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ABSTRACT The modern world is evolving rapidly, especially with respect to the development and
proliferation of increasingly intelligent, artificial intelligence (AI) andAI-related technologies. Nevertheless,
in many ways, what this class of technologies has offered as return on investment remains less impressive
than what has been promised. In the present paper, we argue that the continued failure to realize the
potential in modern AI and AI-related technologies is largely attributable to the oversimplified, yet pervasive
ways that our global society treats the relationship between these technologies and humans. Oversimplified
concepts, once conveyed, tend to perpetuate myths that in turn limit the impact of such technologies in human
society. To counter these oversimplifications, we offer a theoretical construct, which we call the landscape
of human-AI partnership. This construct characterizes individual capability for real-world task performance
as a dynamic function of information certainty, available time to respond, and task complexity. With this,
our goal is to encourage more nuanced discourse about novel ways to solve challenges to modern and future
sociotechnical societies, but without defaulting to notions that remain rooted in today’s technologies-as-
tools ways of thinking. The core of our argument is that society at large must recognize that intelligent
technologies are evolving well beyond being mere tools for human use and are instead becoming capable of
operating as interdependent teammates. This means that how we think about interactions between humans
and AI needs to go beyond a ‘‘Human–or–AI’’ conversation about task assignments to more contextualized
‘‘Human–and–AI’’ way of thinking about how best to capitalize on the strengths hidden within emergent
capabilities of unique human-AI partnerships that have yet to be fully realized.

INDEX TERMS Human-AI partnership, human-autonomy teaming, sociotechnical systems, AI ecosystems,
function allocation, task complexity, capability, use cases, implementation.

I. INTRODUCTION
Our global society is in the midst of what some consider to
be one of the most sweeping and disruptive periods of tech-
nology evolution in history [1]–[3]. The exponential growth
in the sector of artificial intelligence (AI) and AI-related
technologies1 – here, defined as the domain concerned with

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .
1This paper is about a general class of technology that is diverse and

lacks a broadly accepted descriptor. Our intent is to communicate effectively,
and because we lack an acceptable general term, we compress the phrase
‘‘AI and AI-related technologies’’ into ‘‘AI’’ through most of our discourse.
This, of course, conflates expert systems, machine learning, autonomy,
robotics, intelligent sensing (and many others) with ‘‘AI’’. The irony in our
simplification is not lost; however dubious, herewe prioritize readability over
precision in this limited way.

intelligent agents that have sensing, perceiving, rudimen-
tary reasoning, and/or learning capabilities – is providing
unprecedented opportunity for advancement of human soci-
ety. However, caution is warranted as the speed of devel-
opment and high-end potential of these technologies is not
immutable. The ‘‘AI winter’’ that devastated the field in
the 1970’s [4]–[6] serves as a persistent reminder that fore-
casts of AI, from promises to threats, are susceptible to
exaggeration. Scholars from a breadth of backgrounds have
expressed concern about the oft-neglected limitations in state
of the art approaches, many of which will only be resolved
by new discoveries (c.f. [6]). Here, we argue that the lim-
itations of current technology integration approaches arise
from oversimplified assumptions about the human-AI rela-
tionship. We then argue that these oversimplifications may be
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overcome by developing intelligent sociotechnical ecosys-
tems, which would be built upon multiple, coexisting inter-
action dynamics that support complex human-AI partnership;
in more direct terms, by enabling effective teamwork.

As AI and AI-related technologies are integrated into our
lives, the methods for introducing them, as well as for effec-
tively integrating them with our society, have been the source
of involved, long-term debate. Such debates can be found
at least as early as the 1930’s [7], with specific discussions
about designing effective ‘‘man-machine systems’’ [8] pub-
lished the same year that also welcomed the first robot into
existence [9]. Since then, varied frameworks have been pro-
moted for systematically defining roles and responsibilities in
human-machine interactions [10]–[19], indicating that there
is still no established and broadly accepted correct method
for achieving integration in all situations. Part of the reason
for this apparent lack of consensus, we argue, is that the core
research community is exceptionally diverse. Whether hard-
ware specialists, algorithm developers, human factors engi-
neers, creative designers, business professionals, technology
transitionmanagers, marketing specialists, or end-users, most
parts of society are playing a role in this exciting global trans-
formation.While the combined expertise of multidisciplinary
teams is needed, the diverse and specialized perspectives that
individuals bring to the table can make it difficult to form a
shared vision [20]. In these highly multidisciplinary ventures,
limitations on language and differences in training and priori-
ties can systematically perpetuate oversimplifications that are
then commonly shared among stakeholders across technical
literacy barriers [21].

In the present paper we offer our perspective on this cir-
cumstance by first establishing a backdrop of three oversim-
plified assumptions about the human-AI relationship, and we
go on to offer a theoretical construct that we have devel-
oped to facilitate collaborative discourse about strategies
to integrate this class of technologies into new intelligent
sociotechnical ecosystems with humans. The ultimate aim is
to expand the global discussion around how we, as a society,
may form effective human-AI partnerships. We have selected
a few oversimplifications that, like others, seem to arise
from viewing human-AI interactions as monolithic, using a
single construct for understanding division of labor. Rather,
we argue that the fundamental nature of future human-AI
partnerships is task relative, depending on the certainty of
information forming the basis of the problem, the amount
of time available to resolve the situation, and, most critically
(and most often ignored), task complexity.

As AIs become more advanced, our patterns of interaction
with them may be expected to progress as well. Moving our
vision away from themore clearly differentiated, and simpler,
roles that exist between craftsman and tool, we anticipate
that far more complex and interdependent dynamics will
emerge as humans andAIs are brought into intelligent ecosys-
tems enabled by varied team-like partnerships and interaction
dynamics [22], [23]. Viewing interactions between AI and
humans in the context of certainty, time, and complexity

should clearly emphasize the reality that there is not one
sort of interaction that must be considered and supported.
Rather, as with large social systems, there are myriad ways
that humans and AIs may cooperate or compete. Therefore,
no single paradigm will appropriately address the question
of how best to integrate the two. The growing community
of interest around human-AI teaming must, we argue, come
to agreement on how to address the problem space, as well
as how we convey important understandings about it; here,
it is our aim to offer the theoretical construct that we call the
landscape of human-AI partnership to support these goals.

II. (SOME) OVERSIMPLIFICATIONS IN CONSIDERING AI
One does not need to look very hard for examples of sci-
ence and technology inspiring thoughts that, while creative
and innovative, are also divorced from our physical real-
ity. It has been said, for instance, that Mary Shelley’s con-
cept of Frankenstein, written in 1818, was at least partially
inspired by her understanding of Dr. Humphry Davy’s writ-
ings and public demonstrations involving animating cadavers
with then, newly discovered electricity [24]. More related,
I, Robot, which depicted a society capable of producing
an AI that could emulate and replace humans, was first
published by biochemistry professor and sci-fi author Isaac
Asimov in 1950, four years ahead of the very existence any
robot [25]. Though these examples may seem a bit tangential,
their relevance is that they provide context for our main
argument that humans tend to develop mental concepts of
science and technology that oversimplify and inaccurately
represent (or obfuscate) the underlying natural principles
(e.g. Asimov’s ‘‘three rules’’ as a sufficient ethical frame-
work, or Shelley’s idea of reanimation with lightning).

Here, we note that there are many ways in which we
believe that the general discourse about AI within society
is oversimplified; yet, the present work is not meant to be
a complete treatise on them. Our specific focus is on over-
simplifications that most closely relate to human-AI partner-
ship. The present section frames our argument in a small set
of oversimplifications that we have repeatedly encountered
in our collective experience within the research commu-
nity; we have not conducted any surveys or formal inquiries
to determine these, rather we use them to illustrate com-
mon themes. While the oversimplifications themselves are
expository, we support them with many examples from
both technical and lay writing. Importantly, we believe
that this integrative, cross-disciplinary discussion is impor-
tant, because the oversimplifications constitute barriers to
accurately understanding the challenges of realizing future
human-AI partnerships. We follow this in the latter portions
of this paper by articulating our perspective as a theoretical
construct that is needed to replace old and regressive notions
with those that are more suitable to the advancing technical
capabilities of our modern world.
Oversimplification 1: ‘‘AI will make humans obsolete.’’

This oversimplification reflects the belief that AI is inherently
superior, will necessarily learn to outperform humans, and
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therefore the human will become redundant. In fact, humans
have been debating their own replacement by machinery of
various types for as long as, if not longer than, machines and
specialized instruments have been around [7], [25]; to wit,
the very word ’robot’ derives from a play by Karel Čapek
that first debuted in 1921, over 30 years before the first robot
existed (and the topic of the play was a robot uprising against
humans). This oversimplification is not particularly specific
to AI; Keynes coined the term ‘‘technological unemploy-
ment’’ to describe periods of human obsolescence produced
by a mismatch between labor availability (in type and quan-
tity) and needs [26] (see McGaughey [27] for more detailed
discussion). When taken to the logical limit, this implies that
as AI becomes more pervasive and generally capable, human
action will move into obsolescence.

Today, beyond the kinds of questionable implications dis-
cussed above, the nature and timing of this obsolescence,
and the details of precisely which jobs are vulnerable, are
debated in very real ways. Some experts continue to express
the belief that AI will surpass humans at all tasks within
this century, specifically by 2060 (and some say earlier),
while others do not foresee this happening for more than
200 years (and some say never) [28]. Generally, jobs tradi-
tionally requiring a ‘‘human touch’’ are frequently discussed
as immune to replacement by AI (see [29] further reading).
Nevertheless, we see that across sectors, when AI is intro-
duced, one of the first fears to arise is that humans in that sec-
tor will be replaced. Further, non-experts tend to expect these
replacements will be more widespread and occur sooner than
experts [30]. In general, fear of human replacement appears to
have originated from the intersection of notions that AI has
an inherent and unequivocal advantage and, moreover, that
societal needs will be largely limited to the domain where
the putative AI advantage dominates all other considerations.
At its root, this oversimplification misses that functional,
real-world tasks are not as simple as depicted. That is, because
a task seems simple for humans, it is often wrongly assumed
that it must also be simple to automate; an easy example
here is to explore the vast research literature attempting to
explain even the simplest human behaviors – like upright
standing [31] or rhythmic movements of a single finger [32];
complexity exists even for the simplest of biological systems.
The oversimplified notion that humans will be made obsolete
also misses that there are viable strategies to offset the differ-
ences in capabilities. Here, we provide two examples of how
this oversimplification frequently manifests:
• Hardware processing speeds allow much faster informa-
tion handling than humans, and certain events will occur
so fast that humans cannot possibly be ‘‘in-the-loop’’.
In a particularly morbid example, this oversimplification
plays out as an ethical, life and death situation unfolding
too rapidly for human intervention: a self-driving car
with only milliseconds to react must decide which of
the vehicle’s occupants, pedestrians crossing the street,
or their pets, will perish [33]. More nuanced examples
include contemporary military thinking that AI-enabled

warfare will be separable from ‘‘human spaces’’ [34],
and perspectives on the human’s role in domains like
high-speed trading [35], wherein real consequences have
manifested from run-away AI (e.g., the 2010 ’Flash
Crash’ [36]). Logically, this suggests that humans should
only be an observer, supervisor, or end-user – at least
until such time as humans consent to surgical brain
implants to improve their bandwidth for communicat-
ing on par with AIs [37], [38]. That is, when occu-
pying a critical role in a control process, humans are
usually expected to be slow and error prone, and thus
the natural tendency is to want to remove them from
time-critical paths. Yet, the general belief that human
mental processing is inherently slower than AI has also
been recently challenged. While in 2015 it was already
trivial to show computers besting people for simple
computations, two doctoral students at UC Berkely and
Carnegie Mellon remained unconvinced, believing that
a fair test of processing speed must be more functional
than simply comparing the smallest possible unit of
computation (e.g. a single floating point operation).
To enable a fair comparison between brains and pro-
cessors, the students devised a method to quantify how
quickly an information network can be navigated and
searched [39]. Using this functional measure (called
TEPS, or Transversed-Edges Per Second), the investi-
gators concluded that the human brain could at least
match a supercomputer and is likely faster by a fac-
tor that approaches 30 times [40]. Even in the face of
a significant speed differential, replacement of human
elements is not the only logical option for human-AI
partnership; that is, there are potentially helpful mech-
anisms that a mindset of human replacement neglects,
such as pre- or mid-task criterion changes to preemp-
tively adjust decision thresholds (e.g., to improve signal
detection performance [41]), unsupervised algorithms
that do not require, but nevertheless can accept and
integrate human guidance for net improvement [42],
and techniques that use AI to inform human decision
making and other potentially more advanced techniques,
including simulation-based, online, or even ‘faster than
real-time’ decision-support systems [43], [44], which
may ultimately allow for humans to influence, prepare,
and tune the system for tasks that otherwise happen at
super-human speeds.

• Broadening capabilities, combined with inherent stor-
age, access, and processing capacity, will allow AI to
encroach on high-level decision-making roles currently
occupied by humans (see [45]–[47], and related ethi-
cal discussion in [48]); as such, some naturally expect
that AI will also displace humans from roles like man-
agement [49] and human resources [50]. This over-
simplification fails to consider the very real bounds
on the types of problems that AI can solve, and how
well it can solve those problems. Some of the earliest
AI research was focused on developing deterministic
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solutions to highly generalized problems, such as
finding the shortest path through a graph [51], [52],
optimally or near-optimally, in polynomial time. How-
ever, the limitations of such deterministic, analytic
approaches were recognized early on; many real-world
problems are simply too computationally complex to
be solved in this way [53]. Today, real-world problems
are generally approached through approximation algo-
rithms, which are themselves bounded by computational
requirements. For instance, five of the primary appli-
cation areas for deep learning, including image classi-
fication and object detection, have been discussed as
limited in this way [54]. Further, many real world prob-
lems involve factors like uncertainty, moral and ethical
ambiguity, and so-called common sense – combined,
these factors produce situations in which all solutions
reflect trade offs that may be appropriate, and choosing
one may depend on contextual factors that the AI may
not be trained to access or understand. Mechanisms
ranging from hierarchical rules, democratic voting, and
other forms of joint decision-making and learning may
provide options for developing human-AI partnerships
that support complex behavior in ways that are superior
to either entity acting independently [55].

Oversimplification 2: ‘‘Human intelligence is unique and
irreplaceable by AI.’’ This is essentially the contrapositive
of the first oversimplification, and therefore has also been
around for a long time. For instance, in a 1935 entry in
the Journal of Philosophy, Kantor argued this point using
the example of physicians who were increasingly reliant on
their instruments (rather than their minds) to make diagnoses
and conclusions [7]. Kantor argued, ‘‘The thinker is prior
to the machine. Machines or formulae can only help in our
study; they cannot initiate or direct an investigation. Only
the thinker can do that. (p. 378)’’. One way that this over-
simplification frequently manifests is in the form of lists
(e.g., [56]) or even academic models (e.g., [57]) of the types
of jobs that are believed to be safe from AI-induced tech-
nological obsolescence. This belief also arises from general
observations in human sciences that have provided insights
into the often hidden power of the brain (see breakout box
‘‘Human Intelligence – AI’s Super Power’’).

This oversimplification likely stems from the general
appearance of certain human qualities as being scientifically
intractable, such as the so-called ‘‘hard problem of con-
sciousness’’ [61], which some argue are simply inaccessi-
ble to the human mind. Logically, as it is argued, if there
are things about humans that are fundamentally inaccessible
to understanding by humans, then it is also unlikely that
these things could be accurately or precisely modeled by
any human efforts. Without adequate models, insights into
novel and innovative strategies for human-AI partnership will
also remain limited. Beliefs about the putative incompati-
bility of AI with certain ‘‘soft’’ tasks are widely held by
experts, even experts in AI. For example, Kai-Fu Lee, CEO of
innovation Ventures and former vice president at three major

HUMAN INTELLIGENCE – AI’S SUPER POWER

General intelligence in the academic field of artificial intelligence refers
to a system with a range of human cognitive capabilities; effectively an
attempt to simulate the human mental behavior (c.f. [58]). Importantly,
in human science fields such as psychology and neuroscience, the concept
of general intelligence is not well specified or even commonly defined
[59]. This lack of agreement and understanding is a byproduct of the
complexity of the human brain. Weighing in at about 1.4 kg and containing
a mass of 100,000,000,000 nerve cells (not counting all the critical support
cells) organized into myriad specialized architectures, the brain generates
behaviors through numerous interconnected and often intertwined adaptive
networks that produce complex, dynamically emergent activity [60].

While humans possess a unique intelligence,
the mechanisms of that intelligence are

incompletely understood.

Mental experience does not solely arise from the brain either. This complex
structure does not produce the unified notion of ‘‘general intelligence’’ in
humans, at least not on its own. Rather human intelligence is the product
of a collection of capabilities that are traditionally considered ‘‘cognitive’’
(e.g., quantitative reasoning, fluid reasoning, visual-spatial processing,
knowledge, working memory) and ‘‘non-cognitive’’ (e.g., empathy,
interpersonal skills, emotional maturity). Further, human intelligence is
considered a species-wide trait; yet the manifestations of each cognitive and
non-cognitive capability vary widely between and within individuals.

Human intelligence is not monolithic,
but instead underlies a collection of evolutionarily

critical core attributes.

While its mechanisms are incompletely understood, the core attributes
that arise from human intelligence are extremely valuable for sustaining
functionality and capability in dynamic, adaptive, complex environments.
Human survival has directly depended on effective adaptability, creativity,
common sense, forethought, heterogeneous approaches to decision making,
and leadership. Other attributes have their role in survival as well including
humor, integrity, moral reasoning, emotional expression, and storytelling.

As our sociotechnical society continues to evolve, some steadfastly hold the
human brain as unique and not fully replicable in either form or function,
while others continue to argue that AI will outpace human intelligence.
We argue that, while the underlying mechanisms are not fully understood,
human intelligence has uniquely evolved and thus bears distinct strengths and
weaknesses relative to AI. This intelligence, if effectively partnered with AI,
will be a superpower; creating effective, adaptive, moral human-technology
unions that outpace and outlast other forms of technology.

US Silicon Valley-based companies, stated that jobs requir-
ing uniquely-human attributes are impervious to AI-induced
obsolescence, including complex and strategic jobs, and jobs
requiring creativity or empathy [56]. This Human–or–AI per-
spective, as also manifested in the first oversimplification,
misses the potential for mutually beneficial and synergistic
operation. Two examples are illustrated below:

• Human intelligence is so unique that AI will fail
to ever achieve its attributes, e.g., human-like eth-
ical behavior, moral reasoning, and common sense.
We subscribe to the notion that human intelligence,
though heavily researched, remains incompletely under-
stood. Academic understandings about human cognition
have largely not been articulated in ways that read-
ily translate into rules or logical structures that may
be implemented in computational, cognitive systems.
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However, this does not make said attributes inaccessi-
ble to AI in any absolute sense. For example, recent
advances have allowed machines to detect emotion from
speech [62] and facial expressions [63]. Through a com-
bination of emerging technologies and cultural shifts
in human expectations for interactions with machines,
we may see AI being increasingly deployed against
even ‘‘soft’’ human-oriented aspects of tasks; exam-
ples include, triage of a large number of inputs to
present to humans, as in identifying and prioritizing
highly-distressed callers to a support hotline, or service
industry tasks that have, until now, been considered part
of the human-only domain [64]. It is also reasonable to
expect that breakthroughs in these human sciences may
translate to downstream breakthroughs in AI capabil-
ity. We anticipate that over sufficient time, AI-enabled
systems will have the capacity to exhibit complex but
perhaps qualitatively different high-level cognition suf-
ficient to support those jobs currently believed to be in
the ‘‘only human’’ domain.

• Many continue to believe that humans possess an exclu-
sive intelligence, for example the power of creativity,
that permits them to complete tasks that are inaccessible
to AI. This presumes that humans are both necessary and
sufficient to complete tasks requiring cognitive func-
tions like creative ideation, and that jobs requiring these
functions are not susceptible to technological unemploy-
ment [56]. Advances in AI aimed at creativity have chal-
lenged this perception (c.f., AI that can produce artistic
images after training on a data set comprising 5 centuries
of Western paintings [65]). Similarly, looking back to
Kantor’s argument for human scientists as the genera-
tors of ideas, we note how AI is even currently being
developed to support semi-automated hypothesis gen-
eration [66], and to produce other forms of novelty like
creating unique digits starting with a basis set of existing
digits [67]. Perhaps the greatest gains will be realized
when such human attributes are augmented by the rapid
processing capabilities of AI. Mechanisms that merge
AI and human intelligence, such as interactive machine
learning approaches (e.g., learning from demonstration
generally [68] as well as more recent hybrid meth-
ods [42]), can enable rapid AI adaptation by enabling
non-expert users to train and retrain the agent as needed.
Collaborative design paradigms, in which AI rapidly
generates outputs based on human design specifications,
empower human-AI teams to improve their performance
in objectively-measured engineering tasks, like design-
ing better quadrotors [69], as well as in more subjective
artistic tasks like fashion clothing design [70]. Unique
approaches to breaking down problems, like those found
in the Human Computation and ‘‘gaming with a pur-
pose’’ literature (as first described by von Ahn [71]),
can be used to identify significant roles for AIs in
these environments. Rather than humans being required
to perform specific roles and tasks alone, human-AI

partnerships will allow progress towards ‘‘super-
intelligent’’ teams that enhance processes and improve
overall performance [55].

Oversimplification 3: ‘‘Integrating AI is as easy as assign-
ing tasks based on individual strengths andweaknesses.’’This
key oversimplification originated from the work of Paul M.
Fitts in the 1950s [72], and remains widely-held today; that
is, humans and AIs uniquely excel in qualitatively differ-
ent, mutually exclusive functional domains. In the human
factors literature, this has been discussed as a generalized
‘‘HABA-MABA’’ (humans-are-better-at, machines-are-better-
at) perspective, which encourages use of substitution-based
function allocation methods [12], [73], [74]. Viewing the
world through this lens leads to stereotyped beliefs about
capability differences (e.g., humans are slow but flexible;
AIs are fast and precise, but rigid) that inform the design of
simplified human-AI function allocation schemes, wherein
tasks are assigned exclusively to one agent type or the other.
On this basis, we will refer to HABA-MABA and similar
concepts as belonging to a generalized ‘‘Human–or–AI’’
perspective through the rest of this paper.

In manufacturing, the Human–or–AI perspective, and its
resulting reliance on substitution-based function allocation
methods, enjoyed early success due to the segmented nature
of the work (i.e., tasks that alternately require flexibility
versus speed and precision) and the need to physically sep-
arate human and robot workspaces for safety [75]. While
this perspective logically extends to other fields in which
the interaction between human and agent is physical, it may
not be as applicable when the interaction is more cogni-
tive in nature. Evolving hybrid architectures, which combine
bottom-up processing (for example, by neural networks) with
top-down symbolic representations, challenge this persistent
Human–or–AI perspective’s hard boundaries by allowing
machines to complete a wider variety of tasks, including
those that are ’cognitive’ [76]. This view quite possibly rep-
resents the archetypal oversimplification within the domain
of human-AI partnership. We believe this view ignores a
vast middle ground – the ‘‘gray areas’’ at the soft-boundaries
between human and AI excellence. Here, we discuss the
difficulties in characterizing human and AI capability sets
respectively in order to demonstrate the folly in assuming
that a simple Human–or–AI function allocation will provide
general solutions that are well-suited (or even useful) across
contexts and circumstances in the real-world.
• Human–or–AI framing oversimplifies the fact that
human decision making is not bound to particular time
scales or levels of accuracy; that is, it is neither always
fast or always slow, nor is it reliably accurate or pre-
dictably error-prone across contexts [77]. Humans have
evolved biological mechanisms and developed psycho-
logical strategies that they can deploy to solve complex
problems and make difficult decisions with extreme
efficiency, even in the absence of complete certainty
or time to formulate a complete response. Humans
accomplish this by reducing the dimensionality of the
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problem, reformatting it such that it is more readily
consumable (for example, translating a computational
problem to the visual modality), or by ignoring part of
the information [78]. While often effective, the same
characteristics that make these biological and psycho-
logical mechanisms rapid and adaptive can alsomanifest
as maladaptive biases. Decision heuristics may impair
peoples’ ability to accurately judge event probabili-
ties [79] and, likewise, people can get ‘‘locked-in’’ to
particular solutions, which blinds them to alternatives
(i.e., confirmation bias [80]). Moreover, humans have
a tendency misinterpret their own capabilities relative
to the capabilities of others [81], believing themselves
to be better-than-average [82]. Therefore, we propose
that such function allocation methods will continue to
neglect critical information about human decision mak-
ing: it is not slow compared to AI, per se, but rather is
geared toward generating actionable (if biased) solutions
within the biologically-relevant constraints of the human
brain, and there are conditions where this is useful.

• Similarly, while AI successes are broadly disseminated
in the public domain, the limitations tend to only be
well-understood in the computer and computational sci-
ences; this understanding has yet to become common
in sciences that are adjacent to AI, much less in the
broader public domain. The news that an AI algorithm
has beaten an expert human in a particular game can, and
often does, promote the perception that the AI is more
intelligent than the human counterpart (at least, at that
particular task). However, most experts understand that
the truth is more nuanced. Deep learning models, for
example, have gained considerable fame in recent years
due to their ability to process images extremely quickly
andwith high confidence, or to generate new video using
trained encoders (e.g., ‘‘deepfakes’’; [83]). However,
within the past decade, we have also learned that deep
learners fail unpredictably, because they use complex
data features to make classifications in ways that differ
from humans (that is, the strongest predictors for an AI
are not necessarily the features that are most salient to
a human [84]). These classifiers are highly susceptible
to adversarial attack [85] and often misclassify objects
based on manipulations as simple as adding a border
to the image [86] or rotating the object slightly [87].
Likewise, deep learners have been shown to make mis-
classifications of a sort that a human never would, such
as classifying abstract black and white pattern images as
an assault rifle, or even more nefarious, with very simple
manipulations like adding a small icon to the image,
turning a stop sign into a speed limit 45 sign [88]. That
is, owing to their continued reliance on training data sets,
which are unlikely be fully exhaustive, even well-trained
AIs can be ‘‘fooled’’ to produce catastrophic out-
puts upon which higher-level decisions are then made
(e.g. a self-driving car suddenly accelerating rather than
stopping).

Indeed, there aremyriadmoreways inwhich the human-AI
relationship is oversimplified and misunderstood within var-
ious elements of our modern society. The three oversimpli-
fications presented here were chosen based on their recur-
rence as barriers to communicating and achieving common
understandings of the challenges and opportunities for inte-
grating AI into humans’ daily lives. Frequently, it seems
that discussions of AI relative to humans end up devolving
into debates fueled by the exact notions captured above:
‘‘Human jobs will be lost to AI and robots.’’ ‘‘AI can’t pos-
sibly replace artists, therapists, and managers.’’ ‘‘Complex
decisionswill be offloaded to advanced, intelligent computers
and yet, we will always need human mediators when other
people do not accept those decisions.’’ Though new AI and
machine learning approaches are continually being developed
and brought to bear within each of these exemplar sectors, few
have seen marked success in terms of broad acceptance and
full integration as a de facto part of our society.

For the rest of this paper, we seek to persuade our readers
that societal and individual thinking must go beyond and
even challenge such oversimplified assumptions. We begin
with a brief discussion of our understanding of the roots of
the Human–or–AI (‘‘HABA-MABA’’) perspective, as well
as why we believe this logic, while valid, only holds within
specific limits. More importantly, we argue that a broad
re-conceptualization is needed to support effective human-AI
partnerships, particularly in complex environments where the
Human–or–AI logic breaks down. Finally, we explore some
of the opportunities that may evolve by displacing the view of
technologies as tools, or task-specific surrogates for humans,
by discussing use-cases wherein a broad variety of human-AI
partnerships may manifest in an intelligent sociotechnical
ecosystem, several of which already exist.

III. ESTABLISHING A COMMON PERSPECTIVE
A major challenge that we see for advancing effective
human-AI partnerships, is the reality that truly transforma-
tional progress requires diverse input from multidisciplinary
teams of experts drawn from very different domains. Within
the cross-disciplinary space that exists at their intersection,
lies the challenge of communicating across very domain-
centric, specialized lexical boundaries. Directly, we believe
that a major factor underlying oversimplified assumptions
about AI is an inherent difficulty in communicating andwork-
ing across these domain-centric boundaries. More impor-
tantly, as scientific concepts are explored and developed
in more depth, surface knowledge becomes less useful for
understanding the capabilities and limitations of applications
of those concepts. Recognizing our need to collaborate in
these complex problem spaces, an important motivation for
the present paper is to level-set and offer some concepts
that may support the development of common goals and
strategies. In this section, we specifically seek to set aside
the oversimplified ways of thinking and begin to estab-
lish a more technically accurate perspective by exploring
the more general nature of the shared problem space for
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human-AI partnership. Substantively, we offer a theoretical
construct, which we call the landscape of human-AI partner-
ship, with the intention of progressing towards more unified
and domain-general ways of thinking and talking about build-
ing robust and effective human-AI partnerships.

A. AN EVOLVING CONCEPTUAL FRAMEWORK
As the background provided above illustrates, an oversimpli-
fied Human–or–AI perspective underlies many discussions
about role definitions for humans and AI. This, often tacitly
accepted, ‘‘either-or’’ perspective tends to drive questions
towards function allocation-based solutions. ‘‘Why not just
assign tasks to the human that they do best and let the AI
do the rest? Why can’t a human just supervise as long as
they are provided the tools they need to fix problems that
the AI can’t handle?’’ These kinds of questions are common
and reflect a Human–or–AI perspective. Further, such a focus
appears to assume that the task of delineating human and AI
capabilities in order to enable efficient function allocation is
(or will be) relatively easy. We suggest that such concepts
can only be applied both easily and effectively for simple
tasks – well-structured tasks in which the goals are clear,
the actions needed to achieve them are well-defined, and
the response can be expected to occur as intended. We also
suggest that these concepts will otherwise be quick to fail as
tasks become more complex. Simple tasks are often invoked
as example use cases for successful function allocation, but
all the while ignoring the likely occurrence of suboptimal or
surprise task conditions that can undermine success in real
world settings. While we consider that function allocation
may be appropriate for the more clearly structured simple
problems, we argue that it is not a general solution that will
remain robust in the face of complexity.

Here, in Figure 1, we offer an abstract illustration of
how simple tasks require fundamentally different human-AI
relationships than the complex tasks that AIs are likely to
face in real-world application spaces. Our entry point is to
discuss the task space of concern, which is that of human
capability. We define this landscape as a map of normative
human capability that varies as a function of the dynamic
interaction along critical dimensions that are commonly used
to differentiate human and AI strengths and weaknesses:
time, information certainty, and complexity. Here, we depict
the human capability map as time by information certainty
cross sections from opposite extremes of the last dimension,
complexity; we discuss each of these as follows.

The horizontal axis represents how much time is avail-
able to determine, formulate, and execute a response to
influence the outcome of a given situation. Indeed, in an
increasingly fast-paced world where computers are process-
ing progressively more data more rapidly, time is believed
to be an essential factor that differentiates appropriate task
conditions for human versus automated inputs. Consider that,
from a biological standpoint, human nerves and muscle tis-
sues impose speed limits on initiating and executing any
behavior; even ignoring perceptual and decision-making time

FIGURE 1. The landscape of human-AI partnership. This surface
represents a map of capability as a function of information certainty and
time required to resolve the situation. The two sub-panels represent
cross-sections taken from opposite ends of the complexity dimension,
which is a third axis that is not otherwise depicted here. Panel (A) shows
human capability for solving problems within the simple domain, which
we define as well-structured tasks that are bounded, require limited data,
and may be solved with relatively common analytical tools. The simple
domain includes clear-cut procedural tasks in which it is easy to grade
performance, such as assembly line production. We consider these tasks
as appropriate to consider from a function allocation perspective. Panel
(B) shows human capability in the complex domain, which contains tasks
that are more ambiguously structured in that they are either effectively or
actually unbounded, involve large amounts of data, and cannot be solved
analytically in polynomial time. Examples of complex problems include
driving a car through city traffic during a storm, or formulating and
executing a course of action to save lives and property during a house
fire.

requirements, basic human response times for simple move-
ments take a minimum of 200 milliseconds [89]. When
perceptual and decision-making times are included and
real-world constraints are applied, response times grow to
take seconds and beyond. For example, human drivers have
been repeatedly observed requiring 1 – 1.5 seconds to engage
the car’s brake pedal in an emergency response, and conse-
quently taking anywhere from 3 – 5 seconds to fully stop the
vehicle [90], [91]. Given the very real and well-understood
temporal limits of human response, time thresholds are fre-
quently used to define situations in which AI can augment
human capability.

The vertical axis represents the level of certainty in the
information about the task and circumstance, including the
amount of information available to formulate the best pos-
sible response. Commonly, a large amount of information
uncertainty can spell deep trouble for an AI, as standard con-
trol systems tend to require well-defined, reliable inputs and
analytically tractable objective functions. Intuitively then,
humans become poised as final decision arbiters in complex
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situations that are expected to challenge AI. However, sig-
nificant uncertainty is similarly likely to force humans to
adopt different methods for generating a response as well.
Nevertheless, humans are often expected to be able to resolve
ambiguities that may paralyze automated systems – such as
in myriad designs for well-known human-robot interaction
methods, including collaborative, supervisory, shared, traded,
and similar control authority management schemes [92].

Finally, the third dimension, task complexity, is depicted
here categorically (i.e., as panels) rather than continuously
along an axis. Figure 1 represents this dimension as two
separate panels drawn from extremes of the complexity
dimension, with Panel A showing the human capability map
for well-structured simple tasks, and Panel B showing the
same for complex tasks. While the first two dimensions
have received considerable attention in both human and
AI research, and human-AI teaming specifically, it is this
complexity dimension that we argue has been too often
ignored in favor of more simplified concepts like func-
tion allocation. Nevertheless, the real-world is where most
human-AI teams will need to function, and that context is,
in our opinion, defined by complexity rather than simplicity
and, moreover, is where suboptimal, ambiguously structured
conditions are the norm rather than the exception.

In Figure 1, the color gradient represents human capa-
bility; in this case, that is the degree to which the human
is capable of, and by extension should be responsible for,
taking action on goals defined within the shared task space.
As such, we consider this the nominal capability map for
humans; though we note that the map is expected to vary
quite dramatically within and across individuals as well as
under dynamic performance constraints. We could envision
similar landscapes that describe capability maps for a vari-
ety of different AI types, but for the moment focus on the
human (theoretical capability maps are shown for several
simple automations later in the paper). For any given task,
such a map may be useful for ascribing so-called ‘‘fiduciary
responsibility’’ [93], or what we would call privilege [13], for
task performance.

Figure 1A depicts human capability to solve simple prob-
lems. The figure shows that, given sufficient time and
information, humans are capable of solving simple prob-
lems (green portions of the space). With less time, or the
human is not provided with enough certainty, performance is
expected to suffer (red portions), and in the space between
(yellow/orange), human capability is variable. We suggest
that extending this logic to more complex problems risks
mis-characterizing human capability with respect to these
same dimensions. For complex problems, human capability
does not necessarily improve given more time and a greater
level of certainty (Figure 1B). Performance overall suffers
with increasing complexity. However, presenting additional
information does not always improve humans’ ability to solve
complex problems. Humans can become overwhelmed by
large amounts of complex data (for example, see lay phenom-
ena such as ‘‘information overload’’ [94]). In the following

two sections, we provide evidence to substantiate the capa-
bility maps shown in Figure 1 above, in order to frame our
discussion about role expectations in human-AI partnership.

B. SIMPLIFICATION HOLDS IN THE SIMPLE DOMAIN
Tasks in the simple domain can be characterized as well
structured by clear temporal and spatial boundaries, limited
data requirements, and are amenable to tractable analytical
solutions. As depicted in Figure 1A, simple problems are eas-
ily addressed given sufficient information and time. Within
this domain, we might increase difficulty by reducing the
amount of the time permitted to solve the problem, or pro-
viding less information to reduce certainty. In such tasks,
it is quite feasible to identify roughly linear relationships
between time, certainty, and capability that can be used to
guide human-AI partnership. We argue that Human–or–AI
function allocation approaches only do well to characterize
such simple human-AI partnerships.

Machines significantly outperform humans in solving sim-
ple problems. AI typically beats humans in terms of raw
speed, particularly for simple operations; humans can solve
simple multiplication problems in seconds [95] whereas
AI can produce answers to these same problems in millisec-
onds. As computational power and AI approaches continue
to advance, it is apparent that these technologies will be used
to solve simple problems where speed is required. In terms
of speed, the first oversimplification described above appears
to hold up; AI may replace rather than integrate with humans
for certain simple tasks, effectively operating as an advanced
set of tools to perform basic tasks more quickly.

For simple problems, we also expect a linear relation-
ship between information certainty and human capability.
Decreasing certainty can create situations in which human
cognitive biases degrade performance independent of the
time scale. In the absence of certainty, humans frequently
rely on heuristics as an adaptive way to reduce or restruc-
ture problems into forms that are more readily consumable.
However, though often beneficial, these heuristics can also
cause humans to make errors in judgment. For instance, it has
been shown repeatedly that humans tend to misjudge the
likelihood of low probability events [79], especially if those
events are very consequential (e.g. different biases cause
people to either over- or under-estimate the risk of chem-
ical, biological, or nuclear terrorism [96]). People likewise
fail to understand probabilities associated with independent
events (as is the case in the ‘‘hot hands’’ phenomenon in
which people falsely detect ‘‘streaks’’ of outcomes in random
events [97]), and overestimate the probability of spe-
cific instances relative to general ones (i.e., the con-
junction fallacy; [98]). One example of a simple but
highly-uncertain problem is estimating the results of a
sequence of fair coin tosses. Even in such a simple task,
human decision making is subject to bias (i.e., the gambler’s
fallacy [99]), whereby people typically believe that if the coin
shows tails more frequently than heads, it will eventually
show more heads than tails in the near future. That is, human
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biases can powerfully override even the explicit knowledge
that each coin toss event is independent and does not change
the odds for successive flips. Moreover, as problems entail
higher degrees of uncertainty, even simple predictive models
that are far less capable than modern AI may be able to beat
humans. To wit, in Thinking Fast and Slow, Kahneman [77]
indicates that simple rules and algorithms often outperform
human decision making for these types of problems because
heuristics cannot be effectively deployed without also gener-
ating biased decisions.

Summarily, when simple challenges must be resolved
quickly (e.g. milliseconds or less), or when they involve
extremely high uncertainty, it is clear and reasonable to
assign tasks to either a human or an AI, much like the
HABA-MABA problem formulation that Fitts [72] sug-
gested. Implicitly, however, this also suggests that simple
domain problem solving can always be improved by using
a faster processor or actuator, especially given that the
types of problems that exist within this domain are generally
analytical or, at the very least, can be expressed in terms
of a known probability structure or control laws. There-
fore, we concede that, in the simple domain, basic AI or,
more likely AI-related technologies, can and often should be
implemented as a replacement for human time and effort; to
increase the speed and accuracy of problem solving, or to
augment human decision making to mitigate biases. Compar-
atively, non-augmented human decision making will always
be bounded by biological constraints in terms of time, which
we argue is more relevant in this simple domain, and subject
to bias. However, in the following section we argue that
humans have evolved mechanisms that allow them to rapidly
produce viable solutions even to complex problems, and
therefore these oversimplified notions that appear to hold in
the simple domain should not be expected to generalize well
to the complex domain.

C. SIMPLIFICATION FAILS IN THE COMPLEX DOMAIN
The relationships between certainty and time, as observed
in the complex domain, depart from the linear relationships
that characterize human performance in the simple domain
as depicted in Figure 1A. We generally characterize these
complex problems as more ambiguously structured by having
uncertain boundaries, if any, across time and space, requir-
ing massive amounts of data in order to obtain complete
certainty, and are computationally intractable for common
analytic solutions; these problems may not have singularly
optimal solutions, because solving for a particular criterion
can (and often does) reduce the quality of that same solution
when judged against other legitimate, yet competing goals
(i.e., in a sufficiently complex, mixed-initiative system [100],
all solutions reflect trade-offs). Human performance in the
complex domain, as in the simple domain, is unlikely to yield
successful, or reliable results when informational certainty,
available time to respond, or both are low. Yet, unlike in the
simple domain, attempting to obtain complete certainty about
a complex problem may not improve performance. That is,

obtaining complete certainty about a complex problem may
require simultaneously processing so much high dimensional
information as to be intractable, at which point working with
it all becomes computationally infeasible.

One well-studied problem that demands reduction of
informational complexity is the Traveling Salesman Prob-
lem (TSP). In this problem, the solver attempts to plan the
shortest route through a set of nodes, representing cities,
beginning and ending on the same node. The TSP is an
NP-hard problem that is notoriously difficult for AI to solve
through brute force. Humans produce near-optimal solutions
to this problem in roughly linear time so long as the problem
is presented visually, but when the problem is presented as
it is presented to computers (i.e., as a distance matrix or
matrix of coordinates from a rectangular x-y plane), human
performance is substantially degraded [101]. In this case,
humans achieve this high level of performance by leveraging
the biologically- and psychologically-defined structure of the
visual system to deploy a suitable cognitive strategy called
reframing; that is, subdivide the problem into more manage-
able portions (i.e., local and global processing [102]) and then
proceed working within them. More generally, human per-
formance on such complex problems depends on the extent
to which the problem is presented, or can be reformatted,
to permit such processing. Contrary to the simple domain,
the application of such cognitive heuristics – which we pre-
viously discussed as potentially manifesting as problematic
biases – are here shown to also be highly adaptive and
beneficial.

Complex problems tend to frustrate brute force solu-
tions and require dimensional reduction so that solutions
may be tractable. Many real-world problems, such as the
TSP, are not mathematically reducible to polynomial time
solutions [53]. An important characteristic of these problems
is that increasing processing power alone will not produce
transformational gains in a computer’s ability to solve them.
Barring potential approaches that might enable machines
to access to human-like cognitive heuristics, this also then
undermines human-AI partnering solutions that rely solely
on function allocation, as they also collapse under the weight
of combinatorics. For instance, consider the explosion in
options that results within the TSP, where estimated solu-
tion time can increase dramatically, as in multiple orders
of magnitude, relative to the more limited expansion of the
search area (e.g. optimal route through 10 cities computed in
milliseconds, through 15 cities required hours, and through
25 – billions of years [103]). Further, while increasing com-
plexity reduces the ‘‘band’’ in which humans produce accept-
able, but not necessarily optimal, solutions (see Figure 1B),
they typically remain capable of generatingmultiple potential
solutions relatively quickly without needing exact calcula-
tions. Humans accomplish this either by reframing, or refor-
matting, the problem in reduced dimension so that it is fit
for their mental consumption, or they adapt by learning
causal inference through repeated exposure and development
of domain-specific expertise. In the next two paragraphs,
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we contrast examples of these problem solving approaches.
Such strategies can disrupt the linear relationship between
time and certainty and allow people to solve hard problems
that challenge both humans and AI.

The aforementioned use case describes the Traveling
Salesman Problem as one example of a task that is gen-
erally easy for humans to solve when presented in the
visual modality. For other problems where certainty is
much lower, human capability can be developed, learned,
and optimized for success. Over the course of a lifetime,
humans can develop the expertise necessary to make quick
decisions in highly-complex yet uncertain situations [104].
However, expertise takes an extremely long time to
develop and typically requires thousands or tens of thou-
sands of hours of deliberate, repeated attempts to perform
successfully [105] – a timeline that varies according to
contributions of so-called natural abilities, individual procliv-
ities, and other uniquely-experienced combinations of envi-
ronmental support factors [106]. Expertise for very complex
operational tasks, such as in military, hazmat, search-and-
rescue, and others, generally must occur in high-risk domains
as well, where the human cannot fail gracefully and risks
considerable loss for a learning opportunity. The nature of
the complex domain may not support life-long training for
all human teammates, since the demand for those teammates
in large numbers is high.

Understanding real-world complex problems can require
an incomprehensibly vast amount of information.
A 2014 report by RAND provided such an example, high-
lighting the U.S. Navy’s big data challenges. The report
concluded that the sheer number of sensors in the field, and
amount of data collected, overwhelmed intelligence analysts
and resulted in backlogs of information that might otherwise
be actionable [107]. In this case, the problemwas not a lack of
certainty but rather a massive information overload that pre-
cluded timely human analysis. Similarly, AI systems are chal-
lenged by such data, which consists of signals intelligence
across a wide array of informational modalities. Present day
AI systems are designed to infer correlations, but do not
have sufficient general intelligence to infer causality from
events, or to combine and apply prior knowledge effectively
to novel circumstances. Inferring causality from big data
requires that the data be framed and reformatted such that the
dimensionality is comprehensible, and humans are capable of
doing this given sufficient time to conduct analysis.

An important practical and ethical challenge that is unique
to human-AI interactions in the complex domain is the issue
of safety, as well as the hard task of assigning responsibility
for safety. Generally, we trust automation with our lives and
livelihoods when the problems lie in the simple domain.
For example, we do not typically second guess the outputs
of our calculators during tax season and few regular air
transit customers tend to regularly think twice about likely
use of automated flight controls; the common element in
both of these cases is the relative ease of separately defining
human and AI responsibilities. However, humanity is still

struggling to reach consensus on an effective risk cal-
culus when it comes to integrating AI into the complex
domain experiences dispersed throughout the daily lives of
non-expert end users. As non-experts entrust AI-enabled
agents with increasingly critical tasks, we must ask ourselves
honestly about the level of proficiency that we expect: how
safe is safe enough? Self-driving cars provide a good contem-
porary use case for answering this question. While individual
risk calculus for autonomous vehicle safety may vary as
a function of demographic factors like gender or national-
ity [108], estimates indicate that hundreds of millions, or even
hundreds of billions, of miles of sample data would be
required to demonstrate adequate safety margins [109]. Such
estimates suggest that integration, assessment, and delegation
of AI in complex problem spaces may need to be simultane-
ous and continuous. In practice, the company Tesla employed
such a strategy – according to Bloomberg, testing their
‘‘full self-driving’’ capability first on volunteer employees
in 2018 [110] and then on users [111] a year later. Of course,
whether society widely consents to this approach remains to
be seen.

Summarily, complex domain problems are ambiguously
structured and offer challenges to both AI and humans.
AI systems struggle to solve complex problems because
they are either computationally intractable or require causal
inference and reasoning skills that might be described in
human-like terms, such as ’intuition’. Human performance,
though, is bounded by the inherent capabilities of their indi-
vidual biological systems – such as how time requirements
may preclude certain human responses, or there may sim-
ply be too much data for a single human to process on
demand. We have discussed how aspects of complex prob-
lems may remain solvable by humans or even require human
intelligence to solve. However, relying on human intelli-
gence is no silver bullet. Complex information may require
advanced presentation and data exploration capabilities that
enable re-formatting so the human can deploy heuristics or
expertise that was learned over a lifetime of experience.
Therefore, presently neither human or AI have an inher-
ent or distinct advantage, we argue, for solving complex
real-world problems. In the next section, we further suggest
that exclusive Human–or–AI approaches will not provide the
robust solutions that we seek for problems in the complex
domain. Rather, we expect to find solutions in an intelli-
gent sociotechnical ecosystem that exploits a stable set of
solutions, or approaches that specify particular interaction
modalities, that coexist within the landscape of human-AI
partnership.

IV. INTELLIGENT SOCIOTECHNICAL ECOSYSTEMS
A main take-away of the discussion to this point is that
humans and AIs are highly interdependent, especially when
it comes to joint task work in the complex domain. This,
we believe, is true regardless of whether any of the involved
agents has learned (or been developed) to recognize their
interdependence with the other(s). Moreover, the defining
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characteristics of this reciprocal interdependence can vary
widely enough that a broad ecosystem of human-AI interac-
tion dynamics will be required to support a similar breadth of
joint system performance capabilities.

A. PRINCIPLED BEGINNINGS
In previous work, we developed a principle-driven framework
for guiding decisions about the structure of formal control
laws to instantiate a variety of interaction dynamics (The
Privileged Sensing Framework, or PSF [13]). The intention
of the PSF was to provide a relatively simple, yet principled
and generalizable approach for integrating inputs from a het-
erogeneous human-AI system across a broad variety of team
configurations and performance requirements. The primary
mechanism for blending control authority was weighting
inputs from various system agents on the basis of a computed
quantity denoted as ‘‘privilege’’; here specified as a dynamic
variable based on quantitative estimates of confidence (e.g.
uncertainty) and consequence (e.g. risk-reward ratio) associ-
ated with the observed states of each agent, as well with as
other aspects of the task environment. Articulated in a small
set of principles, the PSF was highly adaptable, and it was
implemented in a number of formalized control structures,
such as a standard weighted sum model and a novel Dynamic
Belief Fusion method. Through intelligent human-AI part-
nerships, PSF-based control systems successfully improved
performance across a varied set of tasks that included remote
asset path planning, target tracking and engagement, control
authority designation during semi-automated driving, and
rapid image triage [13], [112], [113].

While we found the PSF useful as a simple, general, and
scaleable approach for fusing inputs into a control decision
in a limited number of cases, we also consider it fairly mute
as to when, or in what circumstances, one would choose
any particular allocation of privilege across a team. That is,
in order to determine the optimal system configuration and
design appropriate control laws, one must first understand the
structure and/or allocation of privilege across the human-AI
team for that task. In what parameter regimes is the human
most likely to perform superior to a robotic counterpart or
vice-versa? Under what conditions will a particular operator
be likely to under-perform or interrupt in potentially catas-
trophic ways? What is the cost of switching or even sharing
task authority across the team? These and other questions
lie at the core of determining (or even understanding) the
inherent privilege structure for a task, given the capabilities
of the various agents in the human-AI team. We also believe
that the concept of privilege is compatible with the landscape
of human-AI partnership as discussed here, and further, may
be informed to a great extent by the specific capability maps
for each of the agents in the system. We spend the remainder
of this section discussing a simplified example, and conclude
this with a section discussion implications for more complex,
real-world challenges and demands.

Figure 2 provides an explicit, though theoretical, example
of how a currently well-known human-machine partnership

FIGURE 2. A simplified example of an ecosystem that could support
enhanced driving of a roadway vehicle. The left panel (A) shows the
capability maps for the human driver, a blind spot monitoring system
(BSMS), an automatic emergency braking system (AEBS), and an
intelligent navigation system (NAV) and the right panel (B) contrasts the
theoretical human-only capability map with one representing a composite
of the human-AI partnership in this ecosystem. As with Figure 1, all charts
show capability as a function of information certainty (vertical axes) and
time available to respond (horizontal axes); the red, yellow, green color
map corresponds with low, moderate, and high capability, respectively.

may be better understood as an ecosystem of intelligent
agents. For this example, we consider the human driver of
a standard commuter car that has three minimally-intelligent
(though not actual AI), automated driver support systems;
these include a blind spot monitoring system (BSMS),
an automatic emergency braking system (AEBS), and an
intelligent navigation assistant (NAV); the corresponding
capability maps for each of these agents and a human are
shown in panel A on the left. Each of these theoretical maps
has the same structure as defined in Figure 1, with the vertical
axis representing certainty and the horizontal axis is available
time to respond. The capability map for the human (top)
is the same as that in Figure 1B, showing moderate human
capability exists in a broad band throughout the complex
domain, but also with significant performance reduction or
increased variability as expected with too little time available
to respond as well as either too much information or too little
certainty.

For the remaining agents in this example, we have envi-
sioned support automations that each have a high per-
formance capability that is nevertheless restricted to nar-
row portions of the landscape. The capability maps shown
in Figure 2 reflect that they, like most technologies, are made
for specific purposes and will only work properly when used
in a particular way and are generally useless otherwise. The
BSMS, for instance, is envisioned here to operate well even
under relatively high uncertainty, which is what we expect
given the system’s purpose. As a warning system, a blind
spot monitor would be wisely designed be over-permissive
in triggering alerts; i.e., it is not nearly as harmful to look
thrice before a lane change than to not look at all. The AEBS,
on the other hand, should only activate when conditions
unambiguously indicate an imminent collision without suf-
ficient time for a human to act effectively. The NAV system,
as we envision, would have a broader operating range in terms
of both certainty and available time, but it only has the highest
performance (darkest green) in a very narrow strip around
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the time scale of minutes. This is because traffic and weather
conditions are rather dynamic; so, the accuracy and precision
of estimates diminish with shorter or longer time intervals.

Panel B on the right is intended to show the impact of
the ecosystem on improving capability in a very global way,
at least in the portion of the landscape that is relevant to
our driving example here. Causally, the difference between
the human-only map on the top (and the individual maps
in panel A) and the joint human-AI map on the bottom is
that each agent supports and elevates the capabilities of the
ecosystem as a whole. Importantly, the capability map for
the human-AI ecosystem does not result from a summation
or convolution of the four individual agent capability maps.
Rather, the whole is greater than the sum of the parts because
of emergent capabilities that arise only because of unique
interactions that exist between and within various subspaces
of the ecosystem wherein subsets of agents drive specific
interactions and behaviors. Consider, for instance, how the
human and the NAV system mutually improve one another
and, ideally, result in selection and completion of the most
optimal path through a given area, whereas each may have
made suboptimal choices along the way if left to their own
calculations or judgements, given their particular capabilities
and limitations.

B. REAL-WORLD IMPLICATIONS
Given the expected nonlinear expansion of complexity across
the landscape as real-world ecosystems will include larger
and more heterogeneous groups, we posit that the most effec-
tive system designs will be dominated by those that enable
understanding, characterizing, and leveraging the dynami-
cally interactive nature of human-AI partnerships, as in our
ecosystems conceptualization above. We are not the first to
arrive at these kinds of conclusions, as a variety of oth-
ers have offered concepts and frameworks that are compat-
ible with a human-AI ecosystem’s approach as discussed
herein. Examples include more holistic, systems-level design
approaches like Rasmussen’s Ecological approach [114] and
the Joint-Cognitive Systems approach taken by Woods and
colleagues [17], mechanisms for human-robot collaboration
(e.g. [115]–[118]), and, most importantly, approaches that
eschew hierarchical or centralized control in favor of poly-
centric architectures (e.g. [13], [119]–[121]). With continued
success in developing AI and AI-related technologies that can
engage more fully with the complexities of the real world,
we must adopt something broader than the user – tool men-
tality; here, we advocate for taking the vision of intelligent
sociotechnical ecosystems as inspiration for innovating and
manifesting true human-AI partnership.

Ecosystems in the real-world, of course, will be far from
Utopian. Much of the trade-space in human-AI partnership
already receives regular attention, but is usually discussed
in more limited contexts; the latest model self-driving car
versus the model that just had a fatal accident, the most
recently trending deep fake video versus the enhanced facial
recognition security on your phone – indeed, the examples

are plentiful. We devote a minimum of space here to discuss
several aspects of the trade-space involved and yet we ulti-
mately argue that the collective will always have a broader
and more robust capability set than the sum of the individual
agents working independently [55].

Control frameworks designed for collectives of human-AI
partnership need not be heavy-handed in assigning authority
within a fixed regime. Rather such partnerships may provide
a literal menu of controllable and adaptable human interven-
tions for complex and uncertain challenges. Of course, many
complex circumstances benefit from the scrutiny of a human
mind and its associated inductive reasoning capabilities; and
yet, this inherently means that such a circumstance also may
need to be handled at a slower pace than if processed entirely
digitally. Nevertheless, herein lies the opportunity for a flex-
ible human-AI partnership. Because, while even a highly
qualified AI may not be able to fully resolve the complexity,
it very likely could rapidly generate a limited set of potential
solutions along with projected performance estimates based
on a model that was pre-specified and vetted through human
processes like test and evaluation. Such centaur teams have
been shown to outperform both humans and AIs in games,
such as chess [122], and have shown promise in real-world
domains such as medical decision making [123], mission
planning [124], and cybersecurity [125].

Just as with the complexity, a trade space also exists for
human and AI responses with respect to information cer-
tainty. Despite the progress noted in the discussion of over-
simplifications above, current generation AI continues to face
difficulty in identifying general categories that are critical
for dealing with novelty [6]. For instance, humans do not
usually need specific training (or re-training) in order to be
able to intuit things like danger and risk in novel situations.
AIs, on the other hand, can mislabel novel situations as
something they have observed before and therefore respond
in potentially maladaptive ways [126]. Human responses in
highly uncertain environments tend to be stereotyped and
made within the context of survival, while AI responses tend
to appear random and inscrutable. An implication of this
is that the AI behavior may not match human expectations
because of differences in the AI’s underlying reasoning pro-
cess, and humans’ mental models of it. As a result, AIs
may fail in ways that human teammates do not expect [127],
and produce solutions that, though optimal, differ from the
preferences of human teammates [128]. These disparities risk
fracturing the human-AI partnership – whether in the form
of misuse, disuse, or abuse [129]. Recent efforts to train AIs
using human-assisted machine learning (e.g., [130]–[132] are
susceptible to similar issues, as it is possible that a robot
trained by one humanmay not produce the exact behavior that
is either predictable or preferred by other human teammates.
Similarly, there is no guarantee that behaviors learned in this
way would generalize to novel contexts in ways that would
match human expectations. Human mental models are par-
ticularly mercurial when it comes to emerging technologies,
and can be influenced by irrelevant factors such as superficial
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morphological features [133], [134] and prior experience that
may not be relevant (for review, see [135]).

Finally, human-AI partnership in the complex domain
requires a substantial investment in terms of creating the
types of systems that support interactions for appropriately
calibrating and maintaining trust to preserve compatibility,
mutual acceptance, and ultimately, teamwork for effective
performance [136]. The trade-space is indeed complex and
must be carefully considered. At the same time, as we show
in Figure 3, if the trade space is navigated adequately and
we learn how to both encourage and exploit emergent capa-
bilities across our intelligent sociotechnical ecosystems, then
we believe that we can manifest a landscape marked by
broad capability to function effectively in complex contexts.
In the final section of this paper, we attempt to ground this
discussion a little more firmly in real-world examples with a
set of practical, implementable use-cases, presented as a bit of
a tour through one manifestation of an intelligent sociotech-
nical ecosystem for human-AI partnership.

FIGURE 3. Here we illustrate that a set of human-AI partnerships that
have been purposefully designed for the constraints within their region of
the landscape, when brought together as a collective, may provide the
best potential for maintaining effectiveness across nearly the entire range
of simple and complex tasks; the only exception being at the very
margins of physical and informational tractability.

V. USE CASES IN THE JOINT HUMAN-AI ECOSYSTEM
In this final section, we illustrate a set of use cases as
examples of situations wherein adopting different interaction
strategies may effectively expand the envelope of capabil-
ity within intelligent sociotechnical ecosystems. The overall
take-away is that human-AI partnerships, if fitting the task
constraints defined by certainty, time, and complexity, may
provide for broad capability enhancement as compared with
traditional Human–or–AI function allocation methods that
steadfastly maintain, if not tacitly assume, independent and
isolated roles for each agent type. Here, six general types
of interaction strategies are discussed vis-à-vis use cases
(A through F) that are meant to illustrate how each strategy
may operate under various task contexts.We begin discussion
on the far right of the time axis (Figure 3), where available
response windows are the smallest, and then progressively
explore how human-AI partnering may vary as we travel
across the landscape. While a variety of technologies are
presented, their function is to illustrate the value of the

interaction strategy; any perceived endorsement of specific
devices or technologies is not intended beyond the evidentiary
value they hold for demonstrating real-world application.

A. HUMAN-BIASED AI EXECUTES EFFECTS
This partnering strategy is likely to be the best and only
way to enable human influence to be accounted for in cir-
cumstances where time is too short to allow for querying or
otherwise awaiting human feedback and input. In such cases,
which often involve significant safety and/or security objec-
tives (e.g. split-second auto-braking to avoid a sudden traffic
accident), it is conceivable that the human can pre-specify
a ‘‘bias’’ for how the AI should behave before the situation
arises. For example, modern adaptive cruise control technolo-
gies allow drivers to set a preferred following distance as
well as the desired set-point speed, presumably to engender
greater trust through having the vehicle behave more consis-
tently with the person’s own preferred driving style; a similar
concept could be implemented for ‘‘braking aggressiveness.’’
Another example of this type of partnership today includes
the option for human users to configure their network firewall
protection levels based on how they want to balance produc-
tivity against security risk. In general, humans can understand
the broader context, but are too slow to be effective in the
near instantaneous decision-making loops required for effec-
tiveness in the cyber domain. Because humans fundamentally
understand the problem space, however, they can effectively
make advance judgements to set bias parameters enabling
the AI confidence in selecting responses while avoiding the
inherent reductions to efficiency if needing to seek even
occasional human approval at run time.

B. AI CUES HUMAN
Indeed, there are increasingly complex circumstances where
human attention may improve the overall team response, but
that attention is divided and the time available to formulate
that response is too abbreviated to allow much room for
judgement and consideration of alternatives. In circumstances
where the levels of certainty and time are low, then an AI
that is capable of detecting patterns in noisy data may have
an important role in providing alerts and suggestions. Yet,
in such time- and certainty-limited situations, the human may
also have an important role in supporting the AI. In this por-
tion of the landscape, the AI may be fully capable of observ-
ing an emerging pattern within a multi-dimensional data set
and successively concluding that circumstances are concern-
ing, but may still be unable to converge on an objectively
preferred course of action (COA). In such cases, the AI-based
system may be imbued with decision rules that indicate a
need to very quickly draw the human into the problem space,
and the human may consequently be in the best position to
make an authoritative decision about the COA. Given that a
human may not always be available, a timeout function may
also be included that would execute some default action if
there is no human response within a configurable, pre-defined
response window (e.g. as used in a process control simulation
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studied by Moray and colleagues [137]). An example of this
type of human-AI partnership today is a modern intelligent
security system that can identify suspicious circumstances
and then, based on particular decision criteria, selectively
cue the human to look at a video and ultimately make a
decision as to whether to contact authorities or ignore the alert
(e.g., commercial home door automations, like Ring�or
Google Nest®, that can sense a potential security issue
and then send a video message from a doorbell camera
to the homeowner). In general, humans are able to under-
stand the broader context and, given time, are able to draw
conclusions based on sparse data more effectively than the
AI that may not be fully likely to track relevant context
cues.

C. AI CREATES COA
In the case where time available to respond remains at the
level of a few seconds to a few minutes (as with the previ-
ous use case B), but there is much greater certainty in the
task-relevant information, the AI may take a more active and
assertive role in developing courses of action for the human
to evaluate. We envision this interaction strategy would be
most appropriate in situations where time is very limited, but
the AI is capable of identifying the circumstance with enough
certainty that it can develop satisfactory COAs. Nevertheless,
it may still be desirable or necessary for the human to make
the final selection. Here, the AI may best be used to quickly
draw the person into a common problem space through a
salient alert signal, and then recommend several alternatives
that reflect the risks, trade-offs, and projected outcomes asso-
ciated with each COA, presented with confidence bounds
to facilitate human trust and confidence. Examples of this
type of human-AI partnership today include car navigation
systems that can present several alternative routes and pro-
vide information about their characteristics. Other examples
include mixed-initiative decision making where the AI pro-
poses COAs and the human selects among them (e.g., collab-
orative human-automation scheduling of multiple unmanned
vehicles [124]). Critically, in complex, big data situations,
the AI would be able to process much more information than
the human in the limited time available; here, humans adopt
a more supervisory role. This type of human-AI partnership
will only be accepted over the long term, however, if a
strong bi-directional trust can indeed be manifest between the
human and the AI [138].

D. HUMAN-AI TEAMS CO-DEVELOP INFORMATION
As the time constraints become less immediately limiting,
we start to see the role of the human shift towards engaging
the AI ‘‘in the loop,’’ even in mechanistic ways. This use
case is characterized as a situation of response windows
ranging from hours to days and beyond, where human or AI
teammates conclude there may be an issue, but neither the
human nor the AI can select an optimal, or even satisfactory,
solution on their own because of a relatively low amount of
information certainty. More to the point, humans and AIs are

likely to achieve different degrees of certainty for similar
aspects of a decision – meaning that their strengths and weak-
nesses may be complementary within limits. In such cases,
the value of joint, collaborative processing by both human
and AI will enable development of greater certainty for
more robust performance. Relatively current examples where
human-AI teams have outperformed both human experts and
specialized AIs include: FOLDIT, a human-directed com-
puting approach to protein folding where humans propose
solutions that are successively evaluated by an AI (c.f. [139])
and Centaur chess, where the human chess players make
decisions in collaboration with AI that can process, store,
and recall tens of millions of chess matches (c.f. The Average
is Over [140]). In the finance world where high performing
human-AI partnerships have been developed for financial
decision making (e.g., [141]), one company has gone so far
as to elect an AI to its board of directors, allowing it one
of six votes on investment strategy (c.f. Yuval Noah Harari,
Homo Deus: A Brief History of Tomorrow [142], p. 437).
Again, joint problem solving has typically found utility in
cases where the AI and the human each are well-suited for
addressing different and limited aspects of the overall task
and, by working together, can improve performance across
multiple criteria. For instance, such a partnering strategy may
be useful for cases where it is critical to find a balance
involving performance trade-offs across multiple objectives
(e.g. response speed vs accuracy; [13]). There are certain
problems that AIs are not expected to solve in a satisfactory
manner on their own. These problems are referred to as
AI-hard or AI-complete, an equivalency drawn to NP-hard
and NP-complete problems in computational complexity the-
ory. An AI-hard problem has been defined formally as a
problem that at least a subset of humans can solve given
unlimited time, is composed of a set of instances and a
probability distribution over that set, and for which verifiably
correct answers are available [143]. For complex problems
that are both AI-hard and difficult for humans, human-AI
teams may be able to solve them through co-development of
information.

E. AI EXPLAINS PROBLEM TO HUMAN
When the time available to respond remains on the order
of hours to days and informational certainty is high, mean-
ing that solutions are identifiable, known, and/or may be
chosen with confidence, we would expect the human-AI
relationship to appear like that of competent and skilled indi-
viduals (teammates) working together on a common prob-
lem. In this portion of our landscape, an AI may have to
develop explanations that allow the human to understand
the problem sufficiently to adjudicate and provide feedback
on recommendations as to which conclusions and actions
are critical. We see big data problems as having a home in
this category, as there would simply be too much data for
the human to process and comprehend in any amount of
time. Yet, AI naturally excels with big data, and especially
when given enough processing time and power, can find new,
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interesting, and relevant patterns in the data that the human
might otherwise overlook or never even encounter. For these
types of problems, humans will remain unlikely to understand
the deep specifics of various multidimensional feature spaces
that form the substance of the AI’s model. However, human
judgment may still be required or beneficial in forming a
decision. Therefore, it is here that explainable AI becomes
ever more important. In order for the humans to believe that
the solution is valid, the AI needs to exhibit transparency
by providing a degree of explanatory insight into how it
arrived at its conclusions, or at least what information con-
tributed to them, in what way, and to what extent. These
situations may be useful for improving trust in the AI and
may be particularly well-suited for overall strategy and team
development, for instance during training and after-action
reviews. With better established trust, the human may be
more readily willing to partner with the AI when the time
is limited and the human is not be able to fully understand
the problem and solution space (see Use Cases A and B,
in particular).

F. HUMAN-AI TEAM CO-EVOLVES
Over the course of extremely long timescales, the individual
and collaborative behaviors of agents in human-AI teams will
naturally tend to mutually adapt as they meet the changing
context of the world in which they work. This is because both
humans and AIs are fundamentally learning agents that are
capable of evolving over their entire lifespans. This natural
co-adaptation or co-evolution will be rather advantageous to
enable individuals and collectives to remain competitive. For
the AI, adaptation will be needed ensure that it does not
become outmoded or overcome with changes in context and
complexity. Over what are essentially developmental time
scales, humans may provide machine-interpretable explana-
tions about their own performance as well as with respect
to that of the AI, as in recent work on human-guided rein-
forcement learning [42]. The AI, likewise, may also take
task execution data along with the human feedback and
extract meaning in a format that enables the AI to evolve
itself and tune its responses to those that result in better
team function, cohesion, and communication. We believe
that developments within this portion of the landscape can
lead to a massive increase, perhaps up to 100 fold, in the
ability of complex, intelligent sociotechnical ecosystems to
co-evolve across their lifecycles – from initial formation,
through situation-based training, and then through the opera-
tional life cycle as individual agents and teams perform and
consequentlymature together [23]. On the longest timescales,
this also represents the means of evolving the team such
that it can dynamically select interaction strategies from
across the entire ecosystem. We expect this flexibility to
autonomously change interaction methods will provide an
array of human-AI partnership options to expand the envelope
of performance potential, and further enhance the reliability
and robustness of the entire ecosystem.

VI. CONCLUSION
AI andAI-related technologies are rapidly evolving, broaden-
ing in scope of application, and supporting societal advances
within both technology-driven and developing societies
around the globe. Yet, we contend that the world has only
begun to see the dramatic ways in which lives are likely
to change. We have argued here that an important limiting
factor on the depth to which AI and AI-related technologies
are accepted and integrated as part of society is that, in the
main, many have not yet shifted their mindset about true
nature of change that AI can bring – at least not beyond
the polarity of, on one hand, very simplified concepts like
AI taking working-class jobs or, on the other hand, highly
unrealistic scenarios borne from science fiction. There remain
many oversimplified ways of considering where and how AI
will intersect with and influence the very nature of human
activity in both constructive and destructive ways. In the
present paper, we have argued that the best way to go beyond
these limitations is by ceasing to consider AI as simply
a tool and, instead, come to new understandings of what
happens when AI-based technologies are treated as potential
partners with whom collaborative mechanisms may change
depending upon the task and context – just like they do
for exclusively-human teams. We believe that this notion of
AI-as-teammate (or partner), taken into consideration while
accounting for factors of information certainty, available time
to respond, and task complexity, is a core aspect of the cur-
rent revolution that is unfolding before our eyes. Old, basic
notions such as Human–or–AI task assignment and function
allocation will no longer provide tenable methods to support
the complex, adaptive, intelligent sociotechnical ecosystems
that are emerging across all sectors of human society. Rather,
such simplified concepts must give way to new paradigms of
human-AI partnership; the risk of not doing so, we contend,
may involve creating the exact future that many are hoping to
avoid.
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