.08 58.15+4.84
Opt. Essential Graph 5.82£3.01 10.98£9.79 52.83E£17.81 36.08£17.95
Total 221.90+58.73 120.63+16.23 287.33+£15.58 187.82£6.38
# Detected merges 5 4 2 2
Merge info Merge size (# keyframes) 31+l 31+3 25+1 25+0
Merge size (# map points) 2476+207 2697+718 2425+88 4260+160
Loop Fusion 311.82+333.49 29.07+23.64 - 25.67
Loop Opt. Essential Graph 254.84+87.03 84.361+37.56 - 95.13
Total 570.39£420.77 118.62459.93 - 124.77
Loop info # Detected loops 3 4 0 1
Loop size (# keyframes) 58460 27+9 - 60
Full BA 4010.14+1835.85 | 1118.544+563.75 - 1366.64
Map Update 124.80+£6.07 13.65£12.86 - 163.06
Loop Full BA Total 4134.94£1829.78 | 1132.19£572.28 - 1529.69
BA size (# keyframes) 3451147 220110 - 151
BA size (# map points) 1351143778 1229744572 - 14397

with almost total lack of visual features. In this situation, a pure
visual system would be lost, but our visual-inertial system is
able to process the whole sequence with competitive error, even
if no loop-closures can be detected. Interestingly, VINS-Mono
and BASALT, which track features using Lukas—Kanade, obtain,
in some of these sequences, better accuracy than ORB-SLAM3,
which matches ORB descriptors.

Finally, the room sequences can be representative of typical
AR/VR applications, where the user moves with a hand-held

or head-mounted device in a small environment. For these
sequences, ground-truth is available for the entire trajectory.
Table III shows that ORB-SLAM3 is significantly more ac-
curate than competing approaches. The results obtained using
our four sensor configurations are compared in Table IV. The
better accuracy of pure monocular compared with stereo is only
apparent: The monocular solution is up-to-scale and is aligned
with ground-truth with 7 DoFs, while stereo provides the true
scale and is aligned with 6 DoFs. Using monocular-inertial, we

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 17,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.



CAMPOS et al.: ORB-SLAM3: AN ACCURATE OPEN-SOURCE LIBRARY FOR VISUAL, VISUAL-INERTIAL, AND MULTIMAP SLAM

further reduce the average rms ATE error close to 1 cm, also
obtaining the true scale. Finally, our stereo-inertial SLAM brings
error below 1 c¢cm, making it an excellent choice for AR/VR
applications.

C. Multisession SLAM

EuRoC dataset contains several sessions for each of its three
environments: 5 in MH, 3 in Viconl, and 3 in Vicon2. To
test the multisession performance of ORB-SLAM3, we process
sequentially all the sessions corresponding to each environment.
Each trajectory in the same environment has ground-truth with
the same world reference, which allows to perform a single
global alignment to compute ATE.

The first sequence in each room provides an initial map.
Processing the following sequences starts with the creation of a
new active map, which is quickly merged with the map of the
previous sessions, and from that point on, ORB-SLAM3 profits
from reusing the previous map.

Table V reports the global multisession rms ATE for the four
sensor configurations in the three rooms, comparing with the two
only published multisession results in EuRoC dataset: CCM-
SLAM [71] that reports pure monocular results in MHO1-MHO3,
and VINS-Mono [7] in the five MH sequences, using monocular-
inertial. In both cases, ORB-SLAM?3 more than doubles the
accuracy of competing methods. In the case of VINS-Mono,
ORB-SLAM3 obtains 2.6 better accuracy in single-session, and
the advantage goes up to 3.2 times in multisession, showing the
superiority of our map merging operations.

Comparing these multisession performances with the single-
session results reported in Table II, the most notable difference
is that multisession monocular and stereo SLAM can robustly
process the difficult sequences V103 and V203, thanks to the
exploitation of the previous map.

We have also performed some multisession experiments on
the TUM-VI dataset. Fig. 5 shows the result after processing
several sequences inside the TUM building.! In this case, the
small room sequence provides loop closures that were missing
in the longer sequences, bringing all errors to centimeter level.
Although ground-truth is not available outside the room, com-
paring the figure with the figures published in [82] clearly shows
our point: Our multisession SLAM system obtains far better
accuracy than existing visual—-inertial odometry systems. This
is further exemplified in Fig. 6. Although ORB-SLAM3 ranks
higher in stereo inertial single-session processing of outdoors|,
there is still a significant drift (= 60 m). In contrast, if outdoors1
is processed after magistrale2 in a multisession manner, this drift
is significantly reduced, and the final map is much more accurate.

D. Computing Time

Table VI summarizes the running time of the main operations
performed in the tracking and mapping threads, showing that
our system is able to run in real time at 3040 frames and at 3—-6
keyframes per second. The inertial part takes negligible time

!'Videos of this and other experiments can be found at https://www.youtube.
com/channel/UCXVt-kXG6T95Z4tVaY1U80Q

1887

during tracking and, in fact, can render the system more efficient
as the frame rate could be safely reduced. In the mapping
thread, the higher number of variables per keyframe has been
compensated with a smaller number of keyframes in the inertial
local BA, achieving better accuracy, with similar running time.
As the tracking and mapping threads work always in the active
map, multimapping does not introduce significant overhead.

Table VII summarizes the running time of the main steps
for loop closing and map merging. The novel place recognition
method only takes 10 ms per keyframe. Times for merging and
loop closing remain below 1 s, running only a PG optimization.
For loop closing, performing a full BA may increase times up
to a few seconds, depending on the size of the involved maps.
In any case, as both operations are executed in a separate thread
(Fig. 1), they do not interfere with the real-time performance of
the rest of the system. The visual-inertial systems perform just
two map merges to join three sequences, while visual systems
perform some additional merges to recover from tracking losses.
Thanks to their lower drift, visual-inertial systems also perform
less loop closing operations compared with pure visual systems.

Although it would be interesting, we do not compare running
time against other systems since this would require a significant
effort that is beyond the scope of this work.

VIII. CONCLUSION

Building on [2]-[4], we presented ORB-SLAM3, the most
complete open-source library for visual, visual-inertial, and
multisession SLAM, with monocular, stereo, RGB-D, pin-hole,
and fisheye cameras. Our main contributions, apart from the in-
tegrated library itself, are the fast and accurate IMU initialization
technique and the multisession map-merging functions that rely
on a new place recognition technique with improved recall.

Our experimental results showed that ORB-SLAM3 is the
first visual and visual-inertial system capable of effectively
exploiting short-term, mid-term, long-term, and multimap data
associations, reaching an accuracy level that is beyond the reach
of existing systems. Our results also suggested that, regarding
accuracy, the capability of using all these types of data asso-
ciation overpowers other choices such as using direct methods
instead of features or performing keyframe marginalization for
local BA, instead of assuming an outer set of static keyframes
as we do.

The main failure case of ORB-SLAM3 is low-texture envi-
ronments. Direct methods are more robust to low-texture but are
limited to short-term [27] and mid-term [31] data association. On
the other hand, matching feature descriptors successfully solves
long-term and multimap data association but seems to be less
robust for tracking than Lucas—Kanade, which uses photometric
information. An interesting line of research could be developing
photometric techniques adequate for the four data association
problems. We are currently exploring this idea for map building
from endoscope images inside the human body.

About the four different sensor configurations, there is no
question; stereo-inertial SLAM provides the most robust and
accurate solution. Furthermore, the inertial sensor allows to
estimate pose at IMU rate, which is orders of magnitude higher
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than frame rate, being a key feature for some use cases. For
applications where a stereo camera is undesirable because of
its higher bulk, cost, or processing requirements, you can use
monocular-inertial without missing much in terms of robustness
and accuracy. Only keep in mind that pure rotations during
exploration would not allow to estimate depth.

In applications with slow motions, or without roll and pitch
rotations, such as a car in a flat area, IMU sensors can be difficult
to initialize. In those cases, if possible, use stereo SLAM. Other-
wise, recent advances on depth estimation from a single image
with convolutional neural networks (CNNs) offer good promise
for reliable and true-scale monocular SLAM [83], at least in the
same type of environments where the CNN has been trained.
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