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ABSTRACT

We propose using a pre-trained segmentation model to
perform diagnostic classification in order to achieve better
generalization and interpretability, terming the technique
reverse-transfer learning. We present an architecture to
convert segmentation models to classification models. We
compare and contrast dense vs sparse segmentation labeling
and study its impact on diagnostic classification. We com-
pare the performance of U-Net trained with dense and sparse
labels to segment A-lines, B-lines, and Pleural lines on a
custom dataset of lung ultrasound scans from 4 patients. Our
experiments show that dense labels help reduce false positive
detection. We study the classification capability of the dense
and sparse trained U-Net and contrast it with a non-pretrained
U-Net, to detect and differentiate COVID-19 and Pneumonia
on a large ultrasound dataset of about 40k curvilinear and
linear probe images. Our segmentation-based models per-
form better classification when using pretrained segmentation
weights, with the dense-label pretrained U-Net performing
the best.

Index Terms— Deep Learning, Dense Semantic Seg-
mentation, Diagnostic Classification, Ultrasound Lung Scans,
COVID-19 Detection

1. INTRODUCTION

Ultrasound imaging is safe and cost-effective, having become
an integral part of providing care in most medical settings. It
is capable of supporting disease diagnosis, grading the sever-
ity of illness, and monitoring disease progression or response
to therapy. It is extremely mobile and widely accessible, in
contrast to X-ray, CT, and MRI. This has been highlighted
during COVID-19 pandemic, where ultrasound provides crit-
ical bedside imaging without the risk of exposure from trans-
porting patients outside isolation. This has led to the devel-
opment of a series of assistive ultrasound Al techniques using
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deep neural networks (DNN) [1, 2, 3, 4]. We are motivated
by the vast opportunity to further improve lung-ultrasound Al,
especially for the COVID-19 pandemic.

DNN based ultrasound semantic segmentation has re-
cently become an effective tool for delineating important tis-
sue structures and helping diagnosis based on them. The typ-
ical diagnostic usage of semantic segmentation is to only use
class labels that are diagnostically directly relevant [1, 5, 6],
which leads to the grouping of the diagnostically less relevant
and irrelevant tissues into a common background class, which
we term as Sparse labeling. In comparison, Dense labeling
can be considered as the practice of labeling tissue classes not
restricted to the most diagnostically relevant classes. Dense
semantic segmentation is the labeling of pixels not only into
the classes of interest but into other classes or sub classes
which may not directly relate or contribute to the intended
downstream application. We demonstrate that labeling these
additional classes helps reduce false positive detection lead-
ing to better performance on the intended application. Neural
networks which are prone to false positive detection [4, 7] can
benefit from such dense labeling. We introduced ultrasound
dense semantic segmentation in our work [3] as an attempt to
label every pixel into a tissue class without the use of back-
ground class and hypothesized its utility to eliminate false
positive detection. In this work, we evaluate our claims and
provide quantitative and qualitative proof for the same.

The lung pleura are key anatomical structures that pro-
vide the anchor point from which ultrasound images and ar-
tifact allow the differentiation of healthy and unhealthy lung
[8]. The pleural line exhibits different ultrasound artifacts de-
pending on the state of the lungs. A-line artifacts are observed
on healthy lungs filled with air, whereas B-line artifacts are
observed on unhealthy lungs filled with fluids (edema, pus, or
blood) [8]. The pleural line thickening which is the separation
of the parietal pleura from the visceral pleura also indicates a
diseased lung condition. So, it is diagnostically relevant and
conventional to segment pleural line(s) along with A-line and
B-line artifacts [9, 1], which constitute our Sparse labels. For
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our Dense labels, we augment these segmentation classes by
sub-differentiating sections of the pleural line based on where
A-line vs. B-line artifacts are observed beneath, leading to
both healthy- and unhealthy-pleural-line labels; we also dif-
ferentially label the “background” regions beneath the pleu-
ral line into healthy- and unhealthy-region respectively. We
show that the inclusion of these additional classes helps the
network to learn better features leading to fewer false posi-
tives which effectively translates to better segmentation and
diagnostic classification scores.

DNNs are widely used for diagnostic classification. It is
common practice to specifically train DNN’s “from scratch”
to directly perform diagnostic classification [2, 1] or to use the
pretrained encoder from a segmentation network coupled with
non-pretrained classification layers to perform classification
[10]. Contrary to this we propose to use segmentation models
for the classification task by directly operating on the segmen-
tation output. Clinicians rely on visual cues in the ultrasound
image that signify tissue structures and artifacts to make diag-
nosis, so its reasonable to train DNNs to learn similar visual
clues to base their diagnosis. Using an explainable segmen-
tation map as a bottleneck between the network features and
diagnostic classifier might substantially reduce the amount of
overfitting during training and might help better generalize
to unseen patients and different ultrasound devices. We can
add/remove segmentation classes depending on the needs of
the classification task. Employing segmentation models for
classification provides added interpretability in understanding
the DNN’s reasoning for basing the diagnosis. Explanability
and interpretability of the model’s prediction are especially
important in the medical domain which involves making life-
critical decisions. Segmentation based classification models
can provide unique insights and useful information to clini-
cians, which might assist in their choosing follow on analysis
such as additional tests and screenings.

We present Reverse Transfer learning, which we define as
the application of transfer learning to solve a seemingly sim-
ple task using a model trained on a more complex task, con-
trary to the normal use of transfer learning wherein a model
trained on a simple task (e.g. ImageNet VGG [11]) is used for
a complex task [12]. [13] named their NLP method as reverse
transfer learning, whereas we introduce it as a more generic
concept. We consider semantic segmentation to be a more
complex task in so far as it involves per-pixel classification
into the many segmentation classes when compared to whole-
image diagnostic classification into a few diagnostic classes.
So the use of a semantic-segmentation model for diagnostic
classification meets our criteria for reverse transfer learning.
In the case of ultrasound, we feel our approach may be partic-
ularly useful as traditional transfer learning has proven chal-
lenging on ultrasound [14]. Particular ultrasound challenges
include speckle noise, confounding causes of particular pixel
values, view-point dependence, and overall ambiguity in im-
age interpretation. As a result, gradient descent over images
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from a few hundred patients may get stuck by initially learn-
ing poor, over-fit features that may be correlated without be-
ing causal (e.g., learning that chest-wall fat-to-muscle ratio
is a good body-mass-index disease predictor). On the other
hand, (pre)training the network on broad appearance distribu-
tions over millions of pixels for multiple underlying relevant
tissue classes has a better chance of learning good diagnostic
features from fewer images (e.g. appearance of COVID-19
caused pleural line changes instead of ultrasound observed
body-mass-index risk factors), thereafter enabling otherwise
challenging diagnostic classification.

2. METHOD

Problem Statement: Given an ultrasound grey image I, the
task is to find a function F': [I;] — L that maps all pixels
in I, to tissue-type labels L (where L may also include vari-
ous classes of imaging artifacts, such as pulmonary B-lines).
For our present dense semantic segmentation task on the lung
region, L € {1,2,3,4,5,6,7} corresponding to: (1) A-line,
(2) B-line, (3) healthy pleural line, (4) unhealthy pleural line,
(5) healthy region, (6) unhealthy region, and (7) background.
For the sparse semantic segmentation task, L € {1,2, 3,4}
corresponding to: (1) A-line, (2) B-line, (3) pleural line, and
(4) background.

2.1. Architecture

We carry out all our experiments on the traditional U-Net
architecture [15]. We propose a simple architectural design
(Fig. 1) as a baseline reference for converting a segmenta-
tion model to a classification model. We begin by performing
channel-wise global average pooling on the segmentation out-
put of the final softmax layer, followed by a fully connected
layer that learns the mapping from segmentation classes to
classification classes, and a final softmax layer to get the di-
agnostic per-class classification scores.
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Fig. 1: Segmentation to classification model architecture.

2.2. Semantic Lung dataset

Our custom Semantic Lung dataset consists of multiple ul-
trasound B-scans of left and right lung regions from 4 de-
identified patients at depths ranging from 4cm to 6¢cm un-
der different scan settings, obtained using a Sonosite X-Porte
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ultrasound machine with a linear probe. The dataset con-
sists of 152 images with 38 images corresponding to each
patient (equally split between left and right lung). Three pa-
tients (A, B, C) are COVID-19 positive and the remaining
one patient (D) is COVID-19 negative. All the images are
hand-labeled by an expert clinician trained trainee into A-line,
B-line, healthy pleural line, unhealthy pleural line, healthy
region, unhealthy region, and background classes. Pleural
line segments that create A-line artifacts are demarcated as
healthy pleural line and the region below it is demarcated as
healthy region. Similarly, pleural line segments that create the
B-line artifacts are demarcated as unhealthy pleural line and
the region below it is demarcated as unhealthy region. Sparse
expert labels are derived from dense expert labels by combin-
ing the healthy and unhealthy pleural line into a single pleural
line class and merging the healthy and unhealthy regions into
the background class.

Data augmentation: We augmented our Semantic Lung
dataset to mitigate its small size and to make the CNN models
more robust to input variations, as the datasets consist of ul-
trasound scans taken under various scan settings. To preserve
subtle details, we augmented the data only via left-to-right
flipping and scaling the grey image pixels by various scales
[0.8,1.1]. This resulted in a 6 fold increase in the dataset size
leading to a total of 912 augmented images for which we had
pixel labels.

2.3. Diagnostic Lung dataset

For diagnostic classification, we make use of the POCOVID-
Net dataset [2] which has linear and curvilinear ultrasound
images collected from multiple sources including butter-
flynetwork.com and ICLUS-DB [1]. Along with this, we
use additional linear and curvilinear ultrasound images from
our larger custom dataset. The combined dataset consists
of ultrasound scans of Healthy, COVID-19, and bacterial-
and-other-viral-Pneumonia (non-COVID-19-Pneumonia) pa-
tients, totaling 714 videos (188 Healthy, 477 COVID-19, and
49 other Pneumonia) resulting in about 40K images.

2.4. Feature Engineering

The ultrasound images varied in size, as they were obtained
from multiple sources under different scan settings. Since
the CNN architecture is limited to fixed-size input, we appro-
priately resize the grey and labeled images to an image size
of 624x464 pixels, using bilinear interpolation for the grey
image and nearest-neighbor interpolation to preserve the dis-
crete semantic labels.

2.5. Implementation and training procedure

The network is implemented with PyTorch and trained using
the stochastic gradient descent algorithm [16] with an Adam
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optimizer [17] set with an initial learning rate of 0.001, to op-
timize over cross-entropy loss. The model is trained on an
Nvidia Titan RTX GPU, with a batch size of 4 for 50 and
12 epochs for segmentation and classification tasks respec-
tively. The ReduceLRonPlateau learning-rate scheduler was
used which reduces the learning rate by a factor (0.5) when
the performance metric (mean mloU over all classes) plateaus
on the test set. For the final evaluation, we pick the best model
with the highest test set accuracy.

2.6. Evaluation measures

We evaluate semantic segmentation results using Mean Inter-
section over Union (mlIoU) [3] and pixel-wise accuracy. We
calculated mloU per segmentation category and mean mloU
across all segmentation categories. For the diagnostic classi-
fication, we report accuracy, precision, recall, and F1 score
[2, 1].

3. EXPERIMENTS AND RESULTS

3.1. Dense vs Sparse label based learning

We experiment with models trained using dense and sparse
labels, evaluating their precision in detection of A-lines, B-
lines and the pleural line(s). We train U-Net with dense and
sparse labels and examine its performance.

We perform 3-fold cross-validation by dividing the 912
augmented images into 3 sets of 304 images randomly cho-
sen. We train on 2 folds and test on the 3rd fold and report the
average scores from all 3 trials.

Table 1 shows the pixel-wise accuracy and mean=std.
IoU scores for the various classes. In order to compare seg-
mentation scores of dense-label trained U-Net with sparse-
label trained U-Net, the healthy and unhealthy pleural line
prediction is combined as a single pleural line prediction and
the healthy and unhealthy region is combined with the back-
ground class and scores are shown in the top half of the table.
The actual segmentation scores of the healthy and unhealthy
plural line and healthy and unhealthy region along with cor-
responding mean and pixel-wise accuracy are reported in the
bottom half of the table, noting that the A-line and B-line
scores remain the same. We observe dense-label trained U-
Net achieves best segmentation scores across all tissue classes
whereas sparse-label trained U-Net did not generalize as well,
as seen with the higher variance scores across folds.

Fig. 2 shows the qualitative segmentation results of the
dense and sparse label trained U-Net on the Semantic Lung
dataset. We can observe that the dense label trained U-Net
does a better job at segmenting A-line, B-line, and pleural line
with fewer false positive detection compared to the sparse-
label trained U-Net.
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Table 1: Segmentation Pixel-wise and mIoU scores on Semantic Lung dataset. Highest scores are shown in bold.

Pixel-wise mloU

CNN | Labels Acc mean Background A-line B-line Pleural line
U-Net | Sparse 0.945 £ 0.013 0.654 + 0.055 0.942 +0.013 0.431 +£0.072 0.508 £+ 0.105 0.733 +0.032
U-Net | Dense 0.957 + 0.002 0.711 + 0.001 0.954 + 0.002 0.523 + 0.008 0.613 + 0.009 0.756 + 0.001

Dense Pixel-wise Acc | Dense mean | Healthy Pleural line | Unhealthy Pleural line | Healthy Region | Unhealthy Region
U-Net | Dense 0.931 £+ 0.006 0.762 £+ 0.002 0.815 + 0.003 0.720 +£ 0.005 0.871 £+ 0.020 0.830 + 0.012

Table 2: Diagnostic classification Accuracy, Precision, Recall, and F1 scores on lung dataset. Highest scores are shown in bold.
CNN Pretrain type | accuracy — Normal — Pneumonia — COVID-19
precision | recall | Fl-score | precision | recall | Fl-score | precision | recall | Fl-score

U-Net Dense 0.849 0.812 0.836 0.824 0.769 0.632 0.694 0.885 0.908 0.897
U-Net Sparse 0.843 0.824 0.784 0.803 0.761 0.646 0.699 0.869 0.925 0.896
U-Net | Non-pretrained 0.824 0.812 0.778 0.795 0.649 0.710 0.678 0.878 0.879 0.878
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Fig. 2: Segmentation results of each of the 4 patient test images
with input grey image, expert labeled dense- and sparse-label im-
ages, and Al predicted dense- and sparse- label images. Labels:
background = A-line m B-line m pleural line m healthy pleural line
unhealthy pleural line m healthy region = unhealthy region. We ob-
serve that U-Net trained with Dense labels has fewer false positives
compared with U-Net trained with Sparse labels.

3.2. Reverse transfer learning

In this experiment, we perform reverse transfer learning from
semantic segmentation to diagnostic classification. We use
the pretrained weights of the segmentation network and re-
train for the classification task. We also train a U-Net with-
out pretrained weights as a comparison with a model directly
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trained for the classification task.

We perform 3 fold classification by equally distributing
the COVID-19, Pneumonia, and Healthy scan videos into the
3 folds and ensuring that all frames belonging to the same
video remain in the same fold. This makes the number of
images in each fold unequal as all the videos are of different
duration. We report the average scores from all 3 trials.

The lung classification results are depicted in Table 2.
We see that the U-Net model with pretrained segmentation
weights performs better than the U-Net without pretrained
weights, with the highest accuracy scores are obtained by
dense pretrained U-Net. The observed improvements, though
small in absolute scale, are significant taking into consider-
ation the large and diverse dataset. Expanding the Seman-
tic Lung dataset with additional patient data could further
improve the accuracy of the segmentation pretrained U-Net
compared to non-pretrained U-Net.

4. CONCLUSION

We compared dense labeling vs sparse labeling and demon-
strated quantitative and qualitative benefits of using dense la-
beling for the semantic segmentation and diagnostic classifi-
cation tasks on our custom lung dataset. We performed re-
verse transfer learning by using the models trained for the
semantic segmentation task for the diagnostic classification
of COVID-19. We presented a simple but effective strat-
egy for converting a segmentation network to a classifica-
tion network. We believe to be the first to present results on
a large and diverse COVID-19 and Pneumonia dataset and
showed that pretrained segmentation based models perform
better than non-pretrained counterparts on the classification
task. We showed that the performance of U-Net improved
upon training with dense labels in contrast to sparse labels on
the diagnostic classification task. We plan on extending our
approach to other segmentation and diagnostic classification
tasks such as breast and liver cancer detection. We are work-
ing to apply these techniques to spatio-temporal datasets.
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