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Fine Building Segmentation in High-Resolution SAR
Images Via Selective Pyramid Dilated Network

Hao Jing ", Xian Sun"”, Zhirui Wang

Abstract—The building extraction from synthetic aperture
radar (SAR) images has always been a challenging research topic.
Recently, the deep convolution neural network brings excellent im-
provements in SAR segmentation. The fully convolutional network
and other variants are widely transferred to the SAR studies be-
cause of their high precision in optical images. They are still limited
by their processing in terms of the geometric distortion of buildings,
the variability of building structures, and scattering interference
between adjacent targets in the SAR images. In this article, a unified
framework called selective spatial pyramid dilated (SSPD) network
is proposed for the fine building segmentation in SAR images. First,
we propose a novel encoder—decoder structure for the fine building
feature reconstruction. The enhanced encoder and the dual-stage
decoder, composed of the CBM and the SSPD module, extract
and recover the crucial multiscale information better. Second, we
design the multilayer SSPD module based on the selective spatial
attention. The multiscale building information with different atten-
tion on multiple branches is combined, optimized, and adaptively
selected for adaptive filtering and extracting features of complex
multiscale building targets in SAR images. Third, according to the
building features and SAR imaging mechanism, a new loss function
called L-shape weighting loss (LWIloss) is proposed to heighten the
attention on the L-shape footprint characteristics of the buildings
and reduce the missing detection of line buildings. Besides, LWloss
can also alleviate the class imbalance problem in the optimization
stage. Finally, the experiments on a large-scene SAR image dataset
demonstrate the effectiveness of the proposed method and verify
its superiority over other approaches, such as the region-based
Markov random field, U-net, and DeepLabv3+.

Index Terms—Automatic fine segmentation of buildings, L-shape
weighting loss (LWloss), selective spatial pyramid dilated (SSPD)
network, synthetic aperture radar (SAR).

I. INTRODUCTION

HE building is a significant topographic object class in
the city and a momentous data layer in the geographic in-
formation system. Building segmentation in geographic remote
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sensing images plays a vital role in the geographic information
system application, which is also a challenging question of great
interest in remote sensing. Automatic extraction of buildings
from aerial remote sensing images is frequently used for survey-
ing and mapping of ground objects, detection of illegal buildings,
urban ecological planning, and regional development.

The synthetic aperture radar (SAR) images are obtained from
all-day and all-weather remote sensing sensors free of the at-
mosphere variation. A great number of advanced works have
been launched depending on the superiority of SAR [1]-[7].
The apparent scattering features of buildings theoretically ensure
the good extraction effect in SAR images. Recent develop-
ments in building segmentation have heightened the need for
fine extraction. However, some works [8], [9] are limited by
low-resolution images, resulting in the chaotic extraction effects.
As the technology develops, the resolution of the SAR images
is higher, and the richer details emerge. To obtain the precise
boundary, positions, and scales of the buildings, it is of great
need to fulfill the fine segmentation of buildings based on the
high-resolution SAR images.

Generally, before the large-scale application of deep learn-
ing, most of the building extraction for SAR images adopt
the methods of designing features and establishing statistical
models, such as the gray level cooccurrence matrix (GLCM)
method and the Markov random field (MRF) model. The existing
researches suggest that the conventional methods are fast and
straightforward to be implemented without the large datasets.
Nevertheless, for areas with substantial feature changes, the
effect of extracting buildings is coarse. The higher level semantic
information is not expressed, which cannot be adapted to the in-
creasingly changeable complex SAR scenes. Recently, benefited
from the wide application of deep convolutional neural networks
in remote sensing [10]-[15], most deep learning-based methods
have been applied to enhance the accuracy and efficiency of
extracting buildings in SAR images [16], [17]. They form an
end-to-end approach that raises the level of the feature extraction
compared to the manual design. The fully convolutional network
(FCN) models or their plain variants are generally relied on
to extract buildings’ features in complex SAR scenes. FCNs
receive images of any size and finally output the classification
score map of the same size by extracting features through several
convolution layers and fusing multiple feature maps. Simply
transplanting FCNs to the SAR building extraction leads to
insufficient learning ability in accurately determining the shape,
size, and location of buildings. Meanwhile, the severe multiscale
characteristic problem can affect the actual extraction capability
due to the complex diversity of building structures. Recent trends
in spatial pyramid have led to a proliferation of studies [18]—[20]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-2354-0846
https://orcid.org/0000-0002-0038-9816
https://orcid.org/0000-0003-2877-0384
https://orcid.org/0000-0002-8314-2375
https://orcid.org/0000-0002-3931-3974
https://orcid.org/0000-0002-0450-6469
mailto:jinghao17@mails.ucas.edu.cn
mailto:sunxian@mail.ie.ac.cn
mailto:fukun@mail.ie.ac.cn
mailto:zhirui1990@126.com
mailto:chenkaiqiang14@mails.ucas.ac.cn
mailto:dwh1031@gmail.com

JING et al.: FINE BUILDING SEGMENTATION IN HIGH-RESOLUTION SAR IMAGES

FCN

[ ] —»cufn
(a)
Deeplabv3

][ o | >culo
(b)
Deeplabv3+
ot g N e
I
Pixel
©
SSPD-net(ours)
Input images | [ g e
)
3
v g
X4 L-shape
3 N ¥ Classification
Teature re-calibration & o T—
selection

(d)

Fig. 1. (a) Scheme of building extraction in SAR images with FCNs. In
previous feature extraction networks, only convolutional layers are used to
extract features. (b) Spatial pyramid structures such as atrous spatial pyramid
pooling (ASPP) [25], are widely used to solve the multiscale characteristic
problem in FCN improvement schemes. (c) Encoder and decoder structures for
segmentation become a general network. (d) Our method, the spatial pyramid
with adaptive selection and the LWloss strategy are added. The proposed
structure is organized with a novel encoder—decoder based on the dual-stage
decoder. CBM: Context balancing module. SSPD: Selective spatial pyramid
dilated net.

that the spatial pyramid structure is rapidly becoming a key
instrument in the multiscale characteristic problem. However,
the multiscale building extraction performs poorly with the
fragments of large buildings and the absences of tiny buildings
under the actual large remote sensing scenes. It is accepted that
the critical calibration and the selection of multiscale features are
imperative for mitigating the multiscale characteristic problem.

The past years have seen the rapid development of deep learn-
ing in a wide range of fields. Plenty of deep learning methods
are simply transferred to the building extraction [21]-[24] in
the SAR images. As we all know, the double bounce scattering
formed by the grounds and the walls is considered a major
indicator of buildings in high-resolution SAR images. L-shape
features are major areas of interest within the field of building
extraction. In the achievements for the FCN and its variants, the
L-shape features are missing more seriously, which results in
the rough and mixed building boundaries and the high missing
detection for some line objectives of buildings. In addition, the
problem of data imbalance in the process of building extraction
is often ignored. Generally, the building class pixels are much
less than the background class pixels. The cross-entropy loss
function used in the traditional training process can easily cause
that the background pixels occupy the dominant position, which
makes the attention of the network training shift to the dominant
pixels under the condition of data imbalance. In this case, the
model generalization ability is reduced and overfitting. In light of
the deficiencies in the above methods, it is becoming extremely
difficult to develop the fine building segmentation.

Aiming at these issues and considering the building features
and mechanism in SAR images, we propose a unified framework
called selective spatial pyramid dilated (SSPD) net for the fine
building segmentation in SAR images. As shown in Fig. 1(d)
specifically, we improve the multiscale context fusion and re-
construction by the instrumental SSPD module and the novel
dual-decoder. The L-shape weighting loss (LWloss) is employed
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to give more attention to the L-shape footprint elements and their
nearby elements. We demonstrate the effectiveness of our model
in the fine building segmentation on a Gaofen-3 satellite SAR
dataset, and achieve the 91.2% accuracy performance on the test
set without any postprocessing.

In brief, our principal contributions are summarized as fol-
lows.

1) For the multiscale characteristic issue, we design a mul-
tilayer SSPD module combining the channel selection
and the branch selection, which offers a comprehensive
feature representation of adaptive nonlinear aggregation.
The SSPD module enhances the spatial pyramid’s multi-
scale feature selection and reconstructs the spatial feature
relationship, which promotes the adaptive fine extraction
of the SAR buildings.

A novel encoder—decoder structure is proposed based on
the dual-stage decoder. The context balancing module
(CBM) and the SSPD module are involved in the multi-
level semantic information fusion and construction, which
is conducive to the restoration of the complete shape and
location of buildings.

The newly LWIloss function is designed to focus on the
ignored L-shape footprint and line objectives. Compared
with the cross-entropy loss function that treats all the
pixels equally, our loss function gives higher weight to
the more crucial L-shape footprint pixels with dynamically
distance adjustment. It also alleviates the class imbalance
problem.

Compared with other optical transplanted models, our
proposed unified framework focuses on the characteristic
SAR building features and amelioration that are not valued
in ordinary networks. It is more competitive for fine seg-
mentation of variable-scale buildings in large SAR scenes,
whether in terms of visual effects or quantitative metrics.

The experiments on a large-scene SAR image dataset indicate
that SSPD-net achieves the better building extraction accuracy
and visual effects compared with the popular semantic segmen-
tation methods and the conventional methods, which proves the
advantages of the proposed method.

The remainder of our work is organized as follows. In Sec-
tion II, we briefly illustrate the related tasks, including feature-
based methods, model-based methods, and deep convolutional
neural methods in building segmentation. Next, we pay attention
to the proposed framework in Section III, including the SSPD
module, the dual-stage decoder, and the LWloss. The details and
conclusions of the experiments are discussed in Section IV and
Section V. Finally, Section VI concludes this article.

2)

3)

4)

II. RELATED WORK

Since our work mainly refers to the fine building segmentation
in SAR images, we briefly review the related studies in this field.

It has previously been observed that the conventional building
extraction approaches for SAR images can be divided into two
categories, i.e., the feature-based and the model-based. The
feature-based group is to extract the brightness, texture, border,
and mixing characteristics from the SAR images. The Fourier
power spectrum [26], the Gabor filter analysis [27], the MRF
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model texture description [28], [29], and the GLCM texture mea-
sure [30], [31] are commonly used. In [31], the GLCM is applied
to extract texture features for building area segmentation in SAR
images. To obtain the texture images similarly, a set of heuristic
Gabor filter sets [27] are designed. The scale-invariant feature
transform (SIFT) algorithm for SAR images (SAR-SIFT) [32] is
proposed to solve the image registration problems with different
incident angles. These features are frequently combined with
methods such as the nonsupervised cluster analysis. Commonly,
the complicated objects in SAR images cannot be fully described
by the low-level features, and an enormous gap between them
and the high-level semantic expressions exists. Furthermore, the
low-level features only represent the pixel-level information,
which is greatly affected by the multiplicative noise.

On the other hand, the model-based category is to establish
the statistical distribution model of the SAR images, which com-
bines the spatial background information for segmentation, in-
cluding MRF [29], Fisher distribution [33], logarithmic normal
distribution [34], and generalized Gaussian distribution [35]. In
the early k-means [36] and gamma models, the feature spatial
representation is only considered, but the spatial interaction is
not taken into account. The primary spatial context constraint
works in the region-based MRF model [37], but it will lead to
oversegmentation, especially in building areas. Tison ef al. [33]
employ Fisher distribution to model the ground objects of SAR
images (especially for buildings) and combine the statistical
model with MRF to realize the classification of ground objects.
However, the detailed information is constantly lost in the re-
sults, and some attached blocks emerge. Xia et al. [38] propose
an MRF model on region adjacent graph (MRF-RAG) to correct
the edge error resulting from the oversegmentation algorithm.
Plenty of semantic inconsistencies in the building areas exist
yet. When it comes to the highresolution SAR images, these
models can no longer accurately describe the detailed and bright
spot texture structure exhibited by the buildings. Moreover, the
predefined statistical distribution model may not be suitable for
broad regions with different characteristics.

In addition to designing the features and the models, how
to design a good classifier is also the focus. The classification
methods are summarily divided into three categories: Unsuper-
vised learning, semisupervised learning, and supervised learn-
ing. There exists no labeled samples in unsupervised learning
with the goal of inferring the internal structure in a set of
data. The common algorithms for SAR building segmentation
or other object classification consist of k-means clustering and
principal component analysis, etc. There is a general lack of a
current method to compare the performance of the algorithms.
The semisupervised learning understands the remaining large
amount of unlabeled data by learning a small amount of la-
beled data. Many commonly used semisupervised methods have
been applied to SAR object classification, such as transductive
support vector machine, graph-based anchor graph regulariza-
tion [39], and squared-loss mutual information regularization
for multiclass probabilistic classification based on manifold
assumption [40]. In the case of very small labeled data, Protopa-
padakis et al. [41] use the semisupervised learning approaches
as the loss function throughout the training of neural networks,
which can be beneficial to pixel level segmentation tasks on
a limited dataset. Compared with the semisupervised learning,
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the supervised approaches applies sufficient labeled samples
to fit the relationship between input and output. The logistic
regression, naive Bayes, support vector machine, random forest,
neural network, and other methods are also drawn into the SAR
image segmentation. Significantly, the dimension reduction can
make the data features dense and eliminate data redundancy
when faced with excessive input dimensions. Makantasis et
al. [42] propose tensor-based linear and nonlinear models for
hyperspectral image classification, which is also an available
solution.

In recent years, deep neural networks are gradually being
applied to the image interpretation of natural scenes and remote
sensing scenes. The deep learning methods have gradually re-
placed the traditional SAR segmentation methods, on account
of meeting the requirements of the fine extraction of buildings
and other objects in high-resolution SAR images. It is worth
mentioning that the application of deep learning heightens the
ability of the feature extraction and makes the precision of the
ground objects extraction significantly improved in the SAR
images [16], [43]-[46]. Yao et al. [47] successfully apply FCNs
to the semantic segmentation in the SAR images and classify
the landuse, water, buildings, and natural areas. Although the
FCN can accept the input images in any size, lots of spatial
information is lost, leading to a coarse segmentation result.
Considering the multiscale feature of the SAR images, Duan
et al. [48] present a multiscale convolutional neural network for
the SAR semantic segmentation, and the labeling consistency
is obtained in most of the terrains. Nevertheless, the model
with shallow network structure merely makes the simple scale
transformation of the input information, which leads to insuf-
ficient extraction of the practical information. In contrast, as
one of the most advanced neural networks, DeepLabv3+ [49]
utilizes several parallel atrous convolutions at different rates
called atrous spatial pyramid pooling (ASPP) to capture more
sufficient context information. Compared with some previous
convolution structures, ASPP which has emerged as a powerful
tool, can mainly extract multi-scale buildings accurately and
efficiently. There is a growing body of researchers that recognize
the importance of exploring the spatial dependence [50], [51]
and representing the spatial feature correlation with integrat-
ing learning mechanism [52]-[54]. In particular, the spatially
dependent guidance for the multiscale features performs cru-
cially for the adaptive feature selection in the complex context
information and large variations. Besides, the encoder—decoder
structure [55], [56] has always been an advanced model in the
field of image segmentation, which can extract and restore the
features wholly and quickly. In U-net [55], the features are
concatenated in the channel layers on the equal level of the
encoder and the decoder. This is effective for preserving the
semantic information of SAR image extraction, but the feature
fusion is still inadequate.

III. METHODS

A. Framework

Building segmentation in complex SAR scenes is interfered
with other complex backgrounds and multiscale characteristics
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of buildings. Traditional classifiers or artificial features are grad-
ually tired of coping with the high-resolution complex scenes.
However, some general advanced neural networks have been
verified to be effective for target detection and scene classifi-
cation of remote sensing scenes, although the utilization and
mining of specific features in SAR images are not sufficient.
Therefore, our unified framework is designed with popular
encoder—decoder structure. The overall structure of SSPD-net
for SAR building segmentation is illustrated in Fig. 2, which
consists of two parts: The encoder and dual-decoder. As an
encoder with moderate parameters, ResNet34 [57] has the out-
standing feature extraction ability and computation speed. The
convolution unit is based on the residual blocks composed of
3 x 3 kernel convolution layers, which have a low computation
cost. The output stride is 32. The output spatial resolution of
the last convolution layer of the encoder is 32 times smaller
than that of the input image, which contributes to extracting
the denser features. To utilize a dual-decoder to recover the
characteristics of the target in stages is an innovative approach.
The basic SAR features obtained from the backbone network are
sent to the dual-decoder consisting of the CBM and the SSPD
module. In the Decoderl, the extracted SAR image features by
the CBM are comprehensively characterized and reconstructed
to close up to the adaptive feature balancing, thus supporting the
feature recovery in the Decoder2. A multiscale building attention
mechanism is established by the SSPD module, which fully
integrates and adaptively selects multiscale building features
to recover building details more finely in the Decoder2. To
increase the guidance of the buildings’ double bounce scattering
characteristics to the network, a weight mask is added to the
common loss by employing the LWIloss. Our method extracts
the location and profile of potential buildings in SAR images in
the inference stage directly and accurately.

B. Dual-Stage Decoder Based on the CBM and SSPD Module

In DeepLabv3 [25], the decoder is a 16 times upsampling
module, which is directly amplified by the last feature map. In
this case, the decoder is not very effective in restoring the details
of objects. Considering the semantic information contained in
different output layers of the encoder, we propose a capable
two-stage decoder, as shown in Fig. 2. First, the output feature
maps of the five layers are in different scales with the corre-
sponding output stride, 2, 4, 8, 16, and 32, respectively. They are
resized to the same spatial resolution with bilinear interpolation
upsampling and concatenated, as shown in Fig. 3. We adopt
an average compression strategy to balance the high-level and

SSPD-net structure. K: Kernel size. D: Dilation rates. OS: Output stride.
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' i &
SSPD Module Segmentation Results
Decoderl
D—Decoderl
Direct amplifier Context Balancing Module
Fig. 3. Direct amplifier and the CBM structure of the Decoderl.

the low-level semantic information. The number of channels per
layerisreducedtor by 1 x 1 convolution. The above operation is
named as the CBM, while the hyperparameter r and the average
compression strategy will be discussed in Section IV-D3. The
CBM is equivalent to five skip connections between the encoder
and the decoder structures at the same time. We reckon that the
CBM is better than the behavior of gradually upsampling from
high-level semantic information. It creates more information
paragraphs that preserve the high-frequency information in the
smoothing process.

The second stage of the decoder is the SSPD module, which
can further extract and refine the multiscale semantic informa-
tion. In DeepLabv3 [25], ASPP uses the atrous convolution at
different rates for multiscale probing features and aggregates
contextual information. It shows that the features extracted
at each rate are processed in a separate branch and then are
merged to generate the final result. However, the fusion lacks the
guiding information, which leads to the independent process of
resampling the features extracted from each scale. Incorporating
the spatial and the channel attention into the network is necessary
to enhance the multiscale feature selection and expression. The
squeeze and excitation operations are utilized to reconstruct
the interdependence and suppression in the feature channels of
the spatial pyramid module. As Fig. 4 exhibits, the branches
of the spatial pyramid module are amplified to nine, and their
receptive fields are nested. With the selection operations, the spa-
tial pyramid branches are recalibrated following the multiscale
information of the targets. And all the ordinary convolutions are
displaced by the dilated depthwise separable convolutions [58].
Finally, the two 3 x 3 convolutions are employed to refine the
features. These operations (in the particular SSPD module) play
a crucial role in the fine segmentation of SAR buildings.
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C. Multilayer Spatial Pyramid Dilated Convolution Module
Based on Channel Selection and Branch Selection

The SSPD is the central unit, mapping the input X €
RHEXWxC to feature maps Y € RF*W > We propose fusion,
squeeze, excitation, and selection operations, especially in fu-
sion pyramid modules, which provide global information access
and calibration feature responses at the channel level with the
appropriate receptive fields. Consequently, the SSPD is a feature
refinement network that is sensitive to multiscale information,
during which the feature learning of channel selection and
branch selection constraints is carried out according to the
multiscale information of the target.

1) Channel and Branch Selection: In Fig. 5, the merged

feature map is denoted as X € R *W*C in the Decoder1. Each
parallel dilated convolution layer is regarded as a unit d, and all
the pyramid convolution units are combined as a super module
D = [dy,ds, .. .dg]. D has the kernel convolution with different
sizes and various dilated rates. In order to adjust the size of
the receptive field, different branches of D are squeezed after
fusion to generate the channel statistics. Then, different branches
are finally selected through the established relational model, as
shown in Fig. 5.

Fusion: In SSPD, for any input X € RT*WxC we first con-
duct nine transformations using nine kernel convolution F; —
Fy: X, — X9 = Uy — Uy € REXWXC yith different sizes.
The whole F' is composed of atrous depthwise separable con-
volutions, and their kernel convolution size and dilated rates
are shown in Fig. 4. The information flow is first merged from
the multiple branches. Note that the number of output feature
channels per branch is 48. The fusion result of multiple branches
is obtained by channelwise summation, as

U=U,UUs,---UUs. (1)

Squeeze: Subsequently, we symbolize each channel layer with
a channel descriptor z € R¢. That is, the information in the
H x W spatial dimension on each channel is compressed into
a number to generate the channel statistics. As shown in (2), the
global average pooling (ap) is used to calculate the cth element
of z

M%

= Fop (uc) = (4,9) 2

1 H
HxW EZ:

1

where u, € RET*W,
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Excitation: A concise feature s is created based on two full-
connected layers [50]. The relationship between the channels
is modeled with the feature s, so as to adaptively establish the
expression of the inhibition or the promotion of channels. The
expression relationship of the modeling feature s can be used
for soft selection of the pyramid branches. The conduct of such
modeling is flexible and nonlinear

s = Fpo(z) = 0 (Wad (Wi2)) 3)

Where 0 stands for ReLU function [59], W; € R%XC Wy €
RE*%  and o stands for sigmoid function. The default r value
is set as 16 with the purpose of forming a general dimensionality
reduction layer in the fully connected (fc) layers.

Selection: The concise feature s obtained by the excitation
operation can be considered as a set of mapping channel weights.
As shown in (4), it recalibrates the rich semantic information in
different scales to obtain the final output Y (Y = [y1, y2. . .Yc))
in the SSPD module, which achieves the selection for the nine
branches. The coexistence of inhibition and promotion works in
the 48 channels inside the branches, which can also be regarded
as the soft self-attention mechanism of convolution response on
channels

Ye = Sc * Uc- (4)

The concise feature s and the feature mapping U are channel-
wisely multiplied.

In addition to the channelwise selection above, the branch
selection can also be performed in another way. In the fusion
operation, provided that elementwise is summed, the fusion
results of multiple branches will be expressed as follows:

U=Uy+Us- - +Us. (&)

Furthermore, U is squeezed and excited according to the equiv-
alent operation by (2) and (3), respectively

a:Fap(@)—waZZucu (6)
=1 j=1
5= Ffe(2) = 0 (Wad (W12)). (7)

The concise feature 5 obtained by (6) and (7) guides the
selection of multiscale information on different branches, which
uses the softmax operation

eSi
1= i

where a; represents the branch weight of U;. The final output
feature map is weighted by the attention weight on different
branches, which is

a; =

=9
Ve =Y aill;. ©)
=1

The comparison of the experimental results brought by two
different fusions of branches is shown in Section IV-D1.

2) Dilated Depthwise Separable Convolution in SSPD: 1t is
observed that the atrous depthwise separable convolution [60],
[61] is applied to the SSPD module. Dilated convolution [62] is a
powerful convolution tool with the exponential growth receptive
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field and the linear increase of parameter number. It can process
the input feature maps with a higher precision while the size is
maintained by the dilated convolution, and the dense prediction
of target details is implemented. For 2-D signals, the dilated
convolution is brought to the input feature maps P, and the
output feature mappings () are

Qlil = Pli+r-kF[k] (10)

where F' stands for the convolutional filters, r is the dilated
rate, and k is the skip stride of the dilated convolution. As
shown in Fig. 4, the combined pyramid convolutional filter
fields are obtained. Thus, multiscale context information can
be captured for multiscale information for buildings from an
adaptive selection of a wider input perspective.

Unlike conventional convolution, the depthwise separable
convolution [63]-[65], consisting of the depthwise convolution
and the pointwise convolution, has a lower parameter quantity
and operation cost. The depthwise convolution performs inde-
pendent convolutions on each channel of the input layers, and
the quantity of output channels is the same as that of the input.
And then, the pointwise convolution makes a weighted combi-
nation in depth. The computational complexity of the model is
significantly reduced by combining the depthwise convolution
and the pointwise convolution. The dilated depthwise separable
convolution in SSPD can make the model lightweight accord-
ingly. Simultaneously, the high model property is maintained.

D. L-Shape Weighting Loss

The backscattering signal intensity of the buildings is the
superposition of the backscattering signals from various parts of
the building. Among them, corner reflector, layover, and shadow
are important features of SAR buildings. Many segmentation
errors in SAR images are resulted by the scattering and imaging
mechanism. For instance, large buildings usually appear as
strong linear or L-shaped echoes in SAR images due to the
strong double bounce reflection toward the direction of radar
incidence angle, which means that in some cases, only two
edges of the buildings can be clearly observed by the SAR.
Nevertheless, the segmentation results of many convolutional
models still have some defects, such as boundary deletion and
roughness, especially when the large buildings are extracted.
According to the different representations of L-shape, we in-
troduce visual interpretation assistance to classify three types
of building targets on the Gaofen-3 SAR images. As illustrated

©000.-.---- 0
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TABLE I
EXTRACTION EFFECTS OF U-NET IN THREE BUILDING OBJECTIVES

Objectives OA(%) IoU(%) Missing alarm(%)
Surface 83.14 34.53 13.28
Line 80.68 31.75 16.83
Complex 83.87 34.76 13.23
Overall 82.70 33.38 14.75

The bold entities are the highest scores in each comparison.

in Fig. 6, there are three representations for buildings in SAR
images: Surface objectives, line objectives, and complex objec-
tives. Generally, complex objectives have complex structures
and high-backscattering intensity. Correspondingly, both sur-
face objectives and line objectives, with the L-shape footprint,
have a low proportion in all building backscattering areas. Based
on the U-net experiments, the extraction results for three building
objectives are shown in Table 1.

The accuracy and missing alarm rate of surface and line
objectives are worse than that of complex objectives. We hold
that the complex objectives cause strong attention in neural
network training. Simultaneously, the surface and line objectives
are easily ignored in feature learning, resulting in a high-missing
alarm rate and the unfinished edge of buildings. A novel loss
function is proposed to extract the surface and line targets of
SAR buildings effectively. In the process of network training, the
L-shape footprint terrain pixels are given a high weight mask to
enhance the training attention of the surface and line objectives.
First, the edge detection algorithm is applied to the SAR image
to detect a strong echo similar to the angular reflector. Then
the global Hough transform and the local Hough transform with
the moving window are performed to extract the indicator to
buildings such as the L-shape and the linear features. Next, the
intersections of L-shape scattering are determined by utilizing
the orthogonal line structures. And the appropriate intersections
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Fig. 7.  Extraction of the L-shape footprint pixels.

are selected for subregion clipping. For each cropped subregion,
the rectangular-package method [66] is applied to extract the
L-shape footprint accurately. Finally, the L-shape footprint is
mapped to the original image space according to the slope angles
6 and the lengths L of the detected lines, and the original location
for the subregion. At this point, the set of all the L-shape terrain
elements is obtained, as shown in Fig. 7.

The Euclidean distance from this pixel to the set of L-shape
footprint terrain pixels is then calculated for each pixel. The final
weight is calculated based on the Gaussian weight contributed
by all the L-shape footprint pixels to this pixel, as follows:

1 (wp—rq)2+(yp-yq)?
wy, =1+ w —e = 202 11
p =14 wy q% pyor (1D
where wy is the penalty factor for L footprints. M is the collection
of L footprint terrain elements and (), ¥,,) is the coordinates of
the pth pixel. o can affect the size of M region.
Furthermore, the issue of class imbalance is common in
building extraction. The cross-entropy loss, generally used in
image segmentation, is defined as

L=- Z ytruelog (ypred) (12)
N

where e Tepresents the true label of each pixel, and Ypred
represents the prediction probability of each pixel. It evaluates
the class prediction for each pixel vector equally. Considering
the dominant background pixels guiding the training attention,
we add the soft dice coefficient loss [67] to restrain the class
imbalance. The final defined loss function is

pr Z YtrueYpred
N

L==) wpymelog (Ypred) t Wp — =75 =75
2N: ? b g Z yt2rue + E yp2red
N N
(13)
The soft dice coefficient loss is multiplied by the penalty factor
separately for each category, and the final result is then averaged
to normalize the loss.

IV. EXPERIMENTS

A. Dataset

Due to the low-resolution and small scales, the data used
in the previous related work [47], [48] lack accurate labels,
which is not suitable for our fine extraction method. Researchers
also lack the publicly available SAR datasets for the building
extraction. Hence, to facilitate the research for the fine building
extraction on high-resolution SAR images, we build a new
dataset to evaluate the effectiveness of the proposed method. We
collect the urban images acquired from the Gaofen-3 satellite
by the spotlight mode. All the images are single-band and
single-polarized. The spatial resolution is 1 m, which ensures the
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Fig. 8. Partial visualization of high-resolution SAR images of GaoFen-3
satellite. The typicality of these groups of pictures is that small and large
buildings exist concurrently, and their respective dense and sparse states exist.
(a)—(d) SAR images. (e)—(h) Corresponding ground truth.

quality of the annotation. The SAR images are labeled referring
to the corresponding optical remote sensing images and verified
by experts. The positive annotations are buildings, and other
pixels are the background class. The images are cropped into
512 x 512 pixels with a total of 279. 80% images of the dataset
are used for training and the rest are for testing. The portion of
the dataset is shown in Fig. 8.

B. Implementation

The proposed network is operated on the NVIDIA p100 GPU
based on PyTorch [68]. The amount of training data is expanded
to 1674 by the image morphological transformation, including
random horizontal and vertical folding, rotating, arbitrary scal-
ing, random migration, and accidental lifting. These operations
effectively increase the amount of data and weaken the tendency
of overfitting caused by insufficient raw data. The expanded
slices are disorganized and randomly fed into the network. The
size of each batch is 5 for 250 epochs. The pretraining ResNet34
on ImageNet [57] is adapted to the encoder. The initialization
weight of the decoder follows the default uniform distribution
of PyTorch [68]. The momentum is 0. The adaptive learning rate
optimization algorithm named Adam [69] is applied to train the
network. The betas are (0.9, 0.999), and the weight decay is 0.
The initialization learning rate is 0.001. When the training loss
is stable, the learning rate is reduced five times manually. Our
model adopts end-to-end training.

C. Evaluating Metrics

The experimental results are evaluated based on several
widely used indicators, as follows:

TP+TN
11 A = 14
Overall Accuracy TP+ TN+ FP L FN (14)
Pl 2 x Precision x Recall
" Precision + Recall
(15)
Precisi TP Recall TP
recision = ————— Recall = ————
TP+ FP’ TP+ FN
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TABLE II
ABLATION RESULTS OF DUAL-STAGE DECODER

g{f\’c"gl‘;ﬁ TT(s) Params(M) OA(%) F1(%) mIoU(%) twloU(%)
v x| 35 526  88.08 78.66 67.11  78.67
x v | 38 541 9028 8316 7270  82.27
TT denotes the training time.
IoU 1 » TP
mloU = —
2 TP+ FP+ FN
(16)
1 TN
+ = x
2 TN+ FP+FN
TP
fwloU = P(P) -
wio P) T FP TN -
TN
P(N) -
+PWN) AN T FP T EN

where TP refers to all the correctly classified building pixels.
TN is all the correctly classified background pixels. FP denotes
all the building pixels that do not have the correct classification,
and FN represents all the background pixels that do not have
correct classification. OA indicates the ratio of all the correctly
classified buildings and background pixels to all the classified
pixels. F1 and mIoU can reflect and evaluate the effect based
on the above metrics. FwloU sets the weight in line with the
frequency of the building areas and the background areas on
the basis of IoU, which enhances the impact on the category
frequency.

D. Ablation Studies

In this section, we successively focus on the decoder design,
the different improvements in SSPD, and the channel compres-
sion strategy. A series of ablation experiments are carried out to
study the effectiveness of SSPD-net. Both the training strategies
and the data enhancement way are the same as the methods
described in Section I'V-B.

1) Design and Selection of Dual-Stage Decoder: For De-
coderl, we have two designs. As shown in Fig. 3, the direct
amplifier (DA) receives the output from the last layer of the
encoder (output stride = 32). The CBM is employed to receive
the output of five encoder layers (output stride=2, 4, 8, 16, 32).
In Decoder2, we set ASPP as a baseline.

Baseline: The first-row block in Table Il includes the results of
a simple 16-time upsampling using bilinear interpolation (DA).
In the CBM, five outputs are concurrently normalized to the
identical size (output stride = 2) using bilinear interpolation.
Both the DA and the CBM connect two 3 x 3 kernel convo-
lutional layers for feature refinement. The experimental results
reveal that the CBM significantly advances the performance, but
the running time is not obviously increased.

Adding ASPP: We verify the feasibility of a dual-stage de-
coder using ASPP as the Decoder2. The comparison of rows 3
and 4 in Table III exhibits that ASPP helps to improve OA and
mloU by 0.4% and 1%, respectively, when the CBM is used as
Decoderl. Similarly, when the DA is applied as Decoderl, OA
and mloU, respectively, increase by 2% and 5% due to ASPP.
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Adding SSPD: We evaluate the two scenes proposed in Sec-
tion III-C at the last row block in Table IV. SSPD (U) represents
the fusion of 9 branches in the channel concatenation and the
channelwise selection of branches. SSPD (+) embodies the
fusion of 9 branches in element summation and the selection
of branches in softmax operators. The differences in the experi-
mental effects resulting from SSPD (U) and SSPD (+) are shown
in Table I'V. The results of this study indicate that SSPD (U) im-
proves capability by about 2% with a slight increase in running
time and complexity. The partial segmentation results are shown
in Fig. 9. The results of the DA are jagged and incoherent. The
large sawtooth of buildings in the CBM segmentation is gone,
but the small buildings are partially missing, and they tend to
stick together. After adding the ASPP, the segmentation result is
evidently advanced but is slightly inferior to SSPD owing to the
occasional breakup inside the buildings. It is interesting to note
that SSPD (+) and SSPD (U) have a less visual difference, but
the latter has smoother segmentation and lower missing alarm
of small buildings.

2) Effectiveness of Internal Improvements in SSPD: In this
section, we further explore the design of the Decoder2. The
baseline is the selective pyramid convolution module that con-
tains the first seven branches (two branches with kernel=5 are
removed) without dilated convolution. The contrast experiments
are based on Decoderl = CBM and SSPD (U). As illustrated
in Table V, the experimental results imply that the added larger
kernel convolution (kernel = 5) promotes the segmentation prop-
erty. The dilated convolution is found to cause better behavior
than ordinary convolution. Compared with the baseline, the
mloU brought by the larger kernel and the dilated convolution
increases by 0.7% and 1%, respectively. The current important
finding is that under the condition of keeping the performance,
replacing the dilated convolution with dilated depthwise separa-
ble convolution significantly reduces the model complexity and
lowers the computing load on the hardware.

3) Channel Compression: The compression quantity r intro-
duced in the Decoderl is a hyperparameter, which compresses
the number of channels of output feature maps in the encoder.
To find the optimal balance between the capability and the
complexity, we implement the experiments in different r values
for SSPD-net. Table VI shows the influences for a range of
different r values on the experimental effect. The experiments
demonstrate that the monotone increase of r cannot lead to
the linear growth of performance. According to the accuracy
and calculation cost, r = 48 is an optimal choice. In summary,
Table VII shows the statistics of the final segmentation results
after compression of different proportions of high-level and low-
level channel information. The different levels are represented
by feature maps with different sizes in Table VII. The feature
map of the higher level is smaller. These experimental results
suggest that the balanced high-level and low-level information
fusion has the best segmentation effect. In our structure, the equal
compression of high-level and low-level semantic information
is the final choice.

4) Improvement of the L-Shape Weighting Loss Function: In
the experimental study, comparing LWloss with cross-entropy
loss (CEloss) indicates that the former can heighten the precision
of building extraction, especially for the optimized boundary
of linear objectives. This result may be explained by the fact



6616 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE III
ABLATION RESULTS OF DUAL-STAGE DECODER

Decoderl Decoder2

DA CBM ASPP SSPD TT(s) Params(M) OA(%) Recall(%) Precision(%) F1(%) mloU(%) fwloU(%)
v X X X 35 52.6 88.08 86.28 75.47 78.66 67.11 78.67
v X VY 37 92.3 89.95 87.93 77.85 82.95 72.37 81.90
X v X X 38 54.1 90.28 88.48 79.90 83.16 72.70 82.27
X vV v X 92 99.2 90.65 88.76 80.53 83.93 73.70 82.91

TABLE IV
ABLATION RESULTS OF DIFFERENT SSPDs

Decoder] - Decoder? ‘ TT(s) ParamsM) OA(%) Recall(%) Precision(%) F1(%) mloU(%) fwloU(%)
X Vv X vV (+) 96 82.4 90.50 88.51 80.47 83.62 73.30 82.65
X v x v (U) 111 85.6 91.16 89.35 81.91 85.09 75.28 83.87

Fig. 9.

Segmentation results of different combinations in dual-stage decoder over the urban areas. (a) SAR image. (b) Ground truth. (c) DA. (d) CBM. (e) DA

+ ASPP. (f) CBM + ASPP. (g) CBM + SSPD(+). (h) CBM + SSPD(U). The yellow circles in the diagram represent obvious defects in the segmentation results of
some methods, such as (c) jaggies, (f) breakage, (e) deletion, (d) adhesion, and etc.

TABLE V
EFFECTS OF DIFFERENT SSPD DESIGNS. K: KERNEL

K=5 Dilated \ TT(s) Params(M) OA(%) F1(%) mloU(%) fwloU(%)

X X 86 66.7 90.70 83.51  73.82 82.99

v X 90 84.3 90.31 83.60 74.58 82.87

v v 111 85.6 91.16 85.09 75.28 83.87
TABLE VI

EFFECTS IN DIFFERENT 7 VALUES

r OA(%) mloU(%) Params(M)
16 90.12 72.47 82.7
32 90.40 73.31 84.1
48 91.16 75.28 85.6
64 90.29 73.08 87.2
80 90.34 72.99 88.9

that the LWloss can guide the training attention of the L-shape
features and raise the effectiveness of building segmentation.
In Fig. 10, we intuitively see that the extraction boundary of
the building is more definite, and some of the missing building
edges are supplemented in the LWloss results. For experiments
with the cross-entropy loss function, the L-shape objectives’
extraction boundary is confused and unclear with both deletions
and dilations. The prediction results with LWloss, by contrast,
are more sensitive to L-shape features, and the missing detection
of some small L-shape targets decreases. At the same time,
the boundary determination is much clearer, which reduces the
boundary adhesion of the side-by-side buildings. Further, as
shown in Table VIII, one interesting finding is that the IoU of the
building class is higher than the mIoU of that, which confirms
that the LWloss has a specific inhibition for the data imbalance.
Meanwhile, LWloss has good portability for other networks.
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TABLE VII
EFFECTS OF DIFFERENT RATIO OF HIGH AND LOW LAYER CHANNEL INFORMATION FUSION

Size(FP) 256 128 64 32 16 | OA(%) mloU(%) Params(M)
6.7% 133% 20% 26.7%  33.3% 90.29 72.68 87.3
20% 20% 20% 20% 20% 91.16 75.28 85.6
333% 267% 20% 133% < 6.7% 89.07 70.19 86.9

The level of the layer is negatively correlated with the size of the feature map (FP).

TABLE VIII
PERFORMANCE COMPARISON BETWEEN DIFFERENT LOSS FUNCTIONS

Metrics OA(%) ToU(%) mloU(%) Missing alarm(%)
Objectives | U-net Deeplabv3+ SSPD-net ‘ U-net Deeplabv3+ SSPD-net ‘ U-net Deeplabv3+ SSPD ‘ U-net Deeplabv3+ SSPD-net
Surface | 83.14 85.23 91.38 |34.53 53.08 61.04 - - - 13.28 11.88 11.65
CEloss Line 80.68 82.78 87.79 |31.75 49.78 58.13 - - - 16.83 18.03 17.37
°7 Complex | 83.87 86.43 92.05 |34.76 52.76 61.30 - - - 13.23 10.96 9.74
Overall |82.70 86.06 89.92 |33.38 51.24 60.27 |58.17 69.27 75.15 | 14.75 12.83 12.28
Surface | 85.89 87.89 92.63 |35.27 53.54 60.75 - - - 12.43 12.05 11.67
LWloss Line 82.26 85.07 88.92 |32.81 50.52 58.98 - - - 1591 17.11 16.41
°7 Complex |85.71 88.52 9235 ]35.92 53.42 61.74 - - - 12.38 11.87 9.52
Overall | 84.37 87.25 91.16 |34.05 52.10 60.80 |58.52 69.84 75.28 | 13.69 12.24 12.05
TABLE IX

f

-

Fig. 10. Extraction effects of partial linear objectives with different loss
functions in SSPD-net. Each column from left to right. (a) Input images. (b)

Extraction results with cross-entropy loss. (c¢) Extraction results with LWloss.
(d) Ground truths.

The overall accuracy and the mloU with the L-shape weighting
loss for several networks are lifted, as shown in Table VIII. The
optimal building extraction performance is achieved in SSPD-
net with the LWloss. It should be noted that the convergence
time of model training is increased by 22%. On the whole, the
proposed loss function alleviates the data imbalance problem
in the SAR building segmentation and improves the extraction
effect of linear objectives at the cost of extra time, which is
acceptable.

In addition, the proposed LWloss function is based on the
distance calculation and the weighted superposition of the set of
L-shape footprint terrain pixels extracted from SAR images. The
ablation experiments are conducted on the accuracy of extracting
the L-shape footprint pixels. The comparing methods of extract-
ing the L-shape footprint set are discussed, including utilizing
the constant false alarm rate (CFAR) algorithm combined with
the log-normal (LN) distribution probability density function to

PERFORMANCE COMPARISON BETWEEN DIFFERENT EXTRACTION OF THE
L-SHAPE FOOTPRINT SETS

Methods OA(%) Recall(%) Precision(%) mloU(%)
CEloss 88.23 84.35 72.10 68.99
CFAR+LN 88.68 85.78 76.60 68.92
CFAR+PR 91.07 86.17 77.01 70.13
MP+DMP 87.96 84.05 73.38 66.09
LWIloss(-) 89.98 88.83 79.52 73.14
LWIloss(+) 90.65 88.46 79.82 74.28
LW-Eloss 88.12 86.34 79.60 72.66
LWloss 91.02 88.91 79.77 74.79

extract linear features of buildings, utilizing the CFAR detector
and power ratio (PR) method to extract buildings, utilizing the
morphological profiles (MP) and the difference morphological
profiles (DMP) [70] to extract the morphological information.
Meanwhile, the addition and subtraction sets of the L-shape
footprint pixels extracted by the proposed method are compared.
This process is carried out by the corrosion and expansion opera-
tions. Regarding the weighting factor of the L-shape footprints in
(11), the weighted Euclidean distance based on the exponential
weight function is also used to compare the performance of the
different feasible LWIloss functions. We define it as LW-Eloss,
as shown in (18), where A is set to 1

2wy Z Ytrue Ypred
N
2= Yitae T2 Yrea
2 N 2 N
)‘[(-'Ep_xq) +(Yp—Yq) } .

- Z WpYuel0g (ypred) + wp —
Y (18)

p = 1 + wo Z re”
qeM

The experiment results are shown in Table IX. The first-row
block in Table IX shows that different traditional methods of
extracting the L-shape footprint set perform well in overall
accuracy and other evaluating metrics than the CEloss function.
However, the change of each method is about 1%, which is
not obvious enough. In addition, the results of the increase or
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TABLE X
COMPARISON OF SEGMENTATION RESULTS OF DIFFERENT MODELS

Methods TT(s) Params(M) GFLOPs OA(%) Recall(%) Precision(%) F1(%) mIoU(%) fwloU(%)
2-Mode [71] - - - 76.06 75.76 69.27 61.76 48.94 63.85
OTSU [72] - - - 81.24 80.90 75.02 57.11 47.44 67.09

Threshold-histogram [73] - - - 44.60 42.55 38.78 41.85 27.28 33.30
K-means [36] - - - 70.25 69.49 62.54 53.65 41.75 57.66

MREF [74] - - - 80.32 78.18 73.85 63.99 51.87 67.91
PMREF [75] - - - 81.16 80.64 74.36 61.51 50.35 68.02
U-net [55] 41 150.0 642.87 84.37 83.06 76.45 70.75 58.52 73.01
Linknet [76] 42 82.7 339.14 90.53 88.77 80.72 84.01 73.78 82.83

DeepLabv3+ [49] 108 159 667.83 89.06 87.35 78.88 80.94 69.84 80.35
PSPnet [77] 247 186 773.76 90.01 88.42 80.19 82.60 71.96 81.81
SSPD-net(our) 111 85.6 363.81 91.16 89.35 81.91 85.09 75.28 83.87

The computational cost is evaluated with FLOPs, i.e. floating point operations [78]. 1 GFLOPs = 102 FLOPs.
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Fig. 11. Example training curves of several methods on the Gaofen-3 dataset.
The SSPD-net exhibits the stable optimization characteristics and gains the best
training performance.

decrease operations on the L-shape footprint set generated by the
proposed method are revealed in the second-row block. Though
some metrics show a slight decrease, the effects are better than
the CEloss function. Generally, extracting the L-shape footprint
set and generating the distance loss function make a relatively
large contribution to the building extraction, while the slight
increase, decrease, and morphological change of the L-shape
footprint set have a little impact on the building extraction.
Besides, LW-Eloss generates a loss function based on the ex-
ponential weight distance, whose test metrics are 1% lower than
those of the proposed loss function based on the Gaussian weight
distance. Finally, LWloss is considered to be used to guide the
network training attention.

E. Comparison With Other Methods

In comparison, other methods are tested based on the same
Gaofen-3 satellite SAR dataset, including the 2-Mode [71],
OTSU [72], Threshold-histogram [73], K-means [36], the con-
ventional MRF [74], the improved MRF (PMRF) [75], U-
net [55], Linknet [76], DeepLabv3+ [49], and PSPnet [77].
Considering the apparent contrast between targets and back-
grounds, two global single threshold segmentation methods,

the OTSU [72] and the 2-Mode [71], are added to observe
the optimal solution under the customary criterion, such as
the maximum intraclass variance and gray histogram. The
PMRF [75] mainly adds a multiscale MRF image pyramid
model based on the MRF [74]. What matters is the case that the
conventional MRF and the PMRF both follow the experimental
settings in [75]. Moreover, the lightweight Linknet [76] and
the PSPnet [77] with capable global context aggregation are
augmented for the sake of fully verifying our advantages over
other advanced deep convolutional models.

The example training curves for different algorithms are
depicted in Fig. 11. It can be observed that the proposed
method yields the most stable improvement throughout the
whole optimization process. Their experimental results are listed
in Table X, and the corresponding segmentation examples are
shown in Figs. 12 and 13. Although the MRF model does not
require training and is extremely fast in the test process, it
contains little semantic information of the SAR buildings, and
the segmentation results are rough. In contrast, the abundant
semantic information is contained in the SSPD-net with 14%
higher accuracy. For the manifestation of the U-net method,
the large holes exist in the interior of the buildings. In the
Linknet segmentation results, some small buildings adhere and
the boundaries are difficult to distinguish. Certain medium-sized
buildings are missing in DeepLabv3+ segmentation images. A
flow of PSPnet is the inability to extract a large number of dense
small buildings. Compared with the current advanced U-net,
Linknet, DeepLabv3+, and PSPnet methods, our method (SSPD-
net) obtains the best accuracy, F1, mloU, and fwloU. Further-
more, the results of this study show that SSPD-net achieves the
effect of fine building segmentation. Simultaneously, it does not
increase the parameter complexity and not lower the running
speed. Finally, the segmentation effect of our method on the
large-scene SAR image is shown in Fig. 14.

V. DETAILED ANALYSIS

A. Design and Selection of Dual-Stage Decoder

We evaluate the performance of the dual-stage decoder in
Table IV. The results show that the combination of CBM and
SSPD achieves the finest segmentation with the ResNet-based
encoder. Compared with the direct amplifier, the CBM combines
more full semantic information of both high and low layers
simply and directly. The model capability will be better with
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Fig. 12.

Segmentation results of different methods. From top to bottom, from left to right, the images in turn are as follows. (a) SAR. (b) 2-mode. (c) OTSU. (d)

Threshold-histogram. (e) MRFE. (f) PMRF. (g) U-net. (h) Linknet. (i) DeepLabv3+. (j) PSPnet. (k) SSPD-net. (1) Ground truth. The defects of some deep learning

methods are marked in yellow circles in the graph.

an equal compression strategy. For Decoder2, the experiments
further corroborate the advantages of SSPD over ASPP. This
discrepancy could be attributed to the channel and the branch
selection attention for SSPD instead of the spatial pyramid
structure. The obvious finding to emerge from Fig. 9 is that
SSPD can better divide the building boundary between small and
large buildings than the general spatial pyramid pooling module.
Another important finding is that the channel-based soft branch
selection [SSPD(U)] is more effective than the hard-selection
branch mode [SSPD(+)]. A possible explanation for this might
be due to the channel attention concentration of the former to
the target.

B. Effectiveness of Internal Improvements in SSPD

For the details of SSPD, we add the branches with large
kernel convolution and dilated depthwise separable convolution,
which increases the mIoU by 0.8% and 0.7%, respectively. The
branches with large kernel convolution effectively supplement
the convolution probing fields of the spatial pyramid mod-
ule. Each complementary nesting combination of convolution

branches exerts a pivotal part in multiscale information extrac-
tion. The dilated depthwise separable convolution calculates the
feature mapping with higher sampling density to restore the full
resolution feature maps so that the computed feature mapping
is denser. This improvement gives the whole network a more
profitable receptive field. Besides, from Table V, the increase
of model complexity mainly lies in the addition of large kernel
branches, while the dilated depthwise separable convolution has
a small effect on the model parameters. Compared with other
models [49], [55], our network has also achieved superior model
lightweight, which effectively improves its extensibility.

C. Channel Attention Analysis

In order to prove the effects of the proposed SSPD, we
observe the attention weight of SSPD under different building
scales. Fig. 15 shows the visualization effects of the feature
maps for some samples containing small buildings and large
buildings in the output layers. The first four patches are samples
dominated by small buildings and the last four dominated by
large buildings. When the input is an SAR image with the small
building dominant, the network attention is mostly focused on
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(a) (b) (©

Fig. 13.

(d) (© ¢

Local area presentation of segmentation results (see the yellow circle in Fig. 12) for different methods. Each column from left to right belongs to the

following methods. (a) U-net. (b) Linknet. (¢c) DeepLabv3+. (d) PSPnet. (e) SSPD-net. (f) ground truth.

(a)

Fig. 14.

the small buildings. Conversely, attention reverses. The attention
value distributions of two random samples on all branches in
SSPD are shown in Figs. 16 and 17, where the two samples
are patches including some small buildings and large buildings,
respectively. The channel activation value for most of the small
receptive fields in SSPD is high for the minor targets. As the
target object size increases, the channel activation of the large

(b)

Fine building segmentation on the large-scene SAR image. The left is the original image and the right is the segmentation image by SSPD-net.

receptive fields rises, which seems to be consistent with our
expected network selectivity.

D. Interpretation of the L-Shape Weighting Loss

As shown in Fig. 18, we plot the attention maps for the
SSPD-net with the CEloss and the LWloss. The LWloss results
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Fig. 15.  Feature maps for small and large buildings. (a) and (b) SAR images
with small buildings. (c¢) and (d) SAR images with large buildings. (e) and
(f) Feature maps corresponding to the (a) and (b). (g) and (h) Feature maps
corresponding to the (c) and (d).

©
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Fig. 16.  Attention value of the channels in small and large buildings. (a) and
(b) Image of small buildings and its groudtruth. (c) Attention distribution of
small buildings samples on all branches. (d) and (e) Image of large buildings
and its groudtruth. (f) Attention distribution of large buildings samples on all
branches.
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Fig. 17.

show that the attention division between the buildings and the
background areas is distinct, and especially the attention to the
linear objectives rises in the network. In the CEloss results,
some line objectives and small buildings are easily affected by
other complex structures and thus missing the sensitivity to some
easily neglected structures, although the boundary extraction of
some large buildings is acceptable. Table VIII illustrates that the
LWIoss is suitable for some current segmentation networks and
has a guaranteed improvement in extraction precision and other
metrics. The LWloss has good potential for the fine building
segmentation in SAR images.

Fig. 18.  Comparison of the CEloss and the LWloss. Each row from top to
bottom: (a)—(d) CEloss results. (e)—(h) LWIloss results.

VI. CONCLUSION

In this article, a unified framework named SSPD-net is pro-
posed for the fine building segmentation in SAR images based on
the selective attention mechanisms. We design the dual-decoder,
the CBM, and the advanced SSPD convolution module. The
multibranch information is fused and reselected to conform to
the multiscale extraction with the specific building attention.
Additionally, in light of the building features and SAR imaging
mechanism, the LWloss for the fine building extraction is estab-
lished to promote the attention on the L-shape footprint char-
acteristics of buildings. The extraction effects of linear targets
are enhanced, and the class imbalance problem in the training
process is restrained with the LWloss. The experimental results
on a high-resolution SAR dataset demonstrate the superiority of
our approach.
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