
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 06/15 pp646–663
DOI: 10 .26599 /TST.2021 .9010007
Volume 26, Number 5, October 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Decomposition-Based Multi-Objective Optimization for Energy-Aware
Distributed Hybrid Flow Shop Scheduling with Multiprocessor Tasks

Enda Jiang, Ling Wang�, and Jingjing Wang

Abstract: This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with

Multiprocessor Tasks (EADHFSPMT) by considering two objectives simultaneously, i.e., makespan and total energy

consumption. It consists of three sub-problems, i.e., job assignment between factories, job sequence in each factory,

and machine allocation for each job. We present a mixed inter linear programming model and propose a Novel Multi-

Objective Evolutionary Algorithm based on Decomposition (NMOEA/D). We specially design a decoding scheme

according to the characteristics of the EADHFSPMT. To initialize a population with certain diversity, four different

rules are utilized. Moreover, a cooperative search is designed to produce new solutions based on different types of

relationship between any solution and its neighbors. To enhance the quality of solutions, two local intensification

operators are implemented according to the problem characteristics. In addition, a dynamic adjustment strategy for

weight vectors is designed to balance the diversity and convergence, which can adaptively modify weight vectors

according to the distribution of the non-dominated front. Extensive computational experiments are carried out by

using a number of benchmark instances, which demonstrate the effectiveness of the above special designs. The

statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.

Key words: distributed hybrid flow shop; multiprocessor tasks; energy-aware scheduling; multi-objective optimization;

decomposition; dynamic adjustment strategy

1 Introduction

The Hybrid Flow Shop Scheduling Problem with
Multiprocessor Tasks (HFSPMT) is an extension of
traditional Hybrid Flow Shop Scheduling Problem
(HFSP). The HFSPMT commonly exists in bio-process
industry, textile industry, and electronics industry[1],
in which each job must be processed by several
machines simultaneously in every stage. During the
past few years, it has gained much attention. Hidri and
Gharbi[2] presented an efficient destructive lower bound
to minimize makespan.

For the same objective, i.e., makespan, Hidri[3]

� Enda Jiang, Ling Wang, and Jingjing Wang are with the
Department of Automation, Tsinghua University, Beijing 100084,
China. E-mail: jed16@mails.tsinghua.edu.cn; wangling@
tsinghua.edu.cn; wjj18@mails.tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2020-12-28; accepted: 2021-01-26

presented a new valid lower bound. Kurdi[4] proposed an
Ant Colony Optimization (ACO) algorithm with a Non-
DaemonActions procedure. Gholami et al.[5] presented
an elephant herding optimization algorithm. Recently,
Gholami and Rezvan[6] presented a memetic algorithm
with a dynamic adjustment structure.

For traditional shop scheduling problems, usually
only single factory is taken into consideration. With
the development of economy and globalization, the
manufacturing systems have transformed from one
factory to multiple factories. Distributed production has
become a great trend. Unlike traditional single factory
scheduling problem, the distributed shop scheduling
problem needs to consider both job assignment between
different factories and job sequence in each factory.
Therefore, it is more significant for reality but more
complex to solve. For distributed flow shop scheduling
problem, Ruiz et al.[7] proposed an improved iterated

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 647

greedy algorithm to minimize makespan. For the
distributed permutation flow shop, Pan et al.[8] presented
three heuristics and four metaheuristics to minimize
total flow time. For the distributed fuzzy blocking
flow shop scheduling problem, Shao et al.[9] proposed
two constructive heuristics and two metaheuristics
based on iterated greedy method to minimize fuzzy
makespan. Also for makespan objective, J. J. Wang
and L. Wang[10] proposed a bi-population cooperative
memetic algorithm for the distributed hybrid flow shop
scheduling problem. Chaouch et al.[11, 12] proposed
a modified ACO and a hybrid ACO combined with
local search for the distributed job shop scheduling
problem. Hsu et al.[13] proposed an agent-based fuzzy
constraint-directed negotiation mechanism scheduling
for the distributed job shop scheduling problem. Meng
et al.[14] proposed four different mathematical models
and a constraint programming for the distributed flexible
job shop scheduling problem. Recently, Ying and Lin[1]

extended the HFSPMT to the distributed environment
and proposed a self-tuning iterated greedy algorithm to
minimize makespan. For the same problem, Cai et al.[15]

proposed a Dynamic Shuffled Frog-Leaping Algorithm
(DSFLA). However, the literature on the Distributed
Hybrid Flow Shop Problem with Multiprocessor Tasks
(DHFSPMT) is still rare.

In realistic production, the decision makers need to
consider some other objectives simultaneously. However,
the above research works are all about economic criteria,
like makespan or total tardiness. As the environment
protection has raised much attention, both economic
benefits and environmental criteria should be taken
into account simultaneously. Thus, green scheduling
is more practical and has attracted much interest.
For the no-wait permutation flow shop scheduling
problem, Wu and Che[16] proposed an adaptive multi-
objective variable neighborhood search to minimize both
makespan and total energy consumption. For the hybrid
flow shop scheduling problem, Liu et al.[17] proposed
an evolutionary algorithm based on weighted sum
approach to minimize both makespan and total energy
consumption. For the distributed permutation flow shop
scheduling problem, J. J. Wang and L. Wang[18] proposed
a knowledge-based cooperative algorithm to minimize
both makespan and energy consumption. For flexible
job shop scheduling problem with variable processing
speed, Li et al.[19] proposed an improved artificial

bee colony algorithm to minimize makespan, machine
loading, and total carbon emission. For flexible job shop
scheduling problem under time-of-use electricity prices,
Jiang and Wang[20] proposed a Modified multi-Objective
Evolutionary Algorithm (MOEA/D) to minimize both
makespan and total electricity cost. For the distributed
job shop scheduling problem, Jiang et al.[21] proposed
a collaborative MOEA/D to minimize both makespan
and total energy consumption. Recently, for the
distributed parallel machines scheduling problem, Pan
et al.[22] proposed a knowledge-based two-population
optimization algorithm to minimize both total energy
consumption and total tardiness.

This paper is the first to address the Energy-Aware
Distributed Hybrid Flow Shop Scheduling Problem
with Multiprocessor Tasks (EADHFSPMT) to minimize
both makespan and total energy consumption. Since the
HFSPMT with single objective has proved to be NP-
hard[1], the EADHFSPMT is obviously a more complex
NP-hard problem. Thus, those methods based on
mathematical programming are not practical to solve the
large-scale problems. Evolutionary algorithms have been
proved to be effective in solving a variety of large-scale
optimization problems in different fields[23–26]. For the
multi-objective optimization problems, Multi-Objective
Evolutionary Algorithm based on Decomposition
(MOEA/D)[27] is an effective technique with many
successful applications[20, 21]. In this paper, we will
propose a Novel MOEA/D (NMOEA/D) with some
special designs according to characteristics of the
EADHFSPMT. To be specific, the decoding scheme
is designed based on the problem-specific features.
Four initialization heuristics are utilized and two local
intensification operators are performed to improve the
quality of solutions. Moreover, a dynamic adjustment
strategy is proposed to adaptively adjust the weight
vectors according to the distribution of solutions in each
generation. Extensive numerical tests demonstrate the
effectiveness of these modifications, and it also shows
that the proposed algorithm is able to obtain better
solutions than the existing algorithms.

The rest of the paper is organized as follows. Section 2
presents the description and the formulation of the
EADHFSPMT. Section 3 introduces the detail design of
the NMOEA/D. The numerical results and comparisons
of different algorithms are given in Section 4. Finally,
we end the paper with conclusions and future work in
Section 5.

648 Tsinghua Science and Technology, October 2021, 26(5): 646–663

2 Problem Description and Formulation

The parameters and variables used for problem
formulation are listed as follows:

n: number of jobs.
i : index of jobs, i = 0, 1, 2, . . . , n, where job 0 is the

dummy initial job.
f : number of identical factories.
k: index of factories, k = 1, 2, . . . , f:

s: number of stages in each factory.
j : index of stages, j = 1, 2, . . . , s:

mj W number of machines of each stage.
g: index of machines, g = 1, 2, . . . , mj .
Mj;g W machine g at stage j:

ri;j W number of machines required to process job i at
stage j:

pi;j W processing time of job i at stage j:

ej;g;kW energy consumption factor of the machine g at
stage j in factory k when processing.

iej;g;kW energy consumption factor of the machine g at
stage j in factory k when at idle time, where iej;g;k D

ej;g;k=4.
t : index of time slots, t = 0, . . . , L:

L: time horizon which is large enough for makespan.
Si;j W starting time of job i in stage j:

Ci;j W completion time of job i in stage j:

xi;kW binary variable that equals to 1 if job i is assigned
in factory k, otherwise it equals to 0.

yi;j;tW binary variable that equals to 1 if job i is
processed in stage j at time slot t , otherwise it equals
to 0.

zi;j;g;kW binary variable that equals to 1 if job i

occupies machine g at stage j in factory k, otherwise it
equals to 0.

Tj .id; ih/W required time to schedule job id and job ih
in stage j:

Cmax W maximum completion time (makespan) of all
factories.

TEC: total energy consumption.
The EADHFSPMT can be described as follows. There

are n jobs to be processed in f identical factories.
Each factory is a hybrid flow shop with s stages where
stage j consists of mj machines. Each job follows the
same route through s stages in the assigned factory and
switching jobs between factories is forbidden. Each job
must be processed by several machines simultaneously
in every stage. For job i at stage j , ri;j denotes the
number of machines required by this job, and pi;j

denotes its processing time. Each machine can process
at most one job at one time and the processing cannot
be interrupted. The energy consumption factors of
machines are different, which means processing one job
on different machines in the same stage may consume
different energy. The energy consumption consists of two
parts: processing energy and idle energy. The objectives
are to assign each job to the factories, determine their
suitable sequence in the factory, and allocate machines
for each job, so as to minimize both the maximum
completion time of all jobs (makespan) and the TEC.

According to the Mixed Inter Linear Programming
(MILP) model[1] for the DHFSPMT, we present the
following MILP model for the EADHFSPMT.

min.Cmax; TEC/ (1)

Subject to
Ci;j D Si;j C pi;j ; 8i; j (2)

Ci�1;j 6 Ci;j � pi;j ; 8i > 1; j (3)

fX
kD1

xi;k D 1; 8i (4)

NX
iD1

xi;kyi;j;tri;j 6 mj ; 8j; k; t (5)

LX
tD0

yi;j;t D pi;j ; 8i; j (6)

Si;j 6 t C L.1 � yi;j;t /; 8i; j; t (7)

Ci;j > tyi;j;t ; 8i; j; t (8)

Cmax > Ci;s; 8i (9)

fX
kD1

mjX
gD1

zi;j;g;kxi;k D ri;j ; 8i; j (10)

C j;k > Ci;j xi;k; 8i; j; k (11)

Sj;k 6 Si;j xi;k; 8i; j; k (12)

TEC D

fX
kD1

sX
j D1

mjX
gD1

"
iej;g;k.C j;k

� Sj;k/ C

eX
l

#
NX

iD1

zi;j;g;kpi;j .ej;g;k � iej;g;k/

#
(13)

xi;k 2 f0; 1g (14)

yi;j;t 2 f0; 1g (15)

zi;j;g;k 2 f0; 1g (16)

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 649

where Formula (1) indicates the objectives, i.e.,
makespan and total energy consumption; Constraint
(2) indicates that the processing of one job cannot be
interrupted; Constraint (3) ensures that no job can be
processed before the prior job is completed; Constraint
(4) indicates that every job can be assigned to only
one factory; Constraint (5) ensures that the number of
machines occupied at any time cannot be more than
the total number of machines of this stage; Constraint
(6) determines the time slots of every job in each
stage; Constraint (7) determines the starting time of
each job in every stage; Constraint (8) determines the
completion time of each job in every stage; Constraint
(9) determines the makespan of all factories; Constraint
(10) determines the machines occupied by each job in
each stage; Constraint (11) indicates that the completion
time of one stage must be after all the jobs are completed
in this stage; Constraint (12) indicates that the starting
time of one stage must be before all the jobs are started in
this stage; Eq. (13) calculates the energy consumption;
and Formulas (14)–(16) indicate the type of decision
variables.

3 NMOEA/D for EADHFSPMT

3.1 Description of basic MOEA/D

A Multi-objective Optimization Problem (MOP) can be
described as follows:

F.x/ D .f1.x/; : : : ; fp.x//T; x 2 ˝̋̋ (17)
where p is the number of objectives and ˝̋̋ is the search
space of solution x.

For two solutions xa and xb of a MOP, if
fl .xa/ 6 fl .xb/ ; 8l , and fl 0 .xa/ < fl 0 .xb/ ; 9l 0 2

f1; 2; : : : ; pg, xa is said to dominate xb (denoted as
xa � xb/. If no solution can dominate xb , xb is called a
Pareto-optimal solution.

To solve MOPs, MOEA/D is an effective
approach[20, 21, 28]. It decomposes an MOP into a
number of single-objective sub-problems using
decomposition function, and then optimizes these
sub-problems simultaneously. Evolutionary operators
like mutation and crossover are used to search promising
solutions. When the stopping criterion is satisfied, the
solutions of all the sub-problems make up a final set,
which is an approximation for the optimal solution set of
the original MOP. The description of the basic MOEA/D
is referred to Ref. [27].

Recently, the MOEA/D has been applied to solve
shop scheduling problems. Jiang and Wang[28] proposed
an improved MOEA/D for the permutation flow shop

scheduling problem with sequence dependent setup
time to minimize makespan and energy consumption.
Zhao et al.[29] proposed an improved MOEA/D for the
job shop scheduling problem to minimize makespan,
total tardiness and total flow time. Jiang and Wang[20]

proposed a modified MOEA/D for the flexible job shop
scheduling problem under time-of-use electricity prices
to minimize the makespan and total electricity cost.
Jiang et al.[21] proposed a collaborative MOEA/D for
the distributed job shop to minimize makespan and
total energy consumption. However, to the best of our
knowledge, there is no existing work about the MOEA/D
for the EADHFSPMT. Thus, it motivates us to propose
an NMOEA/D to solve such a complex problem.

3.2 Procedure of NMOEA/D

The whole procedure of NMOEA/D is given in Algorithm 1.
For the above NMOEA/D, firstly N solutions are

initialized by four heuristics, and the reference point is
determined. The weight vectors are initialized uniformly
and the neighbors of each solution are settled. Then,
in every generation, the cooperative search, local
intensification, and dynamic adjustment for weight
vectors are performed in turn. In cooperative search,
different operators are performed according to the
different relationships between the solution and its
neighbors. In local intensification, search operators
inside factory and between factories are applied to
optimize different objectives. In dynamic adjustment
strategy, the weight vectors are adaptively adjusted
according to the distribution of solutions. Finally, the
neighbors of each solution are updated. The above search
process is repeated generation by generation until a
stopping criterion is satisfied.

To solve the EADHFSPMT reasonably, each
component of the NMOEA/D should be designed
specially.

3.3 Encoding and decoding

There are three sub-problems, i.e., job assignment

5

total electricity cost. Jiang et al.[21] proposed a
collaborative MOEA/D for the distributed job
shop to minimize makespan and total energy
consumption. However, to the best of our
knowledge, there is no existing work about the
MOEA/D for the EADHFSPMT. Thus, it
motivates us to propose a novel multi-objective
evolutionary algorithm with decomposition
(NMOEA/D) to solve such a complex problem.

3.2 Procedure of NMOEA/D
The whole procedure of NMOEA/D is given in
Algorithm 1.

Algorithm 1 Procedure of NMOEA/D

Initialize N solutions and weight vectors and determine the reference point.
Determine the neighbors of each vector and the non-dominated set.
If the stopping criterion is not satisfied

For Solution 1 to N
Carry out cooperative search
Carry out local intensification
Update the reference point

End For
Update the neighbors of each solution

 Update the weight vectors and the non-dominated set

For the above NMOEA/D, firstly N solutions
are initialized by four heuristics, and the reference
point is determined. The weight vectors are
initialized uniformly and the neighbors of each
solution are settled. Then, in every generation, the
cooperative search, local intensification and
dynamic adjustment for weight vectors are
performed in turn. In cooperative search, different
operators are performed according to the different
relationship between the solution and its
neighbors. In local intensification, search
operators inside factory and between factories are
applied to optimize different objectives. In
dynamic adjustment strategy, the weight vectors
are adaptively adjusted according to the
distribution of solutions. Finally, the neighbors of
each solution is updated. The above search
process is repeated generation by generation until
a stopping criterion is satisfied.

To solve the EADHFSPMT reasonably, each
component of the NMOEA/D should be designed
specially.

3.3 Encoding and decoding

There are three sub-problems, i.e., job assignment
between factories, job sequence in each factory
and machine allocation for each job, which need
to be considered. Therefore, we design an
encoding scheme to represent a solution and a
decoding scheme to obtain a feasible schedule
from the representation.

For the encoding scheme, a solution is
represented as f permutations. Each permutation
corresponds to a factory and consists of the jobs
assigned to the factory. Each job occurs only once
and the sequence represents the order where jobs
are processed in the first stage. For the simplicity
of representation, the machine allocation is not

on and will be
.

for each job in
completion time

jobs. Therefore,
nificant for the

makespan and
an efficient and

The details of
y are described as

processing order
ctory. In the later
depends on the

previous stage
and follows first-come-first-serve principle. That
means, the earlier the job has been completed in
the previous stage, the earlier it may be processed
in the current stage.

Step 2: For job i in stage j, it needs ,i jr

machines. Choose ,i jr machines in stage j with

the earliest available time. The maximum one

among these ,i jr time determines the earliest

processing time of job i in this stage. Let

 ,Ψ 1, 2, , i jr  be the set of ,i jr machines

with the earliest available time. Their available

time is  ,1 2, , ,
i jrt t t and

,1 2 i jrt t t  ,

which means the earliest processing time of job i

is
,i jrt .

Step 3: If there exists one machine in this stage

out of Ψ with its available time as
,i jrt , then

replace the machine with the smallest available

time in Ψ with this one. If there exist more than

End If
 Output the non-dominated set.

650 Tsinghua Science and Technology, October 2021, 26(5): 646–663

between factories, job sequence in each factory, and
machine allocation for each job, which need to be
considered. Therefore, we design an encoding scheme
to represent a solution and a decoding scheme to obtain
a feasible schedule from the representation.

For the encoding scheme, a solution is represented
as f permutations. Each permutation corresponds to a
factory and consists of the jobs assigned to the factory.
Each job occurs only once and the sequence represents
the order where jobs are processed in the first stage. For
the simplicity of representation, the machine allocation is
not considered in the permutation and will be determined
in decoding scheme.

The allocation of machines for each job in every
stage is a key factor to the completion time and energy
consumption of jobs. Therefore, decoding scheme is
very significant for the EADHFSPMT. To balance
the makespan and energy consumption, we design an
efficient and effective decoding scheme. The details
of decoding scheme in each factory are described as
follows.

Step 1: In the first stage, the processing order follows
the sequence of this factory. In the later stages, the
processing order depends on the completion time of
each job in the previous stage and follows first-come-
first-serve principle. That means, the earlier the job has
been completed in the previous stage, the earlier it may
be processed in the current stage.

Step 2: For job i in stage j , it needs ri;j machines.
Choose ri;j machines in stage j with the earliest
available time. The maximum one among these ri;j

time determines the earliest processing time of job i

in this stage. Let 	 D
˚
1; 2; : : : ; ri;j

	
be the set of ri;j

machines with the earliest available time. Their available
time is

˚
t1; t2; : : : ; tri;j

	
and t1 6 t2 6 � � � 6 tri;j

,
which means the earliest processing time of job i is tri;j

.
Step 3: If there exists one machine in this stage out

of 	 with its available time as tri;j
, then replace the

machine with the smallest available time in 	 with this
one. If there exist more than one machines out of 	

with available time as tri;j
, then choose the one with the

smallest energy consumption coefficient.
Step 4: Repeat Step 3 until no machine in 	 can be

replaced.
Step 5: If two jobs id and ih can start processing at

the same time in stage j , then there exist two possible
situations. (1) If Tj .id; ih/ D Tj .ih; id/, then arrange
the job with larger required number of machines in front.
(2) If Tj .id; ih/ ¤ Tj .ih; id/, then arrange the job with

smaller required number of machines in front.
Step 6: Repeat Steps 1–5 until all the jobs in this

factory have been completed through all stages.
After all factories have been arranged by the above

steps, one solution is decoded into a feasible schedule.
Figure 1 shows an example of 2 factories (F1 and
F2), 3 stages, and 7 jobs. There are 3 machines, 2
machines, and 3 machines in Stage 1, Stage 2, and Stage
3, respectively. The processing times and the required
machines for each job in every stage are listed in Table 1.

To simplify calculation, set e1;g;k D f4; 4; 8g kW,
e2;g;k D f4; 8g kW, and e3;g;k D f4; 8; 8g kW for each
factory. From the encoded permutations, Jobs 3, 1, 5,
and 7 are assigned to Factory 1, while Jobs 6, 2, and 4
are assigned to Factory 2. For Job 3 in Stage 1 in Factory
1, according to the decoding scheme, all machines can be
available at time 0. Meanwhile, e1;1;1 D e1;2;1 D 4 <

e1;3;1 D 8 and r3;1 D 2, so we choose Machines 1 and 2
to process Job 3 in Stage 1 and the energy consumption
is 4�2�12D96 kWh. After arranging all the jobs in the
first permutation, we obtain the feasible schedule for
Factory 1. The schedule for Factory 2 can be obtained
by the similar way. The whole schedule of this example
is illustrated in Fig. 2. The completion time of Factory 1
is 64 h and the completion time of Factory 2 is 65 h.
Thus, makespan of this solution is 65 h. The total energy
consumption can be calculated through Eq. (13), which
is equal to 2599 kWh for this example.

3.4 Initialization procedure

A well distributed initial population can save the
computational resource and be helpful to obtain good
solutions. As mentioned in Section 3.3, there are three
sub-problems in the EADHFSPMT, where machine

Fig. 1 An encoded solution.

Table 1 Processing time and the number of required
machine.

Job
Stage 1 Stage 2 Stage 3

ri;1 pi;1 (h) ri;2 pi;2 (h) ri;3 pi;3 (h)
1 1 9 2 8 2 15
2 3 8 1 16 2 12
3 2 12 1 8 3 13
4 1 14 1 12 3 12
5 2 8 2 12 2 19
6 3 10 2 16 1 20
7 2 8 1 10 1 15

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 651

Fig. 2 Schedule of the example.

allocation can be solved by decoding scheme. Therefore,
two elements are required to be initialized, i.e., job
assignment between factories and job sequence in each
factory. According to the above analysis, we present two
heuristics for each of the two sub-problems.

For the job assignment between factories, two
heuristics are designed as follows.

Smallest Processing Time (SPT) heuristic. Firstly,
sort the jobs by total processing time in a descending
order and assign the job to the factory with the smallest
processing time from the first to the last. Then, select
the factory with the least number of jobs if there exist
more than one factories with the same processing time.

Smallest Energy consumption Factor (SEF)
heuristic. Calculate the sum of energy consumption
factors of machines of each factory. Then assign the job
to the factory according to the probabilities based on the
sum of energy consumption factors.

For example, suppose there are f factories and sek

represents the sum of energy consumption factors of
machines of factory k. Sort sek in an ascending order.
Suppose se1 6 se2 6 � � � 6 sef in this example. Set �k

as the probability for each job assigned to factory k and

�k D sef �kC1=
Xf

kD1
sek . By this way, the job has

the largest probability to be assigned to the factory with
the smallest energy consumption factor.

For the above two heuristics, SPT aims at balancing
the processing time between factories to optimize
makespan, while SEF aims at balancing the energy

consumption factors between factories to optimize TEC.
For the job sequence in each factory, two heuristics

are designed below.
Most Machine number First (MMF) heuristic.

Sort the jobs of this factory by total number of required
machines at each stage in a descending order. The larger
its machine number is, the former this job will be.

Largest Processing time First (LPF) heuristic. Sort
the jobs of this factory by total processing time in a
descending order. The larger its processing time is, the
former the job will be.

For the above two heuristics, MMF aims at completing
the jobs with more required machines first, while LPF
aims at completing the jobs with larger processing time
first.

Since there are different heuristics designed in
different purpose, four combinations of the above
heuristics can be used to improve the quality of the
initial population. Such a procedure is illustrated in
Algorithm 2.

The decomposition function is crucial in the
framework of the MOEA/D. The Tchebycheff approach
has been proved to be effective in dealing with
shop scheduling problems[20, 21, 28]. Thus, we employ
this approach as the decomposition function in the
NMOEA/D. For the solution xp corresponding to the p-
th sub-problem, according to the Tchebycheff approach,
the objective function of the p-th sub-problem is
g

�
xpj���p; z�

�
DmaxlD1;2

˚
�l

p �
ˇ̌
fl

�
xp

�
� z�

l

ˇ̌	
, where

���p D .�1
p; �2

p/T is the weight vector corresponding
to this sub-problem. The weight vector is initialized
uniformly in the range of [0, 1], and

Xr

lD1
�l

a D 1.
In original MOEA/D, the weight vectors remain
unchanged. However, in the NMOEA/D, the weight
vectors will be adjusted according to the distribution of
the current population. The details will be introduced
in Section 3.8. The reference point z� D .z�

1 ; z�
2 / is

determined by z�
1 D minff1 .x1/ ; : : : ; f1.xN /g and

z�
2 D minff2 .x1/ ; : : : ; f2.xN /g. The reference point

Algorithm 2 Procedure of initializing population
For initial solution 1 to N

rd = rand() % 4
Switch rd

Case 0: Perform SPT and MM F
Case 1: Perform SPT and LPF
Case 2: Perform SEF and MMF
Case 3: Perform SEF and LPF

 End switch
End For

652 Tsinghua Science and Technology, October 2021, 26(5): 646–663

will be updated after each generation updated. The
details to determine the neighbors of each sub-problem
and those of its corresponding solutions are referred to
Ref. [21].

3.5 Cooperative search

In the original MOEA/D, the optimal solution of one sub-
problem is regarded to be similar to the optimal solutions
of the neighbors of this sub-problem[27]. The information
from neighbors may be important to optimize each
sub-problem. Thus, we design a cooperative search to
produce new solutions.

As shown in Fig. 3, there are several relationships
between one solution xp and its neighbors in the
normalized objective space. If the neighbor is located in
Region I, this means that it dominates xp . If the neighbor
is located in Regions II or III, this means that it cannot
dominate xp, but it is closer to the reference point than
xp. If the neighbor is located in Region IV, this means
that it is farther to the reference point than xp .

From the above analysis, it can be seen that neighbors
with different locations have different helpful information.
For the solution xp, there exist three types of relationship:
(1) There is at least one neighbor located in Region I;
(2) There is no neighbor located in Region I, but there
exists at least one neighbor located in Regions II or II;
(3) All neighbors are located in Region IV. Therefore,
to adequately use the information from neighbors,
different search operators are performed according to
the relationship between xp and its neighbors.

For Relationship 1, it means that one or more
neighbors can dominate xp, which indicates that the
neighbors are better than xp for the p-th sub-problem.
Thus, the search operator for Relationship 1 is presented
as follows.

Step 1: Select one neighbor xb
p which dominates xp.

Fig. 3 Relationships between one solution and its neighbors.

If there exist more than one such neighbors, then choose
the one closest to the reference point.

Step 2: Make xnew
p inherit all permutations from xb

p .
Implement local intensification (see Section 3.6) for
xnew

p .
For Relationship 2, it means that one or more

neighbors cannot dominate xp, but are closer to the
reference point than xp. Thus, the search operator for
Relationship 2 is presented as follows.

Step 1: Select one neighbor xb
p which is located

in Region II or II. If there exist more than one such
neighbors, then choose the one closest to the reference
point.

Step 2: If xb
p is located in Region II, xb

p has lower
makespan but higher TEC than xp. Thus, xnew

p inherits
the permutation of the factory with minimal completion
time from xb

p . If xb
p is located in Region III, xb

p has
lower TEC but higher makespan than xp. Thus, xnew

p

inherits the permutation of the factory with minimal
energy consumption from xb

p . Let Fb represent the
factory xnew

p inherited from xb
p .

Step 3: For other factories except Fb , xnew
p inherits the

permutation from xp and removes the jobs which have
already been assigned to Fb .

Step 4: Assign the remaining jobs to factories except
Fb by SEF or SPT randomly.

Step 5: Sequence the jobs of factories except Fb by
MMF or LPF randomly.

Step 6: A new solution xnew
p is produced by Steps

1–5. If xnew
p � xp or xp � xnew

p , then implement local
intensification (see Section 3.6) for xnew

p or xp. If xnew
p

and xp cannot dominate each other, then select the one
closer to the reference point.

The above search operator generates a feasible new
solution by using information from xp and its neighbor
xb

p . An example of the above steps is illustrated in Fig. 4.
For Relationship 3, it means that xp can dominate

all its neighbors, which indicates that the neighbors
have rare helpful information for xp. Thus, the
search operator for Relationship 3 is to make xnew

p

inherit all permutations from xp and implement local
intensification (see Section 3.6) for xnew

p .
From the above description, a cooperative search

is presented based on the relationship between
each solution xp and its neighbors. Different search
operator are performed according to different types of
relationship, which can effectively use the information
from neighbors.

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 653

Fig. 4 An example of search operator for Relationship 2.

3.6 Local intensification

After performing cooperative search, we design a local
intensification procedure to enhance the capability of
exploitation. There are two objectives, i.e., makespan
and TEC, which need to be optimized. Thus, two local
search operators are designed aiming at optimizing these
two objectives.

The first Local Search operator (LS1) for solution xb

is designed as follows.
Step 1: Calculate the energy consumption of all

factories and select the factory with maximal energy
consumption (denoted as Fe/.

Step 2: Randomly choose one job in Fe and insert it
in every possible position in this factory. Suppose there
are nF jobs in Fe . This step will generate nF solutions
(including xb/.

Step 3: Choose the solution which can dominate other
nF � 1 solutions as the result of LS1. If there is no such
solution, then choose the solution closest to the reference
point.

The second Local Search operator (LS2) is designed
as follows.

Step 1: Calculate the completion time of all
factories. Select the factory with maximal completion
time (denoted as Fm/ and the factory with minimal
completion time (denoted as Fn/.

Step 2: Calculate the gap between these two
completion time (denoted as Gm/.

Step 3: Calculate the total processing time of each job
in Fm. If these exist one job whose total processing time
is less than Gm, then insert it into every possible position
in Fn. If there are more than one such jobs, then choose
the one with minimal total processing time. If there is
no such job, then keep unchanged.

Step 4: Suppose there are nF jobs in Fn. If there
exists such a job, then Step 3 will generate nF solutions
(including xb/. Choose the solution which can dominate
other nF � 1 solutions as the result of LS2. If there is

no such solution, then choose the solution closest to the
reference point.

From the above description, it can be seen that
LS1 is performed inside one factory, while LS2 is
performed between two factories. Moreover, LS1 aims
at minimizing the energy consumption, while LS2
aims at minimizing the makespan. Different solutions
have different preference in these two objectives.
In the normalized objective space, there are two
possibilities. (1) The TEC of this solution is larger than
its makespan, which means TEC needs to be minimized
more than makespan; (2) The makespan of this solution
is larger than its TEC, which means makespan needs to
be minimized more than TEC. Therefore, we design a
collaborative way to carry out these two search operators
to improve the quality of solutions. The details of the
local intensification is illustrated in Algorithm 3.

3.7 Updating procedure

The reference point needs to be updated after performing
cooperative search and local intensification on each
solution. The neighbors of each solution also need to be
updated according to the aggregation function of each
sub-problem after the current generation updated.

Same as initialization procedure, the reference
point z� D .z�

1 ; z�
2 / is updated by the minimal value

of objectives of the current population, i.e., z�
1 D

Algorithm 3 Local intensification for each
 If satisfies the first situation

Perform LS1() to produce a new solution

Perform LS2() to produce a new solution
Update = if

Else

Update = if

End If

xb
xb

xb
new
xb

new
Perform LS2(xb) to produce a new solution xb

newdominates xb

newxb

new
xb

newOutput xb

new
xb

new
dominates xb

new
yb

newPerform LS1(x new) to produce a new solution yb

y new
b

b

yb

new
yb

new
yb

new

654 Tsinghua Science and Technology, October 2021, 26(5): 646–663

minff1 .x1/ ; : : : ; f1.xN /g and z�
2 D minff2 .x1/ ; : : : ;

f2.xN /g.
To update the neighbors, for each neighbor xn of

solution xd , calculate g .xnj�n; z�/ and g .xd j�n; z�/.
If g .xd j�n; z�/ 6 g .xnj�n; z�/, replace the neighbor
xn with solution xd . Otherwise, keep xn unchanged.

3.8 Dynamic adjustment strategy for weight
vectors

Each weight vector in the MOEA/D represents the search
direction of each sub-problems. It has been proved
that the distribution of the weight vectors can largely
influence the distribution of final Pareto solutions[30]. In
the original MOEA/D, the weight vectors are initialized
uniformly in range of (0, 1) and keep fixed during
the following evolutionary search. However, it is very
likely that the true Pareto solutions are not uniformly
distributed for a complex problem. Moreover, during the
evolutionary search, the fixed weight vectors may not
be fit to the distribution of the current generation. Thus,
we design a dynamic adjustment for weight vectors to
overcome the weakness.

According to the above analysis, the adjustment of
weight vectors needs to guide the search towards the
true distribution of Pareto set to guarantee the diversity
and convergence. It needs to decrease search efforts
when the current population is overcrowded in some
region and increase search efforts when the current
population is sparse in some region. Therefore, we
reduce weight vectors in the region where the solution
density is large and add weight vectors in the region
where the solution density is small. An example of such
a dynamic adjustment strategy is illustrated in Fig. 5.

The density of solutions in Region r is calculated as
�r D Nr � Pr=˛r , where Nr denotes the number of
weight vectors in Region r and Pr denotes the number
of solutions in Region r . In addition, ˛r is the angle

between the axis and the reference point for Region r .
Figure 5a shows the normalized objective space is
divided into two regions based on the reference point.
Figure 5b shows that the MOP is decomposed into eight
sub-problems and each corresponds to a solution. At
first, the weight vectors are distributed evenly. There are
five solutions and four weight vectors in Region I, while
three solutions and four weight vectors in Region II. The
density of solutions is calculated as �1 D 20=˛1 and
�2 D 12=˛2. Suppose ˛1 < ˛2, then �1 > �2. Thus,
we reduce one weight vector in Region I and re-generate
uniformly distributed weight vectors in Region I. Then,
we add one weight vector in Region II and re-generate
uniformly distributed weight vectors in Region II. The
details are shown in Fig. 5c. In this way, the weight
vectors are evenly distributed inside each region, but
unevenly distributed in the whole normalized objective
space. Moreover, updating the reference point in each
generation will dynamically adjust the division of the
normalized objective space. Therefore, the adjustment
of weight vectors can be also dynamically achieved in
each generation according to the distribution of current
population.

4 Computational Experiment

4.1 Experimental settings

A set of DHFSPMT instances have been provided by
Ying and Lin[1]. For this set, the scale of each instance
is determined by three parameters, i.e., n, s, and f ,
where n 2 f10; 20; 50; 100g, s 2 f2; 5; 8g, and f 2

f2; 3; 4; 5; 6g. Each combination of n, s, and f has 10
instances and there are 600 instances in total. However,
Ying and Lin[1] only investigated single objective, i.e.,
makespan, without considering energy consumption. To
calculate the energy consumption, we generate the ej;g;k

uniformly in range of (2, 4) according to Zhang and

Fig. 5 Illustration of dynamic adjustment for weight vectors. (a) Division of the normalized objective space, (b) distribution of
weight vectors, and (c) adjustment of weight vectors.

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 655

Chiong[31]. The stopping criterion is set as 0:05 � n � s

(second) for all the experiments. The used computer
is with Intel Core i5 CPU/3.20 GHz and 16 GB RAM.
All the algorithms are realized in C++ and compiled by
Visual Studio 2012.

For MOPs, two metrics are widely used to evaluate
the performances of different algorithms, i.e., C -
metric and T -metric. The C -metric is to measure the
dominance between the non-dominated sets obtained
by two algorithms, and the T -metric is to measure
the diversity of the non-dominated set. The calculation
of these metrics is referred to Ref. [21]. For the C -
metric, C.A; B/ > C.B; A/ means the non-dominated
solutions obtained by algorithm A can dominate more
solutions obtained by algorithm B. For the T -metric,
T .A/ > T .B/ means the non-dominated solutions
obtained by algorithm B distribute more evenly than
the solutions obtained by algorithm A.

For the NMOEA/D, two parameters should be
set suitably, i.e., the population size (N / and the
neighborhood size (Tn/. We use the Taguchi method
with an instance of the combination (n D 50; s D

5; and f D 3) to investigate the effect of parameter
setting. Consider four levels for each parameter, i.e.,
N 2 f50; 100; 200; 300g and Tn 2 f3; 5; 7; 9g. For
the 42 full-factorial experiments, 16 combinations of
levels are investigated. The NMOEA/D is run 10 times
independently for each of 16 combinations to aggregate
a set of 10 obtained non-dominated sets. Then, all the
16 aggregated sets E1 � E16 are combined to obtain a
final non-dominated set ES. The percentage (denoted as
SP) of the solutions from each of the 16 aggregated
sets E1 � E16 in ES represents the contribution of
each parameter combination to the final set. From
the description above, it can be concluded that the
combination can yield better performance if its SP value
is larger.

Table 2 lists the SP value of each parameter
combination and the average SP value for 4 levels of each
parameter. Figure 6 shows the trends of two parameters.
In Table 3, GP denotes the largest gab between two levels
of each parameter and represents different significance of
these parameters. The larger GP is, the more significant
this parameter is. From Table 2 it can be seen that the
neighborhood size Tn is slightly more significant than
the population N . In the MOEA/D, a large population
size N may yield more Pareto solutions, but may cause
larger computational complexity. On the contrary, a
small N may lead to rapid convergence, but may result

Table 2 Investigation of parameter effect.
Experiment

number
Parameter level

SP
N Tn

1 1 1 0.01
2 1 2 0.05
3 1 3 0.06
4 1 4 0.02
5 2 1 0.03
6 2 2 0.08
7 2 3 0.10
8 2 4 0.04
9 3 1 0.07
10 3 2 0.15
11 3 3 0.09
12 3 4 0.05
13 4 1 0.05
14 4 2 0.09
15 4 3 0.08
16 4 4 0.03

Fig. 6 Trend of two parameters.

Table 3 Average SP value of each parameter.
Parameter

level
Average SP

N Tn

1 0.0350 0.0400
2 0.0625 0.0925
3 0.0900 0.0825
4 0.0625 0.0350

GP 0.0550 0.0575

in less Pareto solutions. For the neighborhood size Tn, it
balances the diversity and convergence of the population
at cooperative search and updating procedures. From
Table 2 and Fig. 6, it can be seen that the algorithm
achieves better performance when setting population
size as level 3 and the neighborhood size as level 2.
Therefore, we set N as 200 and Tn as 5 for the further
computational experiments.

4.2 Effectiveness of local intensification

In the NMOEA/D, two local search operators and a

656 Tsinghua Science and Technology, October 2021, 26(5): 646–663

collaborative mechanism for these two operators have
been designed in the local intensification procedure. To
demonstrate the effectiveness of the local intensification,
the NMOEA/D is compared to the NMOEA/D with
random local search (denoted as NMOEA/D-NL), which
inserts a randomly selected job into a random position.
Each instance of each (n, s, f / combination is run 20
times independently and the average value of C -metric
of 10 instances of each (n, s, f / combination is listed
in Table 4. The p values of pairwise comparison with
95% confidence level are provided. The boxplot of the
average C -metric is shown in Fig. 7.

From Table 4 and Fig. 7, it can be seen that the average
value of C (NMOEA/D, NMOEA/D-NL) is larger than
that of C (NMOEA/D-NL, NMOEA/D) on all (n, s, f /

combinations. This means the final non-dominated
set obtained by the NMOEA/D can dominate more

solutions of the NMOEA/D-NL. All the p values
are equal to 0, which implies that the NMOEA/D
performs significantly better than the NMOEA/D-NL.
Therefore, the specially designed local intensification is
proved to be effective to improve the performance of
the NMOEA/D. Figure 8 illustrates the Pareto fronts
obtained by the two algorithms in solving one instance
with the combination n D 20; s D 8; and f D 2.

4.3 Effectiveness of dynamic adjustment strategy

The dynamic adjustment strategy for weight vectors
allocates the number and distribution of weight vectors
in each generation, which guides the search direction
towards the true Pareto fronts. To demonstrate the
effectiveness of this strategy, the NMOEA/D is
compared to the NMOEA/D without adjustment strategy
(denoted as NMOEA/D-NA). Same as Section 4.2, each

Table 4 Average value of C-metric between NMOEA/D and NMOEA/D-NL.

Parameter
combination

(f , n, s/

NMOEA/D vs. NMOEA/D-NL Parameter
combination

(f , n, s/

NMOEA/D vs. NMOEA/D-NL
C (NMOEA/D,

NMOEA/D-NL)
C (NMOEA/D-NL,

NMOEA/D) p
C (NMOEA/D,

NMOEA/D-NL)
C (NMOEA/D-NL,

NMOEA/D) p

(2, 10, 2) f0.94g 0.01 0 (4, 50, 2) f0.87g 0.10 0
(2, 10, 5) f0.83g 0.14 0 (4, 50, 5) f0.82g 0.15 0
(2, 10, 8) f0.98g 0 0 (4, 50, 8) f0.79g 0.19 0
(2, 20, 2) f0.87g 0.10 0 (4, 100, 2) f0.79g 0.18 0
(2, 20, 5) f0.87g 0.10 0 (4, 100, 5) f0.78g 0.11 0
(2, 20, 8) f0.75g 0.13 0 (4, 100, 8) f0.76g 0.14 0
(2, 50, 2) f0.95g 0.02 0 (5, 10, 2) f0.61g 0.23 0
(2, 50, 5) f0.82g 0.16 0 (5, 10, 5) f0.61g 0.19 0
(2, 50, 8) f0.95g 0 0 (5, 10, 8) f0.68g 0.30 0
(2, 100, 2) f0.97g 0 0 (5, 20, 2) f0.96g 0.03 0
(2, 100, 5) f0.82g 0.15 0 (5, 20, 5) f0.84g 0.13 0
(2, 100, 8) f0.93g 0 0 (5, 20, 8) f0.95g 0.03 0
(3, 10, 2) f0.84g 0.15 0 (5, 50, 2) f0.97g 0 0
(3, 10, 5) f0.77g 0.20 0 (5, 50, 5) f0.83g 0.15 0
(3, 10, 8) f0.85g 0.12 0 (5, 50, 8) f0.99g 0 0
(3, 20, 2) f0.77g 0.17 0 (5, 100, 2) f0.77g 0.18 0
(3, 20, 5) f0.92g 0.07 0 (5, 100, 5) f0.76g 0.19 0
(3, 20, 8) f0.89g 0.10 0 (5, 100, 8) f0.91g 0.06 0
(3, 50, 2) f0.86g 0.12 0 (6, 10, 2) f0.73g 0.21 0
(3, 50, 5) f0.83g 0.14 0 (6, 10, 5) f0.70g 0.12 0
(3, 50, 8) f0.85g 0.14 0 (6, 10, 8) f0.73g 0.16 0
(3, 100, 2) f0.88g 0.09 0 (6, 20, 2) f0.85g 0.14 0
(3, 100, 5) f0.89g 0.09 0 (6, 20, 5) f0.93g 0.06 0
(3, 100, 8) f0.79g 0.19 0 (6, 20, 8) f0.96g 0.01 0
(4, 10, 2) f0.91g 0 0 (6, 50, 2) f0.85g 0.11 0
(4, 10, 5) f0.81g 0.16 0 (6, 50, 5) f0.89g 0.10 0
(4, 10, 8) f0.78g 0.19 0 (6, 50, 8) f0.87g 0.09 0
(4, 20, 2) f0.77g 0.19 0 (6, 100, 2) f0.97g 0.02 0
(4, 20, 5) f0.84g 0.13 0 (6, 100, 5) f0.95g 0 0
(4, 20, 8) f0.76g 0.21 0 (6, 100, 8) f0.84g 0.10 0

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 657

Fig. 7 Boxplot of the average C-metrics between NMOEA/D
and NMOEA/D-NL.

Fig. 8 Pareto fronts by NMOEA/D and NMOEA/D-NL on
instance with nDDD20, s DDD8, and f DDD2.

instance of each (n; s; f / combination is run 20 times
independently. Since the dynamic adjustment strategy is
mainly designed to adjust the diversity and convergence
of the final non-dominated solutions, we focus on the
distribution of the results more than the relationship of
dominance. So, the T -metric is used to compare these
two algorithms. The average value of T -metric of the
10 instances of each (n; s; f / combination is listed in
Table 5. The boxplot of the average value of T -metrics
is shown in Fig. 9.

From Table 5 and Fig. 9, it can be seen that the
average value of T -metric of the NMOEA/D is smaller
than that of the NMOEA/D-NA on most combinations.
This means the non-dominated solutions obtained by the
NMOEA/D get better distribution than those obtained

by the NMOEA/D-NA on most instances. Therefore, it
can be concluded that the dynamic adjustment strategy
for weigh vectors is effective to balance the diversity and
convergence of the solutions.

4.4 Comparisons to existing algorithms

Next, we compare the NMOEA/D to other two
algorithms. Since there is no existing work about the
same problem, we adapt the latest DSFLA[15] for the
DHFSPMT with makespan criterion and the widely used
NSGA-II[32] to solve the EADHFSPMT for comparisons.
For fair comparison, the encoding and decoding schemes
of the NMOEA/D are employed for the comparative
algorithms. The parameter setting of the DSFLA and
NSGA-II follows the related Ref. [15] and Ref. [32],
respectively.

Each instance of each (n; s; f / combination is run
20 times independently and the average value of C -
metric of the 10 instances of each (n; s; f / combination
is listed in Table 6, where the p values of pairwise
comparison with 95% confidence level are also provided.
The boxplot of the average value of C -metric is shown
in Fig. 10. Moreover, the average value of T -metric of
the 10 instances of each (n; s; f / combination is listed
in Table 7. The boxplot of the average value of T -metric
is shown in Fig. 11.

From Table 6 and Fig. 10, it can be seen that the
average C (NMOEA/D, DSFLA) and C (NMOEA/D,
NSGA-II) are larger than C (DSFLA, NMOEA/D)
and C (NSGA-II, NMOEA/D). This means the non-
dominated solutions obtained by the NMOEA/D can
dominate more solutions of the DSFLA and NSGA-
II on all instances. Meanwhile, the C (NMOEA/D,
DSFLA) and C (NMOEA/D, NSGA-II) are much close
to 1 while the C (DSFLA, NMOEA/D) and C (NSGA-
II, NMOEA/D) is almost equal to 0. This means the
solutions obtained by the NMOEA/D can dominate most
solutions obtained by the DSFLA and NSGA-II, but
the solutions obtained by the DSFLA and NSGA-II can
rarely dominate solutions obtained by the NMOEA/D.
Therefore, it can be concluded that the NMOEA/D
performs better than the DSFLA and NSGA-II in terms
of the dominance relationship.

From Table 7 and Fig. 11, it can be seen that the
average value of T -metric of the NMOEA/D is smaller
than that of the DSFLA and NSGA-II for all
combinations. This means the non-dominated solutions
obtained by the NMOEA/D get better distribution
than those obtained by the DSFAL and NSGA-II on

658 Tsinghua Science and Technology, October 2021, 26(5): 646–663

Table 5 Average value of T-metric of NMOEA/D and NOEA/D-NA.
Parameter

combination (f; n; s/

NMOEA/D vs. NMOEA/D-NA Parameter
combination (f; n; s/

NMOEA/D vs. NMOEA/D-NA
T (NMOEA/D) T (NMOEA/D-NA) T (NMOEA/D) T (NMOEA/D-NA)

(2, 10, 2) 0.71 0.86 (4, 50, 2) 0.72 0.88
(2, 10, 5) 0.66 0.92 (4, 50, 5) 0.80 0.86
(2, 10, 8) 0.82 0.88 (4, 50, 8) 0.69 0.80
(2, 20, 2) 0.67 0.94 (4, 100, 2) 0.79 0.85
(2, 20, 5) 0.84 0.82 (4, 100, 5) 0.85 0.80
(2, 20, 8) 0.71 0.79 (4, 100, 8) 0.80 0.83
(2, 50, 2) 0.80 0.85 (5, 10, 2) 0.78 0.90
(2, 50, 5) 0.73 0.86 (5, 10, 5) 0.66 0.85
(2, 50, 8) 0.66 0.80 (5, 10, 8) 0.83 0.87
(2, 100, 2) 0.72 0.97 (5, 20, 2) 0.84 0.81
(2, 100, 5) 0.70 0.84 (5, 20, 5) 0.85 0.82
(2, 100, 8) 0.80 0.87 (5, 20, 8) 0.77 0.89
(3, 10, 2) 0.77 0.84 (5, 50, 2) 0.74 0.87
(3, 10, 5) 0.67 0.87 (5, 50, 5) 0.69 0.93
(3, 10, 8) 0.79 0.96 (5, 50, 8) 0.82 0.84
(3, 20, 2) 0.69 0.88 (5, 100, 2) 0.79 0.85
(3, 20, 5) 0.83 0.96 (5, 100, 5) 0.66 0.87
(3, 20, 8) 0.70 0.85 (5, 100, 8) 0.68 0.96
(3, 50, 2) 0.76 0.81 (6, 10, 2) 0.72 0.84
(3, 50, 5) 0.79 0.88 (6, 10, 5) 0.69 0.80
(3, 50, 8) 0.68 0.79 (6, 10, 8) 0.85 0.81
(3, 100, 2) 0.82 0.90 (6, 20, 2) 0.82 0.83
(3, 100, 5) 0.67 0.81 (6, 20, 5) 0.73 0.81
(3, 100, 8) 0.73 0.85 (6, 20, 8) 0.83 0.85
(4, 10, 2) 0.66 0.96 (6, 50, 2) 0.77 0.92
(4, 10, 5) 0.83 0.79 (6, 50, 5) 0.82 0.93
(4, 10, 8) 0.75 0.78 (6, 50, 8) 0.85 0.90
(4, 20, 2) 0.76 0.88 (6, 100, 2) 0.84 0.97
(4, 20, 5) 0.73 0.81 (6, 100, 5) 0.67 0.93
(4, 20, 8) 0.80 0.91 (6, 100, 8) 0.77 0.96

Fig. 9 Boxplot of the average T-metrics between NMOEA/D
and NMOEA/D-NA.

all instances. Therefore, it can be concluded that the
NMOEA/D has better performance than the DSFLA and
NSGA-II in terms of the diversity and convergence.

Thus, it is demonstrated that the NMOEA/D
significantly performs better than the existing DSFLA
and NSGA-II in solving the EADHFSPMT. Figure 12

illustrated the Pareto fronts obtained by the three
algorithms in solving some different instances, which
clearly show the superiority of the NMOEA/D.

5 Conclusion and Future Work

This is the first research work using decomposition-
based multi-objective evolutionary algorithm to solve
the EADHFSPMT. We specially design decoding
scheme, search operators, and adjusting strategy to
improve the performance of the MOEA/D in solving the
complex scheduling problem. The comparative results
demonstrate the effectiveness of local intensification and
adjusting strategy. Statistical comparisons also show
the superior performance of the proposed algorithm
to the existing optimization algorithms. This work
provides an effective optimization technique for solving
the EADHFSPMT, and it also provides some idea in

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 659

Table 6 Average value of C -metric between NMOEA/D, DSFLA, and NSGA-II.
Parameter

combination (f , n, s/

NMOEA/D vs. DSFLA NMOEA/D vs. NSGA-II
C (NMOEA/D, DSFLA) C (DSFLA, NMOEA/D) p C (NMOEA/D, NSGA-II) C (NSGA-II, NMOEA/D) p

(2, 10, 2) 0.78 0.11 0 0.93 0.03 0
(2, 10, 5) 0.83 0.02 0 0.94 0 0
(2, 10, 8) 0.79 0.09 0 0.94 0.01 0
(2, 20, 2) 0.76 0.10 0 0.87 0.02 0
(2, 20, 5) 0.84 0.02 0 0.92 0.04 0
(2, 20, 8) 0.75 0.11 0 0.91 0.03 0
(2, 50, 2) 0.81 0.08 0 0.94 0.02 0
(2, 50, 5) 0.78 0.10 0 0.91 0.06 0
(2, 50, 8) 0.73 0.16 0 0.90 0.06 0
(2, 100, 2) 0.88 0.01 0 0.89 0.04 0
(2, 100, 5) 0.74 0.11 0 0.92 0.05 0
(2, 100, 8) 0.90 0.04 0 0.92 0.01 0
(3, 10, 2) 0.83 0.04 0 0.80 0.11 0
(3, 10, 5) 0.88 0.05 0 0.82 0.07 0
(3, 10, 8) 0.83 0.02 0 0.90 0.03 0
(3, 20, 2) 0.74 0.12 0 0.89 0.05 0
(3, 20, 5) 0.75 0.14 0 0.85 0.08 0
(3, 20, 8) 0.77 0.10 0 0.93 0.01 0
(3, 50, 2) 0.88 0.06 0 0.87 0.06 0
(3, 50, 5) 0.90 0.01 0 0.91 0.06 0
(3, 50, 8) 0.78 0.07 0 0.91 0.06 0
(3, 100, 2) 0.76 0.14 0 0.87 0.07 0
(3, 100, 5) 0.83 0.06 0 0.80 0.12 0
(3, 100, 8) 0.87 0.01 0 0.82 0.14 0
(4, 10, 2) 0.81 0.06 0 0.85 0.10 0
(4, 10, 5) 0.80 0.09 0 0.81 0.14 0
(4, 10, 8) 0.71 0.18 0 0.82 0.08 0
(4, 20, 2) 0.82 0.05 0 0.89 0.04 0
(4, 20, 5) 0.72 0.18 0 0.86 0.08 0
(4, 20, 8) 0.70 0.16 0 0.92 0.04 0
(4, 50, 2) 0.89 0.02 0 0.83 0.12 0
(4, 50, 5) 0.76 0.14 0 0.88 0.06 0
(4, 50, 8) 0.77 0.10 0 0.88 0.09 0
(4, 100, 2) 0.76 0.14 0 0.82 0.13 0
(4, 100, 5) 0.71 0.14 0 0.88 0.09 0
(4, 100, 8) 0.75 0.10 0 0.94 0 0
(5, 10, 2) 0.77 0.08 0 0.93 0.03 0
(5, 10, 5) 0.75 0.14 0 0.88 0.08 0
(5, 10, 8) 0.73 0.12 0 0.92 0.05 0
(5, 20, 2) 0.77 0.13 0 0.95 0 0
(5, 20, 5) 0.89 0.01 0 0.92 0.02 0
(5, 20, 8) 0.72 0.18 0 0.88 0.09 0
(5, 50, 2) 0.73 0.16 0 0.94 0 0
(5, 50, 5) 0.86 0.04 0 0.91 0.02 0
(5, 50, 8) 0.88 0.01 0 0.88 0.06 0
(5, 100, 2) 0.85 0.05 0 0.88 0.09 0
(5, 100, 5) 0.78 0.11 0 0.93 0 0
(5, 100, 8) 0.84 0.02 0 0.84 0.12 0

(To be continued)

660 Tsinghua Science and Technology, October 2021, 26(5): 646–663

Table 6 Average value of C -metric between NMOEA/D, DSFLA, and NSGA-II.
(Continued)

Parameter
combination (f , n, s/

NMOEA/D vs. DSFLA NMOEA/D vs. NSGA-II
C (NMOEA/D, DSFLA) C (DSFLA, NMOEA/D) p C (NMOEA/D, NSGA-II) C (NSGA-II, NMOEA/D) p

(6, 10, 2) 0.87 0.03 0 0.95 0.01 0
(6, 10, 5) 0.82 0.07 0 0.91 0.02 0
(6, 10, 8) 0.89 0.04 0 0.85 0.11 0
(6, 20, 2) 0.72 0.18 0 0.93 0.02 0
(6, 20, 5) 0.70 0.18 0 0.87 0.09 0
(6, 20, 8) 0.89 0.01 0 0.80 0.07 0
(6, 50, 2) 0.82 0.07 0 0.93 0.04 0
(6, 50, 5) 0.75 0.12 0 0.95 0.02 0
(6, 50, 8) 0.74 0.13 0 0.88 0.06 0
(6, 100, 2) 0.84 0.03 0 0.82 0.11 0
(6, 100, 5) 0.76 0.11 0 0.82 0.11 0
(6, 100, 8) 0.72 0.16 0 0.88 0.06 0

Fig. 10 Boxplots of the average C-metrics between NMOEA/D, DSFLA, and NSGA-II.

improving the MOEA/D for complex problems.
In future research, in problem aspect we will

extend the MOEA/D for solving the scheduling
problems with other objectives and other manufacturing
environments. In algorithm aspect we will further
explore the efficient decomposition mechanism and
knowledge-guided search operators for the MOEA/D.
It is also interesting to study hybrid algorithms by fusing
the evolutionary algorithm with artificial intelligence
approaches like reinforcement learning.

Acknowledgment

This research was supported by the National Natural
Science Fund for Distinguished Young Scholars of
China (No. 61525304) and the National Natural Science
Foundation of China (No. 61873328).

References

[1] K. C. Ying and S. W. Lin, Minimizing makespan for
the distributed hybrid flowshop scheduling problem with
multiprocessor tasks, Expert Syst. Appl., vol. 92, pp. 132–
141, 2018.

[2] L. Hidri and A. Gharbi, New efficient lower bound for the
hybrid flow shop scheduling problem with multiprocessor
tasks, IEEE Access, vol. 5, pp. 6121–6133, 2017.

[3] L. Hidri, Note on the hybrid flowshop scheduling problem
with multiprocessor tasks, Int. J. Prod. Econ., vol. 182, pp.
531–534, 2016.

[4] M. Kurdi, Ant colony system with a novel Non-
DaemonActions procedure for multiprocessor task
scheduling in multistage hybrid flow shop, Swarm Evol.
Comput., vol. 44, pp. 987–1002, 2019.

[5] H. R. Gholami, E. Mehdizadeh, and B. Naderi,
Mathematical models and an elephant herding optimization
for multiprocessor-task flexible flow shop scheduling

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 661

Table 7 Average value of T-metric of NMOEA/D, DSFLA, and NSGA-II.
Parameter

combination (f; n; s/

T -metric Parameter
combination (f; n; s/

T -metric
T (NMOEA/D) T (DSFLA) T (NSGA-II) T (NMOEA/D) T (DSFLA) T (NSGA-II)

(2, 10, 2) 0.71 0.92 0.82 (4, 50, 2) 0.72 0.98 0.87
(2, 10, 5) 0.66 0.95 0.82 (4, 50, 5) 0.80 0.91 0.94
(2, 10, 8) 0.82 1.03 0.83 (4, 50, 8) 0.69 1.01 0.87
(2, 20, 2) 0.67 1.05 0.89 (4, 100, 2) 0.79 0.99 0.8
(2, 20, 5) 0.84 0.91 0.91 (4, 100, 5) 0.85 1.00 0.96
(2, 20, 8) 0.71 0.95 0.78 (4, 100, 8) 0.80 1.03 0.82
(2, 50, 2) 0.80 0.98 0.93 (5, 10, 2) 0.78 0.90 0.88
(2, 50, 5) 0.73 0.94 0.78 (5, 10, 5) 0.66 0.92 0.9
(2, 50, 8) 0.66 0.92 0.79 (5, 10, 8) 0.83 0.94 0.76
(2, 100, 2) 0.72 0.97 0.92 (5, 20, 2) 0.84 0.91 0.94
(2, 100, 5) 0.70 1.00 0.85 (5, 20, 5) 0.85 0.99 0.97
(2, 100, 8) 0.80 1.02 0.86 (5, 20, 8) 0.77 0.97 0.76
(3, 10, 2) 0.77 1.01 0.82 (5, 50, 2) 0.74 0.91 0.94
(3, 10, 5) 0.67 1.03 0.89 (5, 50, 5) 0.69 1.02 0.77
(3, 10, 8) 0.79 0.99 0.86 (5, 50, 8) 0.82 0.99 0.85
(3, 20, 2) 0.69 0.90 0.78 (5, 100, 2) 0.79 1.00 0.82
(3, 20, 5) 0.83 1.05 0.88 (5, 100, 5) 0.66 1.02 0.84
(3, 20, 8) 0.70 0.90 0.93 (5, 100, 8) 0.68 0.92 0.93
(3, 50, 2) 0.76 0.90 0.81 (6, 10, 2) 0.72 0.90 0.88
(3, 50, 5) 0.79 0.93 0.84 (6, 10, 5) 0.69 1.04 0.81
(3, 50, 8) 0.68 0.90 0.94 (6, 10, 8) 0.85 0.97 0.87
(3, 100, 2) 0.82 0.90 0.95 (6, 20, 2) 0.82 0.95 0.86
(3, 100, 5) 0.67 0.93 0.77 (6, 20, 5) 0.73 1.00 0.85
(3, 100, 8) 0.73 0.92 0.78 (6, 20, 8) 0.83 1.03 0.95
(4, 10, 2) 0.66 0.92 0.86 (6, 50, 2) 0.77 0.99 0.78
(4, 10, 5) 0.83 0.99 0.93 (6, 50, 5) 0.82 0.95 0.83
(4, 10, 8) 0.75 0.94 0.83 (6, 50, 8) 0.85 0.99 0.96
(4, 20, 2) 0.76 0.99 0.95 (6, 100, 2) 0.84 1.02 0.98
(4, 20, 5) 0.73 1.00 0.94 (6, 100, 5) 0.67 0.96 0.95
(4, 20, 8) 0.80 0.93 0.87 (6, 100, 8) 0.77 1.02 0.93

Fig. 11 Boxplots of the average T-metrics NMOEA/D,
DSFLA, and NSGA-II.

problems in the manufacturing resource planning (MRPII)
system, Sci. Iran., vol. 27, no. 3, pp. 1562–1571, 2020.

[6] H. Gholami and M. T. Rezvan, A memetic algorithm
for multistage hybrid flow shop scheduling problem with
multiprocessor tasks to minimize makespan, Int. J. Ind. Eng.
Manage. Sci., vol. 7, no. 1, pp. 181–200, 2020.

[7] R. Ruiz, Q. K. Pan, and B. Naderi, Iterated greedy methods
for the distributed permutation flowshop scheduling
problem, Omega, vol. 83, pp. 213–222, 2019.

[8] Q. K. Pan, L. Gao, L. Wang, J. Liang, and X. Y. Li, Effective
heuristics and metaheuristics to minimize total flowtime for
the distributed permutation flowshop problem, Expert Syst.
Appl., vol. 124, pp. 309–324, 2019.

[9] Z. Shao, W. Shao, and D. Pi, Effective heuristics and
metaheuristics for the distributed fuzzy blocking flow-
shop scheduling problem, Swarm Evol. Comput., vol. 59,
p. 100747, 2020.

[10] J. J. Wang and L. Wang, A bi-population cooperative
memetic algorithm for distributed hybrid flow-shop
scheduling, IEEE Trans. Emerg. Top. Comput. Intell., doi:
10.1109/TETCI.2020.3022372.

[11] I. Chaouch, O. B. Driss, and K. Ghedira, A modified ant
colony optimization algorithm for the distributed job shop
scheduling problem, Procedia Comput. Sci., vol. 112, pp.
296–305, 2017.

[12] I. Chaouch, O. B. Driss, and K. Ghedira, A novel dynamic
assignment rule for the distributed job shop scheduling

662 Tsinghua Science and Technology, October 2021, 26(5): 646–663

Fig. 12 Pareto fronts in solving different instances, (a) n=50, s=2, and f=2; (b) n=50, s=5, and f=2; (c) n=100, s=2, and f=2; and
(d) n=20, s=2, and f=4.

problem using a hybrid ant-based algorithm, Appl. Intell.,
vol. 49, no. 5, pp. 1903–1924, 2019.

[13] C. Y. Hsu, B. R. Kao, and K. R. Lai, Agent-based fuzzy
constraint-directed negotiation mechanism for distributed
job shop scheduling, Eng. Appl. Artif. Intel., vol. 53,
pp. 140–154, 2016.

[14] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C.
Lv, Mixed-integer linear programming and constraint
programming formulations for solving distributed flexible
job shop scheduling problem, Comput. Ind. Eng., vol. 142,
p. 106347, 2020.

[15] J. Cai, R. Zhou, and D. Lei, Dynamic shuffled frog-leaping
algorithm for distributed hybrid flow shop scheduling
with multiprocessor tasks, Eng. Appl. Artif. Intel., vol. 90,
p. 103540, 2020.

[16] X. Wu and A. Che, Energy-efficient no-wait permutation
flow shop scheduling by adaptive multi-objective variable
neighborhood search, Omega, vol. 94, p. 102117, 2020.

[17] Z. Liu, J. Yan, Q. Cheng, C. Yang, S. Sun, and D. Xue,
The mixed production mode considering continuous and
intermittent processing for an energy-efficient hybrid flow
shop scheduling, J. Clean. Prod., vol. 246, p. 119071, 2020.

[18] J. J. Wang and L. Wang, A knowledge-based cooperative
algorithm for energy-efficient scheduling of distributed
flow-shop, IEEE Trans. Syst., Man, Cybern.: Syst., vol.
50, no. 5, pp. 1805–1819, 2020.

[19] Y. Li, W. Huang, R. Wu, and K. Guo, An improved
artificial bee colony algorithm for solving multi-objective
low-carbon flexible job shop scheduling problem, Appl. Soft
Comput., vol. 95, p. 106544, 2020.

[20] E. D. Jiang and L. Wang, Multi-objective optimization
based on decomposition for flexible job shop scheduling

under time-of-use electricity prices, Knowl.-Based Syst.,
vol. 204, p. 106177, 2020.

[21] E. D. Jiang, L. Wang, and Z. Peng, Solving energy-
efficient distributed job shop scheduling via multi-objective
evolutionary algorithm with decomposition, Swarm Evol.
Comput., vol. 58, p. 100745, 2020.

[22] Z. X. Pan, D. Lei, and L. Wang, A knowledge-based two-
population optimization algorithm for distributed energy-
efficient parallel machines scheduling, IEEE Trans Cybern,
doi: 10.1109/TCYB.2020.3026571.

[23] K. Gao, Y. Huang, A. Sadollah, and L. Wang, A review
of energy-efficient scheduling in intelligent production
systems, Complex Intell. Syst., vol. 6, pp. 237–249, 2020.

[24] H. Zhang, J. Xie, J. Ge, J. Shi, and Z. Zhang, Hybrid particle
swarm optimization algorithm based on entropy theory for
solving DAR scheduling problem, Tsinghua Sci. Technol.,
vol. 24, no. 3, pp. 282–290, 2019.

[25] L. Zhang, N. R. Alharbe, G. Luo, Z. Yao, and Y. Li,
A hybrid forecasting framework based on support vector
regression with a modified genetic algorithm and a random
forest for traffic flow prediction, Tsinghua Sci. Technol., vol.
23, no. 4, pp. 479–492, 2018.

[26] Y. Zhang, G. Cui, Y. Wang, X. Guo, and S. Zhao, An
optimization algorithm for service composition based on an
improved FOA, Tsinghua Sci. Technol., vol. 20, no. 1, pp.
90–99, 2015.

[27] Q. Zhang and H. Li, MOEA/D: A multiobjective
evolutionary algorithm based on decomposition, IEEE
Trans Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.

[28] E. D. Jiang and L. Wang, An improved multi-objective
evolutionary algorithm based on decomposition for energy-
efficient permutation flow shop scheduling problem with

Enda Jiang et al.: Decomposition-Based Multi-Objective Optimization for Energy-Aware Distributed Hybrid Flow Shop : : : 663

sequence-dependent setup time, Int. J. Prod. Res., vol. 57,
no. 6, pp. 1756–1771, 2019.

[29] F. Zhao, Z. Chen, J. Wang, and C. Zhang, An improved
MOEA/D for multiobjective job shop scheduling problem.
Int. J. Comput. Integ. M., vol. 30, no. 6, pp. 616–640, 2017.

[30] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, A
survey of multiobjective evolutionary algorithms based on
decomposition, IEEE Trans Evol. Comput., vol. 21, no. 3,
pp. 440–462, 2016.

[31] R. Zhang and R. Chiong, Solving the energy-efficient
job shop scheduling problem: A multi-objective genetic
algorithm with enhanced local search for minimizing the
total weighted tardiness and total energy consumption, J.
Clean. Prod., vol. 112, pp. 3361–3375, 2016.

[32] G. Lebbar, I. El Abbassi, A. El Barkany, A. Jabri, and M.
Darcherif, Solving the multi objective flow shop scheduling
problems using an improved NSGA-II, Int. J. Oper. Quant.
M., vol. 24, no. 3, pp. 211–230, 2018.

Ling Wang received the BEng degree
in automation and the PhD degree in
control theory and control engineering from
Tsinghua University, Beijing, China, in
1995 and 1999, respectively. Since 1999,
he has been working at the Department of
Automation, Tsinghua University, where he
became a full professor in 2008. His current

research interests include intelligent optimization and scheduling.
He has authored five academic books and more than 300 refereed
papers.

He is a recipient of the National Natural Science Fund for
Distinguished Young Scholars of China, the National Natural
Science Award (Second Place) in 2014, the Science and
Technology Award of Beijing City in 2008, the Natural Science
Award (First Place in 2003 and Second Place in 2007) nominated
by the Ministry of Education of China. He is now the editor-
in-chief of International Journal of Automation and Control,
and the associate editor of IEEE Transactions on Evolutionary
Computation, Swarm and Evolutionary Computation, Expert
Systems with Applications, etc.

Enda Jiang received the BS degree from
Dalian University of Technology, Dalian,
China in 2016. He is currently pursuing the
PhD degree in Tsinghua University, Beijing,
China. His main research interests include
the distributed and green scheduling with
intelligent optimization.

Jingjing Wang received the BS and MS
degrees from Tsinghua University, Beijing,
China in 2015 and 2018, respectively. She
is currently pursuing the PhD degree in
Tsinghua University. Her main research
interests include the distributed and green
scheduling with intelligent optimization.

