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Abstract—Lung segmentation is a significant step in developing
computer-aided diagnosis (CAD) using Chest Radiographs (CRs).
CRs are used for diagnosis of the 2019 novel coronavirus disease
(COVID-19), lung cancer, tuberculosis, and pneumonia. Hence,
developing a Computer-Aided Detection (CAD) system would
provide a second opinion to help radiologists in the reading
process, increase objectivity, and reduce the workload. In this
paper, we present the implementation of our ensemble deep
learning model for lung segmentation. This model is based
on the original DeepLabV3+, which is the extended model
of DeepLabV3. Our model utilizes various architectures as a
backbone of DeepLabV3+, such as ResNet18, ResNet50, Mo-
bilenetv2, Xception, and inceptionresnetv2. We improved the
encoder module of DeepLabV3+ by adjusting the receptive
field of the Spatial Pyramid Pooling (ASPP). We also studied
our algorithm’s performance on a publicly available dataset
provided by Shenzhen Hospital, that contains 566 CRs with
manually segmented lungs (ground truth). The experimental
result demonstrate the effectiveness of the proposed model on
the dataset, achieving an Intersection-Over-Union (IoU, Jaccard
Index) score of 0.97 on the test set.

Index Terms—Chest Radiographs, Lung Segmentation, Con-
volutional Neural Networks, DeepLabV3+, Ensemble model,
Computer Aided Diagnosis.

I. INTRODUCTION

Automated lung segmentation of pulmonary Chest
Radiography (CR) images is crucial to most CAD systems.
CR is a widely used imaging modality to evaluate numerous
lung diseases that include but are not limited to COVID-19,
pneumonia, lung cancer, and tuberculosis. Segmentation of
the lungs plays a crucial role in these diagnoses [1]. CR’s
availability and low cost have made CR the most widely
used medical imaging modality for detecting lung disease.
Detecting the lung regions in CR images provides radiologists
insights in terms of shape, size, and other related geometrical
properties [2]. Shape, size, and total lung volume vary for
each patient, which could provide signs of serious diseases
[3]. This makes it challenging for many researchers to develop
CAD systems to help radiologists evaluate CR images.

Lung segmentation has attracted great interest in the field of
Machine Learning. Various methods have been proposed in the
literature [1]–[12] to develop computational methods to help
radiologists read chest images. In [1], [5] lung segmentation
is based on optimal thresholding to select a threshold value
using the unique characteristics of the lungs. Another lung
segmentation is based on wavelength transformation and
optimal thresholding [4]. Several segmentation methods are
presented in [3], [5]–[7], based on anatomical atlases-based,
active shape models (ASM) and a pixel-based classification
method. Recently, favorable results were obtained in the field
of medical imaging segmentation by deep learning, which
related to a CXR image analysis [2], [8]–[11]. The research
work presented in [2] serves as benchmarks for our model.

Recently, deep learning-based semantic segmentation
is providing state-of-the-art performance in multiple
applications, including medical imaging applications [8],
[12], [13]. DeepLabV3+ has been a favorite segmentation
model in the field of medical imaging [14]. DeepLabV3+ has
beendeveloped by Google’s DeepLab as discussed in L.C.
Chen et al.’s paper ‘Encoder decoder with atrous separable
convolution for semantic image segmentation.’ [15]. DeepLab
deep learning-based semantic segmentation series has come
along for three versions from DeepLabV1 [16], DeepLabV2
[17], and DeepLabV3 [18]. In this research, we propose an
Ensemble DeepLabV3+ based architecture for automated
lung segmentation for CRs publicly available datasets, thus
setting a benchmark for future study efforts. We evaluate our
ensemble approach by performing hold-out validation. We
show that our ensemble approaches perform well using this
modality compared to its benchmark algorithms. We study the
performance of different backbone architectures to improve
segmentation accuracy further.

The remainder of this paper is organized as follows.
Section II provides a brief description of the dataset that are
employed in this research. Section III presents the ensemble
DeepLabV3+ architecture proposed in this research. Section
IV presents the experimental results obtained using the
proposed methods. Finally, conclusions are offered in Section978-1-7281-8243-8/20/$31.00 ©2020 IEEE
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V.

II. MATERIALS

In this study, we utilized the Shenzhen Hospital (SH)
dataset of CR images. The SH dataset has been captured
from Shenzhen No. 3 People’s Hospital in Shenzhen, China
[19]. The CRs images have been collected from patients as
part of the daily routine using Philips digital radiography.
The SH dataset was provided in PNG image format with a
resolution of 3000 × 3000 pixels. SH holds 566 CR samples
with manual lung segmentation masks. These ground truth
masks for SH dataset were prepared manually by domain
experts. We utilize this dataset to study the robustness of
our proposed model. The dataset is publicly available in
https://lhncbc.nlm.nih.gov/publication/pub9931 .

Fig. 1: Example of the original image with manual ground
truth mask for a random case from the SH dataset

We divided the dataset into a group of 466 CRs and 100
CRs for training and testing, respectively. Each image is
resized to fit the input of Xception and InceptionResnetV2
with an image input size of 299× 299 pixels and the input of
ResNet18, ResNet50, and Mobilenetv2 with an image input
size of 224 × 224 pixels. Figure 1 shows an example of a
random case from the SH dataset with a ground truth lung
mask.

III. DEEPLABV3+ ARCHITECTURE

In this section, we briefly describe the DeepLabV3+ as
shown in Figure 2 which is used as our base encoder and

decoder module and to build the ensemble model. We also
present a modified encoder module of the DeepLabV3+
model, which further improves the performance with
competitive computation.

A. Encoder decoder architecture

The segmentation tasks require both encoding and decoding
units. Figure 2 shows the encoder and decoder blocks. One
of the most recent encoder-decoder type architectures is a
deep learning-based semantic segmentation. The encoder unit
features extraction and downsamples blocks that progressively
decrease the feature dimensions and capture deeper semantic
information. The decoder unit reconstructs or retrieves the
spatial information and upsamples the feature map size to
equal the original image from the downsampled feature map.

Fig. 2: DeepLabV3+ architecture.

In this study, We have used several different CNNs
architecture as backbone including ResNet-18, ResNet-
50, Mobilenetv2, Xception and InceptionResnetV2. The
encoder block involves the input feature maps that are first
downsampled by a 1 × 1 convolution with an output that
feeds a subsequent 3× 3 convolution layer. Before adding the
result to the input feature map, another 1 × 1 convolution is
executed to meet the input feature maps’ depth as shown in
Figure 2. The inverted residual block introduced in [20] has
been applied. It first utilizes a 1 × 1 convolution to increase
the depth of feature maps and a 3× 3 depthwise convolution.
The inverted residual block technique is more computationally
efficient and requires fewer learnable parameters than the
conventional residual block.

Moreover, the atrous convolution, also known as dilated
convolution, has been used in the encoder block. The atrous
convolution functions on an input feature map (x) as follows:

y [i] =

k∑
k==1

x [i+ r.k]w [k] , (1)

where i is the pixel location in the output feature map y. The
convolution filter w is applied over the input feature map x
where the atrous rate r corresponds to the stride with which
we sample the input signal. When r = 1, it is the standard
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convolution. When r > 1, it is the atrous convolution, which is
the stride to sample the input sample during convolution. Also,
the input signal is sampled alternatively. Atrous convolution
enables the model to expand the field of view of filters
to incorporate a more extensive context. Atrous convolution
blocks consist of one 1× 1 convolution layer and three 3× 3
convolution layers with different dilation rates = (6, 12, 18),
as we can see in Figure 2. However, we have adjusted those
rates in our ensemble architecture to (4, 8, 16) in the second
encoder, as shown in Figure 3.

Fig. 3: Illustration of our ensemble DeepLabV3+ architecture
for lung segmentation.

Our ensemble model consists of the Xception and
InceptionResnetV2 networks, for Versions 1 and 2,
respectively. The feature extraction step, followed by
the atrous spatial pyramid pooling (ASPP). The final feature
map in Encoder 1 has a different dilation rate than Encoder
2. After that, we have to reconstruct the encoder’s output
to the original sized segmentation map from a small feature
map. Instead of immediately upsampling the feature map, it is
accomplished in two steps, as demonstrated in Figure 3 . We
first upsample the ASPP output feature map by factor 4 using
a transposed convolution layer with bilinear upsampling and
then concatenated with the corresponding feature map from
the encoder stage. Finally, a 3 × 3 convolution is conducted
before upsampling that feature map by 4 to generate the final
segmentation output. We then created the final probability
matrix by taking the average of the two output segmentation
masks that have been generated. The probability matrix is
later thresholded to produce the final segmentation masks, as
shown in Figure 3 .

IV. EXPERIMENTAL RESULTS

This section presents the results obtained using the ensemble
DeepLapv3+ approach for the SH dataset. Furthermore, we
present the performance measure in terms of the confusion
matrix obtained using the pixel-based classification approach.
Also, we present the segmentation results, including Global
Accuracy, Mean Accuracy, Mean Intersection over Union
(IOU), based on the obtained segmentation and ground truth.

First, we evaluate our model’s performance on a test set that
consists of 100 CRs from the SH dataset. Figure 4 shows the

normalized confusion matrix achieved using the pixel-based
classification method on test cases. The overall accuracy of
96.99% and 99.51% for lung and not lung, respectively, in
terms of classification of pixels.

Fig. 4: Normalized Confusion Matrix obtained for SH
Dataset.

Second, we offer a visual result of the proposed methods
applied to the SH testing set. Figure 5 shows the output of the
ensemble model against the ground truth. The results indicate
that the proposed method’s segmentation performance is
better than the state-of-the-art methods reported in [2].

In this study, ResNet18, ResNet50, Mobilenetv2, Xception,
and InceptionResnetV2 have been used as backbones for the
DeepLabV3+ model. Only Xception and InceptionResnetV2
have been used as the backbone for the ensemble DeepLabV3+
model named Ensemble Model V1 and Ensemble Model V2,
respectively. We trained these techniques on CRs images
from the SH dataset. Each approach has a Global Accuracy,
Mean Accuracy, Mean Intersection over Union (IOU),
and BF Score, demonstrating their performance on several
metrics. Table I shows that Ensemble Model V2 achieved the
highest efficiency in all metrics. ResNet18 yielded the lowest
performance values with accuracy and an IOU of 97.48%
and 0.950, respectively.

Moreover, we offer a computation time comparison in
Table II. The computation time was computed for the
entire testing set of 100 test cases on a desktop with an
i7 processor at 2.8 GHz with 32 GB RAM and NVIDIA
TITAN RTX. We compare the performance and computation
time for lung segmentation using the proposed algorithm and
other algorithms. In terms of computation time, ResNet-18
outperforms other approaches.
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Fig. 5: Visual comparison of lung segmentation of our proposed method with IOU scores. The ground truth (red) and
proposed methods (blue).

TABLE I: DeepLabV3+ performance comparison with different backbones.

Model Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score
ResNet-18 98.14% 97.48% 0.95 0.963 0.905
ResNet-50 98.12% 97.73% 0. 950 0.963 0.905
Mobilenetv2 98.18% 97.37% 0. 951 0. 964 0.902
Xception 98.45% 97.41% 0. 958 0. 969 0. 919
InceptionResnetV2 98.73% 98.11% 0. 965 0. 975 0. 937
Ensemble Model V1 98.89% 98.25% 0.97 0. 978 0.946
Ensemble Model V2 98.91% 98.25% 0.97 0. 978 0.948

TABLE II: Performance comparison of computation time
for SH dataset.

Model
Computation time

(Entire test set) (Seconds)
GPU CPU

ResNet-18 1.74 22.17
ResNet-50 1.89 23.56
Mobilenetv2 1.85 30.92
Xception 2.43 31.16
InceptionResnetV2 3.07 58.85
Ensemble Model V1 2.37 36.34
Ensemble Model V1 3.47 70.09

V. CONCLUSIONS

In this research, we introduced the ensemble method that
produces computationally efficient and accurate lung segmen-

tation for CRs. Our model integrates two different CNN
models that have different architectures. The proposed method
provided good performance under different testing conditions
proving its robustness and efficacy. We utilized two encoders
and decoders with different atrous convolution dilation rates,
which provide a wider field of view at the same computa-
tional cost. Results indicate that the ensemble model produces
significantly higher accuracy than the use of a single encoder
and decoder. The proposed method could be used in computer
aided detection systems for various lung disease detection
applications. Automated lung segmentation would be crucial
for medical imaging specialists and would improve their
workflow.
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