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ABSTRACT Few-shot learning deals with a small amount of data which incurs insufficient performancewith
conventional cross-entropy loss. We propose a pretraining approach for few-shot learning scenarios. That is,
considering that the feature extractor quality is a critical factor in few-shot learning, we augment the feature
extractor using a contrastive learning technique. It is reported that supervised contrastive learning applied
to base class training in transductive few-shot training pipeline leads to improved results, outperforming the
state-of-the-art methods onMini-ImageNet and CUB. Furthermore, our experiment shows that a much larger
dataset is needed to retain few-shot classification accuracy when domain-shift degradation exists, and if our
method is applied, the need for a large dataset is eliminated. The accuracy gain can be translated to a runtime
reduction of 3.87× in a resource-constrained environment.

INDEX TERMS Few-shot learning, contrastive learning, information maximization.

I. INTRODUCTION
The impressive results of deep learning-based methods are
mainly achieved using a large amount of labeled data [16],
[39]. However, massive image labeling is labor-intensive,
and a balanced dataset is challenging to obtain. By contrast,
humans show excellent generalization performance from
only one or a few examples, bringing motivation to the field
of few-shot learning [17], [22], [23], [44]. Likewise, the aim
of few-shot learning is to predict unlabeled data based on the
observation of a few labeled data (e.g., one or five examples
per class).

Compared with traditional inductive few-shot learning,
two settings are introduced to address the low data count.
A semi-supervised few-shot setting [21], [33] assumes that
the model can utilize information from additional unlabeled
data. Better accuracy can be obtained by increased amount
of unlabeled data. A transductive few-shot setting [27], [31]
accords that the model can access all the test data at once
instead of one by one in the inference procedure. In the scope
of this study is confined to the transductive few-shot setting
as it is simple, yet effective [5] to achieve state-of-the-art
result [1].
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Conventional few-shot learning algorithms implement a
two-stage training pipeline.Base classes, which are used only
in the first stage of training, are large, separate classes for
training the feature extractor, usually with conventional cross-
entropy loss. In the consecutive stage, novel classes, which
are a disjoint set of base classes, are learning targets with
a few training examples per class. The first training stage
attempts to learn general, transferable visual features from
the base classes, whereas the main few-shot algorithms are
implemented in the second stage to predict images from the
novel classes.

As a feature extractor’s performance is empirically related
to the final classification accuracy, it is reasonable to use
various augmentation techniques during the first training
stage. These techniques [4], [43], [54], [56] are motivated
by large-scale image classification tasks, such as ImageNet.
Supervised contrastive learning [14] is proposed to replace
cross-entropy loss by applying self-supervised representation
learning with label information. It is examined that super-
vised contrastive loss instead of simple cross-entropy loss
in the first training stage improves the final classification
accuracy by a large margin, especially when the dataset is not
large.

Assume that a few-shot learning task is running on an edge
device, considering the scale of the problem. However, as the
cost of the step is high—nearly a hundred epochs of training
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the entire dataset—the base class training step is presumably
processed by the server. The cost of supervised contrastive
learning is an additional pretraining step at the base class
training, which is amortized and processed efficiently by
servers. With the accuracy gain obtained by the supervised
contrastive learning, one can optimize the runtime latency of
the algorithmwith a simple method such as an early stopping.

Few-shot learning is associated with self-supervised rep-
resentation learning, as noted in [8]. Both approaches have a
similar goal: training the model with few or no data labels.
Self-supervised representation learning is a method of unsu-
pervised learning, which aims to learn from a dataset with
no annotation. Instead, it learns using pretext information,
such as the relative location of image patches or the rotation
classification of images. Contrastive learning is a form of self-
supervised representation learning that trains the model to
classify similar (positive) samples and dissimilar (negative)
samples in the embedding space. As supervised contrastive
learning is an extension of contrastive learning, it implies the
gain obtained in our experiment.

We observe that the feature extractor trained on a large,
general dataset (i.e., Tiered-ImageNet) performs better than
the feature extractor trained on a small, task-specific dataset
(i.e., CUB) when evaluating a few-shot learning task. In our
experiment, supervised contrastive learning improves the
few-shot classification accuracy to the extent that even when
trained on a small, task-specific dataset, it performs better
than the feature extractor trained on a large, general dataset.
Therefore, it is data-efficient and obtains superior perfor-
mance without resort to a large dataset.

In summary, the contributions of our study are as follows:
• We propose using supervised contrastive learning in the
first stage of few-shot learning to boost classification
accuracy on the Mini-ImageNet and CUB datasets. Our
method is referred as SPTA following the name of com-
bined methods.

• We study the domain-shift setting, in which the fea-
ture extractor is trained on a different dataset, and
the few-shot algorithm is evaluated on a fine-grained
classification dataset, showing that a large dataset
(i.e., Tiered-ImageNet) is needed to overcome domain-
shift degradation. However, when supervised contrastive
learning is applied to the CUB dataset, the case without
a large dataset can score higher than the case with a large
dataset.

II. RELATED WORK
A. FEW-SHOT LEARNING
There are many approaches to address few-shot learning
tasks with less amount of data. Gradient descent-based
approaches [7], [29], [32] learn how to re-adjust a model with
a few gradient descent iterations to deal with a few-shot learn-
ing task. The model-agnostic meta-learning (MAML) [7]
method trains the model with many tasks to generalize a
new task efficiently. Reptile [29] is a first-order gradient-
based meta-learning algorithm that trains the initialization

of model parameters. [32] proposed a long short-term mem-
ory (LSTM)-based meta-learner whose states represent the
update of the model parameter.

Metric-learning-based approaches [15], [37], [44], [47]
learn distance metrics between a support set (training data of
the target task) and a query set (test data of the target task) bet-
ter by reforming feature embedding. [15] introduced Siamese
convolutional neural networks that learn generic visual fea-
tures on the character recognition task. The matching net-
work [44] architecture is inspired by a memory-augmented
neural network and generates a weighted nearest neighbor
classifier using the distance between samples. Prototypical
networks [37] utilize episodic training and assign each class
to each prototype in the representation space to predict new
data based on the distance metric to each prototype. [47]
proposed using an additional data sample generator, which
is trained with meta-learning methods, to augment the model
training.

Transductive few-shot methods [1], [5], [12], [26], [31],
[50], [59] assume that the model simultaneously accesses all
the query set. A transductive episodic-wise adaptive metric
(TEAM) [31] defined the optimization process as a stan-
dard semi-definite programming problem to train a general-
izable classifier. A distribution propagation graph network
(DPGN) [50] proposed utilizing both the distribution-level
and instance-level relations by designing a dual complete
graph network consisting of a point graph and a distribution
graph. [5] proposed transductive fine-tuning, which pursues
outputs with a peaked posterior or low Shannon entropy,
and a hardness metric to deliver a standardized evaluation
protocol. [26] proposed the prototype rectification, which
lowers the class prototype’s intra-class bias and cross-class
bias and verifies the method theoretically. A synthetic infor-
mation bottleneck (SIB) [12] introduced an empirical Bayes
approach and a two-network architecture consisting of a
synthetic gradient network and an initialization network to
perform the synthetic gradient descent. LaplacianShot [59]
implemented a constrained graph clustering method that
attaches the query samples to the nearest prototype, and a
pairwise Laplacian term advocates similar samples to out-
put the same label. Transductive information maximization
(TIM) [1] maximizes the mutual information between the
query features and the predicted query label by minimizing
the conditional entropy andmaximizing themarginal entropy,
and the alternating direction optimizer enables faster conver-
gence than the typical gradient descent optimizer.

B. CONTRASTIVE LEARNING
Contrastive learning [2], [10], [13], [36], [41], [48] is a self-
supervised learning method inspired by noise contrastive
estimation [9], [28] or N-pair losses [38]. [48] proposed the
use of a non-parametric softmax classifier to increase the
instance-level distance on a 128-dimensional unit sphere after
the CNN extracts a feature vector of the image. [13] improved
contrastive predictive coding to implement a pretraining stage
with a feature extractor and a context network to predict the
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spatial location of the image patches. Deep InfoMax [10]
proposed an approach for training an encoder that maximizes
the mutual information between the input data and output
features. [41] aimed to maximize the mutual information
between different views of the same image by pulling views
of the same scene together and pushing views of different
scenes apart. Time-contrastive networks (TCN) [36] pro-
posed learning from multi-view video by pulling the anchor
and positive images together while pushing negative images
apart. SimCLR [2] implemented two data augmentation paths
and a learnable nonlinear transformation to train an encoder
with a large batch by pulling the feature embedding from
the same image. Supervised contrastive learning [14] is an
extension of conventional contrastive learning that has been
modified for supervised classification.

III. METHODOLOGY
This section introduces the formulation of the few-shot learn-
ing task and the proposed idea in detail.

A. PROBLEM DEFINITION
Given a labeled base dataset Dbase := {(xi, yi), yi ∈ Cbase}

and a novel dataset Dnovel := {(xi, yi), yi ∈ Cnovel} where
Cbase ∩ Cnovel = ∅, the goal of a few-shot learning task is
to train a visual model using the base dataset Dbase and to
generalize to the novel datasetDnovel which has a few training
images per class. At inference, each few-shot learning task
episode consists of a support set and a query set sampled from
the novel dataset. The support set (S) is labeled and includes
K samples per class with N classes (N -way K -shot setting),
whereas the query set (Q) includes T samples per class with
the same N classes without data labels. The goal is to map
the samples in the query set to the desired label using the
information gained from the support set. In the transductive
setting, the model can access the entire dataset including the
query set (i.e., N × K + N × T samples) at once instead of
one by one (i.e., N × K + 1 samples each) in the traditional
inductive setting.

B. EXAMINING A FEW-SHOT LEARNING METHOD
In this study, we examine the transductive information maxi-
mization (TIM) few-shot learning algorithm [1]. First, a fea-
ture extractor transforms an input image into embedded
features. TIM maximizes the modified mutual information
between the query image’s feature and the query label by
updating the soft-classifier’s trainable weights. To maximize
the information, TIM minimizes the conditional entropy and
maximizes the marginal entropy. Minimizing conditional
entropy aims to make confident predictions by modeling
the cluster assumption, which implies that the classification
criterion should not be present in the dense regions of the
unlabeled features. Maximizing marginal entropy pushes the
marginal distribution of labels to be uniform, which attempts
to avoid the solution of outputting only one class. Together
with the conventional cross-entropy loss, the TIM loss is

defined as follows:

L tim = −
λ

|S|

∑
i∈S

N∑
n=1

yin log pin − I

I : = −
N∑
n=1

p̂n log p̂n +
α

|Q|

∑
i∈Q

N∑
n=1

pin log pin

where pin is the posterior distribution over the labels given
the features and p̂n is the marginal distribution over the query
labels.

Given the loss objective, two optimizationmethods are pre-
sented [1]. One is a conventional gradient descent (TIM-GD)
method that minimizes the loss objective through mini-batch
sampling. Although TIM-GD shows the best results, it is two
orders of magnitude slower than inductive methods, which
leads to the second method called the alternating direction
method (TIM-ADM), which divides the problem into two
more manageable subproblems and optimizes them itera-
tively. TIM-ADM shows competitive results compared to
TIM-GD while being one order of magnitude faster. In both
methods, sufficiently large number of iterationswere required
to converge to the best results. Typical values for the number
of iterations for TIM-GD and TIM-ADMwere 1,000 and 150,
respectively.

C. AUGMENTING FEW-SHOT LEARNING WITH
SUPERVISED CONTRASTIVE LEARNING
The quality of a feature extractor is one of the main chal-
lenges in improving a few-shot learning algorithm because it
is directly related to the quality of the feature embeddings.
Supervised contrastive learning [14] is an extension of self-
supervised representation learning; it has a similar two-stage
training procedure, as shown in Figure 1. The first stage
prepares two copies of an input image and preprocesses
them. An encoder network then transforms the images into
normalized embedding, and an additional projection network
transforms the embedding into a low-dimensional embed-
ding. Supervised contrastive loss is computed on the low-
dimensional embedding by attracting positive samples, which
have the same class label or are from the same copied images,
and by repelling the negative samples. The supervised con-
trastive loss is defined as follows:

Lsup = −
∑
i∈I

1
|P(i)|

∑
p∈P(i)

log
exp (zi · zp/τ )∑

a∈A(i)
exp (zi · za/τ )

where zl is the low-dimensional embedding, τ is a temper-
ature parameter, A(i) ≡ I \ {i}, i is an anchor index, and
P(i) ≡ {p ∈ A(i) : ȳp = ȳi} is the set of indices of all
positives except the anchor. The inner product operation on
the embedding space measures the similarity between two
feature embeddings. The loss is minimized when an anchor’s
feature embedding is similar to all the positive’s feature
embeddings and is different from all the negative’s feature
embeddings. The loss is generalized from the conventional
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FIGURE 1. The proposed pretraining approach for few-shot learning consists of a multi-stage training process. The
first stage of supervised contrastive learning uses supervised contrastive loss and projection head with the base
dataset to learn visual representations. The second stage of supervised contrastive learning uses conventional
cross-entropy loss with the base dataset to fine-tune the feature extractor. This two-stage supervised contrastive
learning comprises the first stage of few-shot learning. The second stage of few-shot learning uses TIM [1] loss and
the feature extractor fixed with the novel dataset to perform TIM adaptation. If the supervised fine-tuning becomes
standard supervised training and the supervised contrastive pretraining is skipped, then the entire pipeline is the
same as in the baseline method [1].

TABLE 1. Summary results for the fine-tuning setting. After the
supervised contrastive learning, optional fine-tuning follows. One-shot
and five-shot five-way classification accuracy on Mini-ImageNet is
reported. In our experiment, fine-tuning improves accuracy. Our results
are averaged over 10,000 episodes.

SimCLR [2] self-supervised contrastive loss to support mul-
tiple positives in the multiviewed batch.

Notably, performing supervised contrastive learning in
the first stage of few-shot learning is proposed instead of
performing the conventional training with base classes and
cross entropy. The second step of the training procedure is
to discard the projection network and fine-tune the encoder
network with a new classifier. As representation learning
implies, the encoder network becomes discriminative during
the first step of the training procedure; therefore, the fine-
tuning process is relatively short and is guided by a lower
learning rate. Note that we fine-tuned the feature extrac-
tor with the base class and cross-entropy, which was pre-
trained in the first stage of supervised contrastive learning.
The fine-tuning process in supervised contrastive learning is
optional; we can skip the process that does not touch the
feature extractor because we only use the feature extractor
at the end. When we follow the linear evaluation protocol,
we keep the feature extractor intact, which implies that we
skip the fine-tuning process. We chose to use the fine-tuning
approach because it produces better results than no fine-
tuning as shown in Table 1.

In our experiment, we added a supervised contrastive learn-
ing approach as an additional pretraining step in the first
few-shot training stage. Furthermore, we fine-tuned the fea-
ture extractor with cross-entropy loss using the base class
dataset.

IV. EXPERIMENTS
An implementation of our SPTA is publicly available.1

A. DATASETS
We examined three few-shot learning datasets, namely Mini-
ImageNet, Tiered-ImageNet, and CUB. TheMini-ImageNet
dataset [44] is composed of 100 classes from the Ima-
geNet [34] dataset. It has 64/16/20 base/validation/novel
classes, respectively, with 600 84×84 sized images per class
following the split proposed by [32]. The Tiered-ImageNet
is composed of 608 classes from the ImageNet dataset. It
has 351/97/160 base/validation/novel classes, respectively,
with 779,165 84 × 84 sized images in total following the
split proposed by [33]. Finally, the Caltech-UCSD Birds
200-2011 [45] (CUB) dataset is composed of 200 classes and
11,788 images in total. It has 100/50/50 base/validation/novel
classes, respectively, with 84×84 sized images following the
split proposed by [3].

B. EVALUATIONS
We evaluate the algorithm’s score by comparing the final
predicted label at the second stage with the ground truth label.

1https://github.com/taemin-lee/SPTA
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TABLE 2. Accuracy comparison to the state-of-the-art methods for five-way classification on Mini-ImageNet and CUB. The results are categorized
according to the backbone network the algorithms use. The bold values are the best results within the algorithms that use the same backbone network.
Our results score higher than existing methods by a large margin on Mini-ImageNet and CUB datasets. Our results are averaged over 10,000 episodes.

For each few-shot learning episode, N -way K -shot tasks with
T queries per class were randomly selected from the dataset
of novel classes. We chose N = 5, T = 15, and K = 1 for
1-shot or K = 5 for 5-shot classification. We followed the
evaluation protocol in [1].

C. IMPLEMENTATION DETAILS
We examined mainly three different backbone network
models, namely ResNet-18, MobileNet, and WRN28-10,
following the implementation of [1], [46]. We further exam-
ined two more ResNet variants, namely ResNet-10 and
ResNet-12, in Table 2 for a fair comparison. Note that the
number after ResNet indicates the depth of the network.
Nevertheless, we report ResNet variants in one group follow-
ing the convention of [1], [59]. We mainly investigated the
alternating direction method (ADM) version of the TIM algo-
rithm,which is faster than the gradient descent (GD) version.2

We have added a prototype estimation technique [26], [59] to
TIM. This further improved the 1-shot classification

2https://github.com/mboudiaf/TIM

TABLE 3. Accuracy comparison to the state-of-the-art methods for
five-way classification on Tiered-ImageNet. The results are categorized
according to the backbone network the algorithms use. The bold values
are the best results within the algorithms that use the same backbone
network. Our results are averaged over 10,000 episodes.

accuracy. We used a PyTorch [30] re-implementation of
RandAugment3 on the preprocessing stage of supervised

3https://github.com/ildoonet/pytorch-randaugment
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TABLE 4. Ablation study on the influence of prototype estimation and supervised contrastive learning. Note that proto refers to prototype estimation and
supcon refers to supervised contrastive learning. The bold values are the best results among the methods. Our results show that supervised contrastive
learning improves the accuracy on Mini-ImageNet and CUB datasets, whereas prototype estimation improves 1-shot accuracy further. Our results are
averaged over 10,000 episodes.

contrastive learning4 with N = 3 and M = 20 to implement
modified stacked RandAugment. When pretraining, we used
the training epochs of 1,000 for the supervised contrastive
learning, and this was followed by five epochs of fine-
tuning. Our method is referred as SPTA following the name
of combined methods (i.e., supervised contrastive learning,
prototype estimation, and TIM-ADM).

D. COMPARISON TO THE STATE-OF-THE-ART
We evaluated the 5-way 1-shot and 5-shot classification
accuracy of our method on the Mini-ImageNet and CUB
datasets. Our results were averaged over 10,000 episodes
following [1], [46] and are summarized in Table 2. In the
table, we present methods with 1-shot accuracy over 60% on
Mini-ImageNet, and the methods are arranged in ascending
order. We excluded results from a semi-supervised setting
because these methods require additional data at test time.
We observed that consistent accuracy gains over the exist-
ing methods, regardless of the backbone network models.
For example, 1-shot accuracy improved by more than 6%
whereas 5-shot accuracy improved by more than 5% with the
MobileNet network backbone on Mini-ImageNet surpassing
all the existing methods with the ResNet network backbone
model onMini-ImageNet.With the ResNet-18 network back-
bonemodel onMini-ImageNet, the 1-shot accuracy improved
by almost 5%whereas the 5-shot accuracy improved by more
than 2% surpassing all the existingmethodswith theWRN28-
10 network backbone model on Mini-ImageNet. Therefore,
the gain of our method is comparable to the selection of a
better network architecture on Mini-ImageNet in improving
performance.

The results for the Tiered-ImageNet are presented
in Table 3. Again, our results are averaged over 10,000
episodes, and our method scores competitive accuracy results
compared to the existing methods. By comparison, the score
gain on the Tiered-ImageNet is not as high as that of Mini-
ImageNet and CUBs (i.e., less than or approximately 1%).
We assume that the Tiered-ImageNet is a very large dataset
compared to Mini-ImageNet and CUB, and thus the visual
representation learned from the Tiered-ImageNet is suffi-
ciently discriminative with conventional cross-entropy loss.
This implies that our method is data-efficient in terms of

4https://github.com/HobbitLong/SupContrast

the dataset size. Thus, it works particularly well with small
datasets, reducing the cost of data preparation.

E. ABLATION STUDY
We evaluated the influence of prototype estimation and super-
vised contrastive learning on the final accuracy of themethod.
Instead of the simple mean of support set examples, the pro-
totype estimation technique calculates better initialization
points by combining support set examples and query set
examples. The results are reported in Table 4, and all of
them used ResNet-18 as a backbone networkmodel. From the
TIM-ADM baseline method, prototype estimation and super-
vised contrastive learning were added one by one.We observe
that most of the accuracy gain on the Mini-ImageNet and
CUB datasets is from the supervised contrastive learning, and
the prototype estimation improves 1-shot accuracy further,
while it has a marginal impact on 5-shot accuracy. For exam-
ple, 1-shot accuracy improved by almost 7%, whereas 5-shot
accuracy improved by more than 2% on the CUB dataset.
Most of the gain in 1-shot accuracy on the CUB dataset is
from supervised contrastive learning (i.e., more than 5%),
whereas the gain of the prototype estimation is less than 2%.
Similarly, most of the gain in 5-shot accuracy on the CUB
dataset is from supervised contrastive learning, whereas the
gain of the prototype estimation is negligible. We assume
that a 5-shot setting provides sufficient information to build
a proper prototype for each class, even without the prototype
estimation method.

F. DOMAIN-SHIFT
We measure the impact of the domain-shift and report the
results in Table 5. All results used ResNet-18 as a back-
bone network model, and our results were averaged over
10,000 episodes. Domain A → B implies that the feature
extractor is trained on dataset A, whereas the few-shot learn-
ing method is evaluated on dataset B, similar to the set-
ting from [3]. Domain CUB → CUB is the baseline result
without a domain-shift. Note that the domain-shift from
a slightly large-sized dataset to a smaller one (i.e., Mini-
ImageNet → CUB) drastically degrades the accuracy of
the few-shot learning method. The results show a drop in
1-shot accuracy of approximately 29% and 19% in 5-shot
accuracy. By comparison, the domain-shift from a much
larger dataset (i.e., Tiered-ImageNet → CUB) is slightly
better than the no domain-shift (i.e., CUB→ CUB) baseline
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TABLE 5. Summary of domain-shift setting results. Note that no domain-shift and domain-shift from the larger dataset are presented. The bold values are
the best results among the domain settings. Note that domain-shift from the larger dataset (i.e., Tiered-ImageNet) improves accuracy on the CUB dataset.
Our results score higher than any setting by a large margin on the CUB dataset without resorting to the larger dataset. Our results are averaged over
10,000 episodes.

TABLE 6. Results on increasing the number of ways on Mini-ImageNet.
We report a more challenging setting of 10-way and 20-way few-shot
classification accuracy. The bold values represent the best results among
the algorithms. Our results score higher than existing methods by a large
margin on 10-way and 20-way Mini-ImageNet datasets. Our results are
averaged over 10,000 episodes.

setting. It improves 1-shot accuracy by approximately 1%.
The results show that the existing method requires a much
larger dataset in the source domain to build an effective
feature extractor under a domain-shift. By contrast, the pro-
posed method provides better feature extraction when using a
smaller dataset. Indeed, with our data-efficient augmentation
method, CUB→ CUB accuracy increases by a large margin
surpassing that of Tiered-ImageNet → CUB setting. Our
method improves 1-shot accuracy by approximately 6%, and
5-shot accuracy by more than 2%. Therefore, if our method
is applied, it is possible to prepare a small base class dataset,
and it can still achieve superior accuracy without resorting to
the very large base class dataset. Note that our method suffers
from more degradation with domain-shift. We conjecture
that our method is highly dependent on the base dataset as
discussed in Section IV.I.

G. INCREASING THE NUMBER OF WAYS
We investigated the effect of increasing the number of ways
onMini-ImageNet and report the results in Table 6. All results
used ResNet-18 as a backbone networkmodel, and our results
were averaged over 10,000 episodes. These settings are more
challenging than 5-way few-shot classification because there
is a greater chance of misclassifying the input image. Our
method’s 10-way and 20-way few-shot classification accu-
racy scores are higher than those of existing methods by a
large margin. For example, it improves the 10-way 1-shot
accuracy by approximately 5%, 10-way 5-shot accuracy by
more than 4%, 20-way 1-shot accuracy by approximately
4%, and 20-way 5-shot accuracy by more than 4% compared
to the existing best method. This implies that our method
improves the overall generalization performance of the few-
shot learning method.

FIGURE 2. Runtime breakdown on NVIDIA Jetson TX2. Runtime
measurement is based on a 5-shot standard where the feature extraction
batch size is 100, and TIM-ADM algorithm runs a 5-shot classification. The
baseline method uses the ResNet-18 backbone network model,
no prototype estimation, and 150-iterations of TIM-ADM algorithm. Our
method with the MobileNet backbone network model uses 10-iterations
of TIM-ADM algorithm (i.e., early stopping). Note that the runtime of
prototype estimation is negligible. Best viewed in color.

H. RUNTIME ANALYSIS
The accuracy gain of our method can be utilized for run-
time reduction in few-shot learning, which could be espe-
cially useful in resource-constrained contexts such as mobile
settings. We measured the latency of the methods on an
NVIDIA Jetson TX2 to quantify the runtime impacts. The
evaluation protocol included 100 warm-up runs, followed by
100 execution runs, and we reported the average over the
execution runs. Figure 2 shows a breakdown of the algorithm
runtime. The runtime is measured in 5-shot classification
(i.e., the feature extraction batch size is 100, and the algo-
rithm assumes 5-shot classification). The baseline method
is the TIM-ADM algorithm with the ResNet-18 backbone,
which scores a 1-shot accuracy of 73.6 and a 5-shot accuracy
of 85.0 as reported in Table 7. Note that the feature extraction
latency is larger than the TIM-ADM inference runtime for
target task training, which confirms the importance of back-
bone network selection.We chose to use theMobileNet back-
bone network with our method under early stopping (i.e., 10
TIM-ADM iterations instead of 150 iterations) and obtained
a 1-shot accuracy of 75.13 and a 5-shot accuracy of 85.01,
which is still higher than the baseline. Thus, the accuracy
gain enabled by our method could be translated to a runtime
reduction of 3.87× without loss of accuracy.
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TABLE 7. Summary results for the runtime analysis. MobileNet and early
stopping are used to reduce the runtime of the algorithms. Supervised
contrastive learning and prototype estimation are used to compensate for
accuracy loss induced by the runtime reduction methods. Our results are
averaged over 10,000 episodes.

I. LIMITATIONS
In domain-shift experiment, we observed that the feature
extractor trained by our method did not improve the accu-
racy of the few-shot learning under the domain-shift set-
ting (i.e., the last two rows in Table 5). This implies that
our method is highly dependent on the base dataset as
it consumes a high number of epochs (i.e., 1,000 epochs
for supervised contrastive learning) with the base dataset.
Therefore, we suggest that our method’s application is lim-
ited to scenarios only when a domain-shift is not present.
No domain-shift setting encourages a smaller base dataset in
real-world implementations.

The cost of supervised contrastive learning is another lim-
itation. A batch size larger than the number of classes in the
base dataset is recommended to provide a sufficient number
of positives in a single multiviewed batch. This implies many
graphic processing units (GPUs) are required to implement
and hinder extensive experiments. Specifically, we used two
GTX 2080 Ti GPUs to six P100 GPUs to support a single run
of the appropriate batch size for supervised contrastive learn-
ing. Therefore, we emphasize that a server with sufficient
computing power is necessary to implement the pretraining
stage. Note that once the pretraining stage and fine-tuning are
completed, the remaining algorithm can be implemented in a
resource-constrained environment.

In summary, both limitations indicate that our method has
insufficient scalability in terms of dataset size, and hence, it is
effective in small-scale applications (e.g., few-shot learning).

V. CONCLUSION
We proposed applying supervised contrastive learning for
pretraining in the first stage of few-shot learning. The
feature extractor was trained using supervised contrastive loss
followed by fine-tuning, whereas the classifier performed
adaptation using TIM loss. We report that our method is data-
efficient (i.e., works well with a small dataset) while retain-
ing competitive accuracy performance with a large dataset.
Our experiment shows that we achieved new state-of-the-art
results on Mini-ImageNet and CUB datasets.
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