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Abstract—Severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) has caused a pandemic since early
2020. The coronavirus disease 2019 (COVID-19) has already
caused more than three million deaths worldwide and af-
fected people’s physical and mental health. COVID-19 pa-
tients with mild symptoms are generally required to self-
isolate and monitor for symptoms at least for 14 days in
the case the disease turns towards severe complications.
In this work, we overviewed the impact of COVID-19 on
the patients’ general health with a focus on their cardio-
vascular, respiratory and mental health, and investigated
several existing patient monitoring systems. We addressed
the limitations of these systems and proposed a wearable
telehealth solution for monitoring a set of physiological
parameters that are critical for COVID-19 patients such as
body temperature, heart rate, heart rate variability, blood
oxygen saturation, respiratory rate, blood pressure, and
cough. This physiological information can be further com-
bined to potentially estimate the lung function using artifi-
cial intelligence (AI) and sensor fusion techniques. The pro-
totype, which includes the hardware and a smartphone app,
showed promising results with performance comparable to
or better than similar commercial devices, thus potentially
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making the proposed system an ideal wearable solution
for long-term monitoring of COVID-19 patients and other
chronic diseases.

Index Terms—COVID-19, SARS-CoV-2, vital signs, wear-
able monitoring system, telehealth, e-health, chronic dis-
eases, public health, body temperature, heart rate, HRV,
SpO2, respiratory rate, blood pressure, cough, Electrocar-
diogram, ECG, Photoplethysmography, PPG, lung function.

I. INTRODUCTION

M ILLIONS of individuals have been infected by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-

2). The global death toll due to SARS-CoV-2 infection or “coro-
navirus disease 2019” (COVID-19) has already exceeded three
million [1]. This virus affects the physical health of individuals,
with the ability to cause multiple organ damage in addition
to affecting the cardiovascular system and predominantly the
respiratory system. In addition, measures put in place to mitigate
the pandemic such as self-isolation, travel restrictions, and social
distancing can also result in adverse mental health effects.

The World Health Organization (WHO) has recommended
several measures and policies to control the global spread of the
virus that have been implemented locally to a varying extent.
As different countries are at different phases of the outbreak, the
policies and measures at a given time vary among different coun-
tries. However, the strategies used among different nations share
several similarities. National policies and guidelines, which in
some countries were enforced strictly for individuals, greatly
helped to reduce the transmission of SARS-CoV-2.

Despite all efforts, this pandemic has been wreaking havoc
across the globe, causing the number of infected patients to
continue to rise. Fig. 1 shows the rate of infection (per 1000
population) and mortality rate (per 1000 infections) in different
countries as of Apr. 17, 2021 [1], [2].

Most of the infected persons show mild symptoms. Therefore,
they generally do not require hospitalization in many countries.
However, they are required to self-isolate at home while keeping
a cautious eye on the severity of the symptoms. Hospitalization
rates increase with age [3], and rates of admission to intensive
care units range from 5% to 22% depending on healthcare
resources of different nations [4], [5]. As the disease progresses
towards severe pneumonia, patients may start experiencing
difficulties in breathing and lower oxygen saturation (SpO2)
in blood due to alveolar damage, decreased lung compliance
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Fig. 1. Rate of infection (per 1000 population, presented in log scale)
and mortality rate (per 1000 infections, presented in linear scale) in
different countries as of 17 April 2021. ISO 3166-1 country codes are
used to represent the countries.

TABLE I
COMMON SYMPTOMS IN COVID-19 CASES [6]

TABLE II
COMMON COMORBIDITIES IN COVID-19 CASES [7]

and reduction in the lung capacity. The common symptoms
and comorbidities are shown in Table I [6] and Table II [7],
respectively.

Therefore, considering the prevalence of Fever and Cough
among the symptoms in the COVID-19 patients, it is critical
to remotely monitor body temperature (BT) and cough, along
with other important physiological parameters such as blood
saturation oxygen level (SpO2), blood pressure (BP), heart rate
(HR), heart rate variability (HRV), respiratory rate (RR), and
lung capacity of COVID-19 patients in non-clinical settings to
ensure efficient and effective utilization of healthcare service
capacity. Ambulatory monitoring of COVID-19 symptoms in a
continuous fashion allows for the early detection of severe and
critical pneumonia, thus enabling timely medical intervention
[8]. In addition, medical staff can use this wireless monitoring
device in hospital settings to remotely monitor their patients as
needed, thus reducing their frequency of visits to the patients’

room and risk of infection, eventually leading towards effec-
tive and efficient use of the workforce and personal protective
equipment.

Researchers in [8], [9],[10] provided the general outlook and
recommendations for employing wearable sensor techniques
for remote patient monitoring to cope with the outbreak of the
COVID-19. In [10], the researchers showed that incorporation
of wearable sensor data such from smartwatch and activity
tracker on top of self-reported symptoms and diagnostic testing
results can potentially lead to a superior model in identifying
positive or negative COVID-19 patients among the symptomatic
individuals. The results are however based on a relatively small
sample of participants (8.7%) who were tested for COVID-19,
disregarding a vast majority of (91.3%) of the participants who
did not go for a COVID-19 test even after showing symptoms.
Therefore, it is unclear whether this observation will still hold
if this group of people would be included in the model. Nev-
ertheless, this is an interesting work that further demonstrates
the importance of wearable sensor-based monitoring of multiple
bio-signals for a long period of time.

Most devices proposed in the literature do not feature
an ergonomically comfortable and compact design for con-
tinuous monitoring of all aforementioned health parameters
[8],[9],[10],[11]. Furthermore, most currently available com-
mercial patient monitoring systems (such as from GE Health-
care, Philips Healthcare, Dräger, Welch Allyn, and Hexoskin)
have limitations for the in-home monitoring of COVID-19
patients. In addition, these systems do not monitor coughing
events, which is one of the most common symptoms among the
COVID-19 patients and therefore critical to monitor [10],[11].

In this work, we present a brief discussion on the latest knowl-
edge on the epidemiology of COVID-19, its impact on human
health, and the measures adopted to prevent the spread of the
coronavirus disease. We also present a review on some existing
patient monitoring systems and propose a compact, wearable,
smart system to remotely monitor vital-signs and important
physiological parameters of the patients of COVID-19 or other
chronic cardiorespiratory diseases. A software was developed
to estimate BT, BP, HR, HRV, SpO2, RR, lung capacity, and
cough using five types of sensors for – BT, electrocardiogram
(ECG), photoplethysmography (PPG), sound, and motion. The
algorithms were validated through experimental data obtained
from lab volunteers and online databases including PhysioNET
[12],[13] and Capnobase [14].

A brief overview on the current understanding of the health
impacts of COVID-19 and adopted measures is discussed in
section II. A review of the current state of the art of monitoring
devices is presented in section III. The design of the system is
described in section IV. The performance of the system was
evaluated and discussed in section V. The perspectives and
research challenges are presented in section VI. Finally, the
research article is concluded in section VII.

II. COVID-19: HEALTH IMPACTS AND POLICIES

A. Epidemiology

Individuals who are symptomatic, pre-symptomatic or
asymptomatic are all capable of transmitting the virus to other
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Fig. 2. Mode of transmission of SARS-CoV-2.

individuals (Fig. 2). The virus is transmitted between individuals
through contact with others and through respiratory droplets
[15],[16]. These droplets may exist on surfaces on which an
infected individual may have expired [17]. Droplets may also
be propelled when interacting with others, such as when talking,
coughing, or sneezing.

Once SARS-CoV-2 crosses a mucosal barrier, the receptor
binding domain of the virus binds to human Angiotensin-
Converting Enzyme 2 (hACE2), its receptor. Transmembrane
protease serine 2 (TMPRSS2) then cleaves the virus to allow for
membrane fusion [18]. The virus is also activated by furin and
human proteases [19] and can induce changes in the host cell that
may cause damage or kill the host cell, in addition to creating
new viral proteins. New virus particles form at the Golgi body of
the host cell, which are then able to reach the cell surface through
vesicles for release and are able to infect subsequent cells [20].

Men are more likely to be infected and die from SARS-CoV-2
infection than women. Mortality rates and intensive care units
(ICU) admission rates were also higher for males [21]. The
severity of symptoms may also differ among infected indi-
viduals. 81% of symptomatic individuals suffer from mild to
moderate symptoms, whereas 14% of symptomatic individuals
experience severe symptoms and 5% of COVID-19 patients
are in a critical condition [22]. 30.8% of infected individu-
als may also be asymptomatic [23]. Individuals with certain
pre-existing medical conditions are also at an increased risk of
experiencing more severe health effects as a result of infection.
Examples of such conditions include kidney diseases, obesity,
cardiovascular conditions, cancer, type 2 diabetes, and chronic
obstructive pulmonary disease (COPD) [24]. Certain risk factors
may also increase the likelihood of infection (such as age, race,
poverty, crowding, medication use and pregnancy) [25]. The
effective reproduction number can also provide information
regarding disease spread among a population. In Canada, the
effective reproduction number was at an average of 2.81 in
mid-March 2020 but has decreased to 0.65 by mid-June [26].
The decreasing effective reproduction numbers seen in several
countries, such as Canada and China [27] is promising, as a
value below 1.0 indicates the slowing of the epidemic in those
countries [28].

Fig. 3. Impacts of COVID-19 on human health.

B. Health Impacts

The SARS-CoV-2 infection causes several health problems
to human body, predominantly affecting the respiratory system.
Nevertheless, it can affect the cardiovascular system of the body.
In addition, the measures and restrictions imposed on social
interaction to control the transmission of the virus may cause
mental health issues, and thereby affecting the overall health of
an individual (Fig. 3).

1) General Health: Once the virus reaches the alveolus,
immune cells are recruited, and fluid accumulation occurs in
the alveolus. The fluid in the alveolus alters the surface tension
resulting in the start of alveolar collapse, causing breathing
difficulties [29]. Although SARS-CoV-2 spreads mainly through
the respiratory system, some individuals with COVID-19 also
experience pathologies in multiple other organs [30]. This can
be attributed to the cytokine storms, which was found to be the
cause of death in 5% of critically ill patients due to multiple organ
failure [31]. Organs which may be affected by an exaggerated
immune response include the liver, kidneys, lungs and blood
vessels [32].

Cardiovascular disorders were seen in COVID-19 patients
with increased amounts of inflammatory biomarkers as well
[5]. The nervous system is also affected in some patients, as
demonstrated by the loss of the sense of smell, which is likely due
to the virus reaching the brain from the epithelium of the nasal
cavity [30]. At the cellular level, viruses may cause the death of
a cell by inducing cell lysis or altering the cell’s programmed
cell death. However, it is also possible for the virus to use the
host cell’s machinery for replication without causing further
damage to that cell [33]. Individuals with chronic illnesses
are more susceptible to suffering from more severe adverse
physical health effects upon infection. Particularly, individuals
with respiratory diseases, cardiovascular diseases or diabetes are
at an increased risk [34], in addition to those with compromised
immune systems. Individuals in ageing populations are particu-
larly at a heightened risk of suffering from more severe health
conditions compared to their younger counterparts, as immunity
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decreases with age [35] and older individuals are more likely to
have other pre-existing health conditions.

2) Cardiovascular Health: SARS-CoV-2, which was ini-
tially thought to be primarily a respiratory virus, has later been
identified to inflict systemic disease. In particular, cardiac injury
in COVID-19 patients is likely to be associated with overall
higher morbidities and mortality as reported in [36].

The pathophysiology of cardiac changes is best characterized
by overproduction of inflammatory cytokines (IL-1, IL-6), NK
cells, and TNF-α cells leading to systemic inflammation and
multiple organ dysfunction, acutely affecting the cardiovas-
cular system. Furthermore, cardiac injury, defined as clinical,
chemical (high troponin), or ECG changes, significantly relates
to inflammatory biomarkers (Interleukins, C-reactive protein,
BNP, Ferritin), suggesting an important correlation between
myocardial injury and inflammatory hyperactivity triggered by
a viral infection. Increased risk for myocardial ischemia or
infarction, myopericarditis with depressed systolic left ventri-
cle function, arrhythmias, thromboembolism, with sub-acute to
long-term persistent myocardial changes that is suggestive of
cardiomyopathies are described in patients with COVID-19 [37].

Children are much less infected (2-8% of all cases) so far
with COVID-19, and when infected often having much less
severe form of illness. However, a small number of children with
Multisystemic inflammatory diseases of Childhood (MIS-C)
were found to have signs of myocarditis, ischemia, and arrhyth-
mia, however, showed rapid improvement in most cases with
immediate intensive care management [38]. On the other side,
persistent structural changes of heart and signs of inflammation
were observed in COVID-19 patients with asymptomatic to
mild symptoms, highlighting the long-term consequences of
COVID-19 infection in setting the stage for cardiomyopathy
and heart failure [39].

These cardiac involvements may be explained by the kinetics
of cytokine storms. The natural arc of an immune response to an
infection lasts for several days to weeks that ends to a resolution
phase when the pathogen is controlled. For microorganisms with
a high replicative potential, the rapid and widespread engage-
ment of adaptive responses can lead to a rapid surge in immune
activity associated with supra-physiological levels of circulating
cytokines [40].

People with underlying cardiovascular problems such as high
blood pressure, coronary artery disease, or heart failure were
observed to be at a higher risk of infection and death. While
the virus might directly inflict heart injury or Myocarditis in
healthy people, things can get worse for COVID-19 patients with
existing cardiovascular conditions because of increased stress
and inflammation triggered by the body’s overly aggressive
immune response. Though Myocarditis often resolves without
incident, it can lead to severe complications such as abnormal
heart rhythms, chronic heart failure, and even sudden death. It
was reported that as many as 7 percent of COVID-19 related
deaths may result from myocarditis [41]. In addition, arrhythmia
was very commonly observed among the COVID-19 patients
[41]. Interestingly, viral proteins were identified in the heart
muscle of six deceased patients, who however had neither any
clinical signs of heart involvement, nor a prior history of cardiac

disease and were documented to have died of lung failure [42].
The presence of SARS-CoV-2 in the heart muscle possibly
explains COVID-19 induced cardiac damage [42].

Cardiologists estimate that half of the myocarditis cases re-
solve without a chronic complication [43]. However, several
studies suggest that COVID-19 patients can show signs of
myocarditis or myopericarditis months after contracting the
virus [44]. Thankfully, some acute cases resolve on their own,
requiring only hospital monitoring and possibly some heart
medications. There are conflicting results of corticosteroids and
intravenous immunoglobulin (IVIG) use in acute viral myocardi-
tis in adults and older population [45]. There may be a role
particularly for IVIG in younger patients who seem to present
with more of a post- inflammatory multisystem inflammatory
syndrome in children (MIS-C) type of the condition [46]. ECG is
the most reliable method of detecting irregularities in the heart’s
rhythm and structure. A Holter monitor is generally used in the
clinical settings as the portable means of recording a continuous
ECG, usually for 24 to 72 hours, enabling detecting heart rhythm
irregularities that cannot be observed during a regular ECG test
[47],[48]. However, there are several FDA approved portable
handheld single-lead ECG devices available in the market that
can be used for long-term monitoring of the heart’s activity at
home. Other cardiac monitoring systems in the clinical settings
include echocardiogram, computerized tomography (CT) scan,
and magnetic resonance imaging (MRI) scan that can be useful
for any structural and functional assessment of the heart. While
cardiac assessment at rest is rich in medical information, Car-
diopulmonary exercise testing (CPET) on cycle ergometry or
a treadmill is an invaluable tool to assess functional exercise
capacity, maximum VO2 consumption, the presence of cardiac
ischemia during exertion.

3) Respiratory Health: The most common acute respiratory
illnesses are infections related to bacteria and viruses [49], [50]
- SARS-CoV-2 being one of the deadliest types of the latter
group. Respiratory infections can result in mild to moderate
symptoms of fever, cough, and shortness of breath. This results in
an inflammatory exudate in the airways with mucus production
which can plug the airways [51],[52]. If this is not cleared by
spontaneous coughing it can lead to a lobar collapse requiring
more intense chest physiotherapy or suction with invasive bron-
choscopy. When severity increases, an inflammatory exudate
fills the alveolar air sacks (pus), leading to pneumonia. [53].
Pneumonia may progress to respiratory failure where oxygen
levels in the arterial blood decreases and the CO2 levels in
the arterial blood climb. This can be resolved by antimicrobial
agents and death may be avoided. At this point of severity
failure of other organ systems is sinister as the inflammatory
responses can no longer be confined to the lungs. Mortality
in such cases is high even with intensive care treatment with
artificial ventilation, dialysis, circulatory support, ventricular
assist devices, and extracorporeal gas exchange are required.

Numerous devices and techniques are available to assess
respiration. The most commonly used tools to assess airways
disease in the outpatient practice include the use of basic spirom-
etry, which allows quantification of the forced expiratory volume
in 1 second (FEV1), and the forced vital capacity (FVC), and
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the inspiratory and expiratory flow rates. The FEV1 can be used
to make a diagnosis of airflow obstruction (FEV1/FVC ratio <
0.7, or FEV1/FVC< lower limit of normal) and monitor disease
progression. Some have proposed using impulse oscillometry to
detect resistance in the airways [54]. More detailed pulmonary
function assessments include assessment of total lung capacity
(TLC), residual volume (RV), and functional residual capacity
(FRC) in a body box. This is commonly supplemented with the
assessment of the gas transfer capacity by measuring the diffu-
sion/transfer of an inert gas (CO, Helium) across the alveolar
membrane. This allows quantification of TLC involved in gas
exchange, i.e., the communicating lung volume, the total lung
diffusion capacity (DLCO), and the diffusion capacity adjusted
for alveolar lung volume (KCO).

The most basic tools used in the inpatient practice involve
monitoring of oxygen saturation using pulse oximetry, blood
pressure, heart rate, and ECG. When assessing gas exchange,
the arterial or capillary blood gas (ABG/CBG) quantifying the
partial pressure of oxygen and carbon dioxide in the blood, along
with pH and bicarbonate levels is performed. The assessment of
the alveolar-arterial oxygen gradient measures gas exchange in
the lungs. Ventilation/perfusion and diffusion varies widely in
the acutely unwell patient. Basic imaging techniques such as
the chest X-ray or high-resolution CT (HRCT) allow evaluation
of the structure of the lungs and help clinicians make decisions
about the need for a higher level of non-invasive or invasive
ventilation. Failure of respiratory mechanics combined with
the failure of gas exchange leads to respiratory muscle failure
requiring ventilatory support devices. In such an acute ICU
setting, if a patient is mechanically ventilated, assessment of
the O2 consumption and CO2 production can be made on a
breath-by-breath basis along with measures of airway resistance.
An arterial line and a central venous catheter (CVC) line allow
beat to beat accurate arterial and venous blood pressure. Ex-
tracorporeal membrane oxygenation (ECMO) is possible when
all fails but this resource is expensive, scarce and addition
of a substantial number of quality life years has not been
convincingly demonstrated [55]. These monitoring tools and
interventions are now routinely available in hospital settings to
aid the management of acutely unwell patients.

With acute respiratory illness, people may develop symptoms
of cough, shortness of breath, chest tightness, and wheeze. As
the infection progresses, people may experience an abnormally
higher heart rate, reduction in blood oxygenation, and an in-
crease in the respiratory rate. However, some signs are often
the later manifestations of the severity of respiratory illness.
Therefore, there remains a need of detecting earlier changes in
the respiratory function outside of the hospital setting.

Cough is a defining feature of many respiratory conditions
including infections, asthma, COPD, and pulmonary fibrosis.
However, there are only a few ambulatory cough monitoring
devices that are FDA approved and CE/510K quality marked.
One such device is VitaloJAK [56], which enables quantifying
coughs objectively and is now the gold standard for clinical
efficacy trials [57]. Nevertheless, these devices are not routinely
available for clinical use and can record for only 24 hours.

Therefore, cost-effective monitoring devices with longer record-
ing capability are required [58], [59].

4) Mental Health: In addition to affecting one’s physical
health, the COVID-19 pandemic may also affect the mental
health of individuals. Common adverse mental effects include
anxiety (being the most prevalent), depression and stress [60].
These adverse mental effects largely result from the precau-
tionary measures taken to limit the spread of the novel coro-
navirus disease. The COVID-19 pandemic particularly affects
the mental health of certain groups, such as health care work-
ers, elderly individuals, those with pre-existing mental health
conditions and those who are in social isolation or are homeless
[60]. Healthcare workers are constantly exposed to COVID-19
patients and may have limited protective equipment, in addition
to working extended shifts. They also must minimize social
interactions with others and isolate themselves from family
members, which are all factors that may compromise the mental
health of workers and their families [60], [61], [62]. Individuals
who must be in social isolation or confinement (for example,
due to stay-at-home directives) are also at a heightened risk of
experiencing adverse mental effects or disorders [62]. Individ-
uals with pre-existing mental conditions, such as depression or
anxiety, may face further difficulty adapting to a new lifestyle
with reduced social interaction and uncertainty about the future
[63]. Elderly individuals and those with pre-existing physical
conditions (such as compromised immunity) may also experi-
ence increased emotional difficulty as they are more susceptible
to experience the negative physical symptoms of COVID-19
and may have increased psychological distress surrounding their
health [64].

It is crucial for regulations to be carefully implemented so as
to reduce the spread of the virus while minimizing any adverse
mental health effects to individuals. The strategic implementa-
tion of measures can ensure one’s mental health and physical
health are not extensively compromised.

C. Current Measures, Limitations and
Recommendations

Since human transmission of the virus is occurring at a rapid
rate, several measures have been implemented by various levels
of government around the world to decrease the transmission
of the virus (Fig. 4). Globally, the World Health Organization
(WHO) has recommended that all levels of government con-
tribute to a response plan, reduce community transmission using
physical distancing policies and implement travel restrictions as
appropriate. The WHO also recommends for the coordination
between different nations for an effective global response, in
addition to suggesting the use of strategies which are adaptable
[65]. Recommendations from the WHO and other governments
continue to change as the pandemic evolves, as ongoing research
further increases understanding of the virus and its transmission.

In the initial stages of the pandemic, China established fever
clinics and recommended the use of face masks. In January 2020,
the wearing of face masks in China was made mandatory, in
addition to disinfection and handwashing being recommended,
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Fig. 4. Policies and measures adopted at different level to control the
viral transmission.

after which a mandatory stay-at-home order was put in place
[66].

In late January 2020, Canada began isolating individuals who
were suspected of having COVID-19 due to travel, either in
hospital or at home. Canada later began to implement travel
restrictions, closing the U.S.-Canada border and reducing air
travel, as well as implementing a mandatory Quarantine Act
for individuals who arrive from other countries. Physical dis-
tancing, wearing masks and frequent hand washing were also
recommended for individuals, and further restrictions such as
gathering limits were put in place at the provincial level.

The United States federal government encouraged physical
distancing and mask wearing, and travel restrictions were put in
place. Decisions regarding restrictions in the United States, such
as gathering limits, restaurant restrictions, stay at home orders
and curfew, were largely made at the level of individual states
[67]. The measures put in place at a given time may vary among
different countries, as countries may be at different stages of the
outbreak and thus implement differing mitigation strategies.

There is a great deal of similarity in the overall approach
taken by different countries. For instance, several countries
had shut down schools and businesses in an effort to reduce
the spread of the virus, yet differed in the timing of the

Fig. 5. Health parameters critical for monitoring COVID-19 patients.

implementation of policies. Furthermore, as different countries
are at differing phases of the outbreak, it is difficult to plan for a
coordinated global response. In addition, the use of tracing apps
is beneficial for alerting individuals of possible contacts with
infected individuals, but this also has some drawbacks, such
as the lack of available technology in rural areas, not having
all members of a population opting to use a tracing app, and
privacy concerns. A potential recommendation to combat such
drawbacks is to enforce stricter measures in areas where contact
tracing is not used, or to mobilize technological resources to
communities which are at a higher risk for community spread to
benefit from such devices. Strong leadership at the international
level to coordinate a global strategy with strict responsibilities
for all nations can also help mitigate the pandemic and reduce
the spread of SARS-CoV-2 at a much faster rate.

III. RELEVANT MONITORING SYSTEMS

Unobtrusive monitoring of key physical signs is paramount
for continuous ambulatory monitoring, particularly in the cases
of self-isolation or self-quarantine [68],[69],[70]. As the wear-
able sensors are becoming progressively more comfortable and
less obtrusive, they are an excellent choice for continuously
monitoring an individual’s health or wellness without inter-
rupting their activities of daily living (ADLs) [71],[72],[73].
Therefore, it is no wonder that there is a growing trend among
the researchers to develop wearable health monitoring systems to
enable long-term monitoring at home [74],[75],[76],[77]. How-
ever, most devices reported in the literature do not support all
the key parameters that are important for monitoring COVID-19
patients (Fig. 5).

A. Non-Wearable Contactless Systems

1) Wireless Systems: Researchers in [78] proposed a de-
vice to monitor breathing patterns and respiratory rate. They
used an Impulse-Radio Ultra-Wideband (IR-UWB) radar-based
technology to determine chest movements through the reflected
waves, from which the respiratory parameters were extracted.
The accuracy of the system was determined through the 6-min
walk test (6MWT), where a subject walked in a straight path back
and forth for 6 minutes. The respiratory signals received from
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the complementary metal–oxide–semiconductor impulse radar
chip were sent to an FPGA, where a Chirp-z transform block
estimated the signal frequency, performed data compression and
feature extraction. Based on the change in respiration intensity
and change in I:E ratio before and after 6MWT, the authors re-
ported achieving an accuracy of 73.3% in diagnosing respiratory
diseases with the SVM in comparison to a spirometer. Through
ANFIS, 68% FEV1/FVC index correlation was observed with a
RMSE of 11.35. The proposed system can be used to screen for
respiratory disease, such as COVID-19, through a completely
contactless monitoring device. It also monitors this respiratory
information continuously and passively without user input. The
timing resolution and frequency are superior to previous design
and processing the parameterized waveforms in the DSP back-
end is easy. The passive frontend architecture of the receiver
features advantages of high linearity and low power consump-
tion. Furthermore, it cannot extract cardiovascular information
due to the high sensitivity required for detection of movements
related to heart rate.

In [79], researchers used the channel state information (CSI)
phase difference obtained using Wi-Fi signals to measure heart
rate and respiratory rate by extracting the periodic signal induced
by chest movements. The system consists of a commercial
network interface card (NIC) and uses a smartphone/PC as
the access point. A fast Fourier transform (FFT)-based method
was used to detect heart rate, whereas the respiratory rate was
estimated using a peak detection algorithm in the case of a
single person, and a root-MUSIC (Multiple Signal Classifica-
tion) method for multiple people. The system was tested in
three different environments - a room crowded with tables and
PCs, a through-wall scenario where the subject was separated
from the receiver room, and a long corridor. The authors re-
ported achieving a heart rate median error of 1 bpm, and a
median error of 0.25 breaths per minute for the respiratory rate.
This CSI-based method was reported to be highly robust for
respiratory rate extracted at different distances and different
orientations between the transmitter and receiver. In contrast to
the UWB radar-based device reported in [78], this device has a
lower cost, requires less bandwidth and no additional hardware,
and can extract data from multiple people in a region albeit
with a high error. However, the measured heart signal is much
weaker than the breathing signal and thereby harder to detect
properly as diastole and systole only cause small variations in
the reflected signal. Furthermore, mean average errors (MAEs)
increase while monitoring through wall and at long distance.
Although both the devices reported in [78], and [79] are con-
tactless, they only offer for monitoring a subset of vital-signs
and restrict the users to stay within a limited range. In addition,
the performance of these systems deteriorates sharply in the
areas of high electromagnetic interference, especially in the case
of detecting heart rate, thus making these solutions less feasi-
ble for continuous and ambulatory monitoring of COVID-19
7 patients.

2) Phone-Based Monitoring Systems: Researchers in
[80] have proposed a low-cost cell phone-based mobile pneumo-
nia diagnosis method based on patient breathing sounds recorded
using the phone. Recorded sounds were first normalized and

down sampled from 44.1 kHz to 8 kHz, and each breath was man-
ually annotated into seven different sub-segments of exhalation
and inhalation. The authors extracted 18 acoustic features from
the acoustic signal that included Prosodic, Spectral, Cepstral,
Teager energy operator (TEO), and temporal information fea-
tures. Finally, statistically significant features were fed into two
ML classifiers, K-NN and SVM were used to classify pneumonia
and non-pneumonia. The authors reported achieving pneumonia
detection rates with a sensitivity, specificity, and accuracy of
92.06%, 90.68%, and 91.98%, respectively using the SVM clas-
sifier that are better or comparable to the diagnosis performance
of a medical doctor or the existing contact-based methods. How-
ever, this method requires manual annotations of the breathing
waveform, thus making it unsuitable for real-time application. In
addition, accurate detection was only demonstrated for children
(<5 years old) with results showing age-dependent coefficients,
thus limiting the accuracy to this small age group who are not
typically at high risk of COVID-19 infection. Furthermore, this
method does not allow for monitoring cardiovascular or SpO2
data that are critical for COVID-19 patients.

Researchers in [81] proposed a method to detect respira-
tory infections using RGB-infrared sensors and a smartphone
through monitoring the breathing pattern (such as I:E ratio), res-
piratory rate, and body temperature. There they attached a FLIR
One Thermal Camera (RGB and Infrared) to an Android smart-
phone to obtain the thermal image sequence around the nostril.
The sequence of thermal image was then analyzed based on a
neural network proposed in Tang et al. [82] to identify normal or
abnormal respiration condition. The authors reported achieving
a sensitivity of 90.23%, specificity of 76.31%, and accuracy
of 83.69%, in detecting respiration anomaly. A user-friendly
smartphone application was developed to display temperature at
the nose and head, processed signals, and the respiratory screen-
ing results. This contactless method of detecting respiratory
anomaly allows for reliable screening through masks of varying
sizes and thicknesses. However, the method cannot differentiate
between different respiratory infections, as the screening results
only display healthy vs. abnormal. In addition, breathing signals
lose clarity outside of the 0.1 - 1.8 m range and a pitch rotation
introduces error during measurement. Furthermore, this method
does not allow for monitoring cardiovascular or SpO2 data that
are critical for COVID-19 patients.

An AI-based speech processing framework was developed
in [125] that exploits four biomarkers (muscular degradation,
changes in vocal cords, changes in sentiment/mood, and changes
in the lungs and respiratory tract) to pre-screen for COVID-19
from cough sound recorded with a smartphone. Cough record-
ings are transformed with Mel Frequency Cepstral Coefficient
and fed into a Convolutional Neural Network (CNN) based plat-
form that outputs a binary pre-screening diagnostic. The authors
reported achieving a highly sensitive and specific pre-screening
platform both for symptomatic and asymptomatic subjects that
can potentially make it useful for daily screening at schools,
workplace, and transport. Although the results are promising,
the authors relied on the participants’ personal assessment for
diagnosing COVID-19 in more than half of the participants,
thus potentially making the training data itself less trustworthy.
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In addition, the authors did not cross-validate the model that
further limits its reliability. Nevertheless, a rigorous clinical trial
involving participants of different age groups and ethnicity is
required to validate the efficacy of the model.

Researchers in [83] exploited AI techniques to diagnose
COVID-19 with smartphones, through monitoring the frequency
and intensity of cough. There they developed a smartphone
application that records three spontaneous or nonspontaneous
3 second cough sounds at a sampling rate of 44.1 kHz using
the built-in microphone of the phone. The audio sample was
converted to the Mel-spectrogram, which was then fed into a
CNN based classifier to determine a coughing event. Once the
sound was identified as a coughing event, the data was then
further passed through three different AI classifiers: Deep Trans-
fer Learning-based Multi Class classifier (DTL-MC), Classical
Machine Learning-based Multi Class classifier (CML-MC), and
Deep Transfer Learning-based Binary Class classifier (DTL-
BC). All three classifiers process and classify data independently
that are later combined to obtain a conclusive COVID-19 diag-
nosis. The authors reported achieving a sensitivity, specificity,
and accuracy of 96.01%, 95.01%, and 95.60%, respectively in
determining if the input sound is a cough or not. The Deep Trans-
fer Learning-based Binary Class (DTL-BC) classifier obtained
a 94.57% sensitivity, 91.14% specificity, and 92.85% accuracy
for COVID-19 detection. This simple mobile app-based solution
proposition uses a simple mobile app to display real time results,
making it completely contactless, and can be used by anyone in
their own homes. Although the authors only relied on coughing
events for COVID-19 diagnosis, it can be a potential preliminary
tool for COVID-19 screening. However, a rigorous clinical trial
is necessary to validate the efficacy of this screening app.

Researchers in [84], on the other hand, exploited a set of smart-
phone’s built-in sensors, including the camera, microphone,
and accelerometer and incorporated AI techniques to develop
a smartphone-based COVID-19 monitor. The microphone was
used to record coughing events, whereas the body temperature
was extracted by analyzing the image captured by placing a
finger on the smartphone’s rear camera. The lung damage was
assessed by analyzing the CT images scanned through the rear
camera, and fatigue analysis was performed using the data from
the accelerometer and camera based on the 30-sec sit-to-stand
recordings. Breathing analysis was carried out by determining
the inhalation and exhalation durations on the breathing wave-
form. All resultant data was fed to a 4-layer ML framework
consisting of a recurrent neural network (RNN) and CNN for
binary COVID-19 prediction based on symptoms levels. The
CNN was used for abnormal CT-scan detection whereas other
recorded data were fed to the RNN. The proposed system
can potentially be useful as a contactless smartphone based
COVID-19 detection tool both for the radiologists and general
users. However, the authors did not report any experimental
validation of their proposed technique, rendering its accuracy
and reliability arguable.

Unlike the systems reported in [78] and [79], these phone-
based systems require the users to participate actively to get
their health parameters. In addition, the parameters can only be
measured in short time frames, rather than passively monitoring

them for a longer period of time. Furthermore, most of them do
not offer monitoring cardiovascular data such as heart rate and
blood pressure, and additional respiratory information including
saturated blood oxygen levels that can be attributed to the
restraints of a non-contact phone-based system.

B. Non-Integrated Wearable Systems

An automated Arduino-based Multi-parameter monitoring
system was proposed in [85] that was capable of monitoring
blood pressure, heart rate, respiratory rate, and body tempera-
ture. The hardware consists of an Arduino Uno microcontroller
interfaced with various sensors, including an airflow sensor,
ECG sensor, pressure sensor, temperature sensor, and galvanic
skin resistance (GSR) sensor. A Python program was developed
and integrated with an eHealth platform that allows the patient
to select the desired parameters to measure and visualize in real
time. The proposed system is modular allowing new sensors to
be added as required and comes with six different connectivity
options such as Wi-Fi, 3G, GPRS, Bluetooth, 802.15.4, and
ZigBee depending on the purpose. However, the components
of the system are mounted inconveniently at various sites of the
body including the arm, fingers, and face. In addition, some sen-
sors require initial calibration for better accuracy, and software
parameters may need to be adapted accordingly. Furthermore,
the performance of the proposed system was not validated with
any experimental data.

Researchers in [86] proposed a vital-signs monitor for the
elderly that is capable of recording several different physio-
logical signs including heart rate, blood pressure, SpO2, and
body temperature as well as making diagnostic decisions. The
hardware consists of several commercial systems including a
BP monitor, a finger-clip pulse oximeter, a tympanic thermome-
ter, and a blood glucose meter. It also includes a set-top box
which runs the software and transmits data to a computer. The
central processing system processes the data and exploits an
ANFIS-based artificial neural network to learn from the normal
parameters of each patient where weightings were determined
by consulting with physicians. The authors reported achieving
excellent agreement with the physicians’ diagnostic decision
for tachycardia, hypertension, hypotension, hypoxemia, and hy-
pothermia. The vital-sign data can further be sent to a tablet over
the Bluetooth where data can be stored and displayed. The sys-
tem was designed for seamless patient-doctor communication
with real-time remote monitoring. Mapping and linking of mul-
tiple vital-signs for detecting a single event using fuzzy model
AI yields high accuracy with reliable indication of health events.
However, the system consists of isolated equipment, hence, is not
portable or wearable. Besides, it does not provide measurements
or estimations of respiratory rate and the cuff-based BP monitor
is infeasible in the case of long-term monitoring. Furthermore,
the dataset comes entirely from hospitalized elderly patients;
therefore, potentially rendering the model biased towards that
group of people and resulting a non-generalized model. In
addition, further clinical investigations are required to test the
proposed systems’ in-depth capability in monitoring and diag-
nosing surgical patients and patients from the ICU.
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A similar system was proposed in [87] for the elderly that
is capable of recording blood pressure, heart rate, SpO2, and
body temperature. The sensor system includes a pulse oxime-
ter IC, two dry ECG electrodes, two reflective PPG sensors
(DCM02), a temperature sensor, and a cuff-based BP monitor as
the reference. The signals from the sensors are fed into a single
handheld device. PPG and ECG peaks are detected through an
adaptive peak detection algorithm, from where the pulse transit
time (PTT) is calculated. HR is calculated from the ECG peak
distances and SpO2 is calculated based on standard AC/DC
calculation from two wavelength PPG sources. BP is estimated
through standard pulse wave velocity (PWV) regression with
least squares optimization using the reference device data. The
authors reported achieving MAEs of 6.56 mmHg and 7.40
mmHg for systolic blood pressure (SBP), and diastolic blood
pressure (DBP), respectively that is comparable to the results
from other ECG/PPG monitors from the literature. However,
the performance was evaluated only on two subjects. In addi-
tion, a cuff-based measurement of BP is required initially for
subject-specific calibration. The device has split source, which
in addition to the low noise power supplies allow both USB and
onboard battery power. Nevertheless, the sensors are required to
attach to the arm, fingers, and the ear, rendering the device not
wearable or portable. In addition, inaccurate measurements are
reported for heavy breathing (after exercise) or during motion.
The dependency on HR for the BP estimation algorithm may
potentially add extra noise to the estimation. The features of the
portable patient monitoring systems are presented in Fig. 6

C. Fully Integrated Wearable Systems

Researchers in [88] designed a headset that can measure
various health parameters such as body temperature, frequency
and intensity of cough, heart rate, and respiratory rate. There
they housed several sensors that include in-ear headphones with
built-in microphone, thermistor, and PPG sensor. The envelope
detector of the mic signal is implemented using amplifiers and a
Hilbert transform, converting the audio signal to a low frequency
signal, reducing the frequency from 32 kHz to 25 Hz. The HR
is determined from the FFT of the filtered PPG signal. RR was
determined by performing FFT on the filtered microphone and
Negative Temperature Coefficient (NTC) thermistor signals and
identifying the dominant frequency. The user can position the
built-in headphone mic inside a mask to improve portability in
any environment. It is also possible to provide audio feedback
through the headphones for alarms or alerts. In addition, the
device requires low memory usage and is compatible with most
smartphones. Although the extracted values were reported to be
within a reasonable range, the quality of the measured signals
and true accuracy of the estimations were not reported. The
reliability of the acquired data may vary based on the headphones
used and the quality if the built-in mic. In addition, spectrum
analysis of long-term respiratory rate yields poor results.

A wrist-based smart watch named BioWatch was proposed in
[89] that is capable of monitoring BP, heart rate, and SpO2 as
well as can improve BP accuracy by adapting to the individual
and their postures. The device includes a PPG sensor, 3 dry

Fig. 6. Features of portable patient monitoring systems.

electrodes for ECG measurement and a 9-axis MEMS inertial
sensor and can be recharged through a micro-USB. PTT was
derived from the PPG and ECG signals and BP was measured
at rest for the first 4 minutes using a reference cuff-based BP
monitor (CBM-7000) to obtain the normal PTT-BP correlation.
The Valsalva maneuver that induces rapid change in BP was per-
formed 5 times with a 45 second to 1-minute gap between each
one and BP measurements were recorded using the BioWatch.
A set of such measurements was obtained for each participant at
three different postures such as standing, sitting, and supine. The
device was tested using 5 different arm positions to determine
which arm positions yielded the highest BP accuracy. During
these trials, BP was estimated for 2-3 minutes. PWV was first
estimated by PWV = d/PTT, where d = 50% subject height,
as PWV has been shown to have a higher correlation to BP
than PTT alone. Pulse pressure (PP), which is the difference
between SBP and DBP (in mmHg), was determined through
a regression using the PP values obtained from the reference
BP wave, and their corresponding PWVs. SBP was calculated
through a similar regression process, using reference SBP values
and their PWVs from calibration. DBP was then calculated by
subtracting PP from the SBP. The authors reported achieving
root mean square errors (RMSEs) of 7.83-9.37 mmHg for SBP,
and 5.77-6.90 mmHg for DBP. The use of PP estimations to
calculate DBP resulted in higher accuracy than the conventional
PTT-based approach that also eliminated the pre-ejection period
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(PEP) errors generally included within the PTT. PEP is the
delay between the QRS complex of the ECG and the actual
blood ejection in the heart that introduces errors by adding
delay to the PTT calculations, reducing accuracy of the BP-PTT
relationship. However, the PPG waveforms obtained from the
wrist have poor signal-to-noise ratio (SNR) in comparison to
that from the fingertip, potentially leading to poor signals and
estimation accuracy. In addition, changing arm position during
training also may reduce the accuracy of results, and the arm also
must be positioned close to the chest. The training algorithms
use low complexity polynomial/exponential fits to save memory
that may potentially limit the accuracy. Besides, the results pre-
sented are based on the fact that subjects performed the Valsalva
maneuver that may not be generalized for other respiratory
patterns. Furthermore, the SpO2 accuracies were not reported.
Nevertheless, its ability of monitoring BP as well as for HR and
SpO2 can be beneficial for COVID-19 monitoring provided that
the system undergoes rigorous experimental validation.

Researchers in [90] also proposed a wrist-based system that
is capable of extracting HR, HRV, and SpO2 from a commercial
wrist-worn pulse oximeter device (Wavelet Health sensor). The
device includes used an Infrared and Red Reflectance PPG
system (one red LED and one IR LED) that was worn on the
right wrist. A smartwatch and commercial pulse oximeter were
worn on the left arm for validation. PPG data was collected
for ten minutes keeping the left hand at rest while moving the
right hand in both periodic and random manner. The DC and AC
components of the red and IR signals obtained from the raw PPG
waveforms are separated using singular spectrum analysis (SSA)
to obtain the ratio of light intensity, which SpO2 was finally
calculated from. A high SNR red waveform was reconstructed
by performing bivariate empirical mode decomposition (EMD)
on the combined AC part of the infrared and red waveforms.
Finally, Instantaneous HR was obtained by analyzing the PPG
signals in frequency domain and the HRV was estimated by
detecting the infrared PPG peaks. A mobile app was developed
that can communicate with the device in real time over BLE and
display recording prompts, battery percentage, and sync/desync.
The authors reported achieving a MAE of 0.78 bpm, and 15.91
ms for HR and HRV (root mean square of successive differ-
ences (RMSSD)), respectively that are accurate and reasonable
compared to the clinical/commercial devices. The SpO2 results
from the last minute of the experiment achieved a MAE of 1.24%
based on 5 subjects with respect to the PC68-B pulse oximeter
as a reference. According to the author this is within the error
of 3% present in similar commercial pulse oximeters. However,
the estimation of SpO2 requires device calibration to improve
accuracy and no comparison was made to the accuracy of the
Wavelet Health sensor using its original algorithms. However,
in comparison to the fingertip-based devices, PPG waveforms
measured from the wrist generally suffer from poor SNR due to
higher absorption and refraction of light, thus resulting in poor
estimation of parameters.

Researchers in [91] proposed wearable cuff- and wrist-worn
bands to monitor the mean arterial pressure, heart rate, heart
rate variability, respiratory rate, and breathing patterns. The
device consists of a cuff-based BP monitor with manual pump,

Vernier pressure transducer, 2 thin conducting strips embed-
ded in the inner sides of the bands. A BioHarness teleme-
try system was used for ECG data acquisition, composed of
a data logger and USB Bluetooth device. The arterial pulse
wave data was converted to analog voltage through the Vernier
pressure transducer. The ECG R-peaks were identified using a
previously reported QRS detector [92],[93] that was modified
to augment its speed and accuracy. The arterial pulse peaks
were detected by finding the maximum amplitude of each pulse
peak between two R-peaks, and corresponding R-R interval and
pulse to pulse (PP) interval were derived. Respiratory patterns
were extracted from the arterial pulse waves and ECG data
based on amplitude and frequency modulation methods. These
methods included analyzing ECG amplitudes, ECG intervals,
pulse wave amplitudes, and pulse wave intervals. The authors
reported to achieve an MAPE of ∼0.94% for their respiratory
rate measurements and nearly 100% agreement between the
ECG-derived and pulse wave derived HR. This device used
conducting fabric instead of dry ECG electrodes that reduces
hardware complexity and improves wearability and comforta-
bility for long term use, while preserving accuracy. In addition,
the device is capable of monitoring a wide variety of parameters
including cardiovascular and respiratory related signs. However,
the arterial pulse wave signals at pressures below and between
30-40 mmHg yield unsatisfactory results. Furthermore, the SBP
and DBP measurements were not reported. The experiments
were conducted on a small group consisting of only six healthy
subjects. More experiments from a diverse group of subjects are
required for a better assessment of the device. Although real
time transmission of the raw data (ECG and arterial pulse wave)
seems possible, the device, however, offers no real time data
transmission that may potentially limit its long-term usage.

Researchers in [94] extracted respiratory information from
the oscillometric BP waveform obtained from a traditional
cuff-based BP device and used it further to blood pressure,
heart rate, and respiratory rate. The oscillometric method is the
most common BP measuring method that exploits the pressure
variations in the BP cuff caused by the oscillation of blood flow
to determine SBP, DBP and mean arterial pressure (MAP). The
hardware consists of just a wearable cuff-based BP monitor.
The data collection procedure involves 6 consecutive left-arm
BP measurements, with 3 measurements at rest, followed by 3
measurements while squeezing a ball with the right hand. This is
preceded and followed by BP measurement using the clinically
validated device. The SBP and DBP values were estimated from
the pressure and oscillometric waveforms using the traditional
oscillometric method. HR was calculated from the frequency
spectrum generated via the FFT of the oscillation waveform,
in which the frequency component with the highest magnitude
corresponds to the heart rate. The authors reported achieving
high performance with a MAE of 3.57 mmHg for SBP, 2.45
mmHg for DBP, 0.75 bpm for HR, and 2.69 breaths per minute
for RR from a group of 40 subjects. This method does not
need any additional calibration and improves upon traditional
automated respiratory rate measuring techniques which often
interfere with the ability for normal breathing. In addition, the
system’s capability of monitoring vital-signs associated with
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both the heart and lungs makes it a promising tool to monitor
respiratory infectious diseases such as COVID-19. It can es-
timate respiratory rate to a better or similar degree than from
ECG/PPG signals during rest. However, the respiratory data
from traditional ECG systems has been shown to have a higher
accuracy for long term measurements.

Researchers in [95], [96] developed a wearable chest patch
that can record heart rate, HRV and respiratory rate. It can also
monitor activities such as step count, walking/running, and pos-
tures. The hardware consists of two parts: the wearable adhesive
patch, and the reusable electronics module (REM). The adhesive
patch contains single-lead, bipolar hydrogel disc covered ECG
electrodes. The REM contains an embedded processor, a tri-axial
accelerometer, and a BLE transceiver. The device was evaluated
at different conditions that included sitting breathing exercises,
ADLs, stationary cycling, simulated falls, and various postures.
HR and respiratory rate were obtained by identifying the peaks in
the ECG and respiratory signals, respectively. A linear correction
was applied to each respiration rate to correct for proportional
biases, and the final respiratory rate is calculated as the weighted
mean between individual respiratory rates. The authors reported
achieving a respiratory rate MAE of 1.1 breaths per minute,
heart rate MAE of <2 bpm, and HRV RMSSD of <15 ms.
In addition, step detection had a mean average percent error
(MAPE) of 3.5%, and posture detection median had 96.3%
accuracy. This device exploits the accelerometer to compensate
for motion artifacts in the ECG and breathing data thus making
the signals less sensitive to movement. The use of a computa-
tionally efficient approaches for respiratory rate detection makes
it suitable for low-power device. In addition, this proposition
exploited a weighted approach across components resulting
in good improvements over traditional approaches. It features
sensor fusion between the ECG and tri-axial accelerometer
by combining respiratory signals and using a final respiratory
rate which resembles the most accurate signals only. However,
adequate electrode to skin contact is required for ECG data,
which may require cleaning and shaving of the attachment
location on the chest. Besides, chest movements can corrupt
the accelerometer data during ADL measurements. In the case
of RSA (respiratory sinus arrhythmia), the ECG was found to
miss half of the measurements.

Researchers in [97] also proposed a chest-mounted device that
can monitor blood pressure and heart rate. There they estimated
BP by incorporating the seismocardiogram (SCG) waveform ob-
tained from the accelerometer to estimate PTT without including
the PEP. The device includes PPG sensor with 850nm IR LED
and 2 photodiodes, accelerometer, and 2-lead ECG. A cuff-based
reference BP monitor was used for a short period of time to
obtain the subject-specific coefficients. PPG and SCG signals
between two consecutive R-peaks were segmented and all such
segments within a period of 10 seconds were averaged, resulting
in one PPG and SCG in a single cardiac beat in 10 seconds. The
SCG max peak, which is associated with the aortic valve opening
(AO) is determined, then the maximum valley prior to AO was
determined as the SCG amplitude (SA). The intersecting tangent
(IT) point was detected on the PPG, and PTT is calculated as
the AO-PPG IT distance. Finally, BP was estimated through a

calibrated regression model that is proportional to log (PTT)
and linear with SA, using reference BP values from the cuff-
based monitor. The authors reported achieving mean absolute
deviations (MADs) of 4.05 mmHg and 2.50 mmHg for SBP and
DBP, respectively from the short-term trails. However, MADs
of 9.41 mmHg and 8.44 mmHg for SBP and DBP, respectively
were observed during the daily monitoring period. This device
outperforms many conventional PTT-based and PAT-based BP
estimation devices in short-term BP monitoring. However, the
quality of the PPG waveforms obtained from the chest surface is
poor, due to the lack of blood perfusion compared to the finger,
toe, or ear. The adoption of low power design techniques made
it suitable for continuous monitoring for a long-term period,
although the estimation noticeably loses accuracy in long-term
monitoring.

Although it is encouraging to see many researchers and com-
panies around the globe working to develop portable, affordable
and long-term tools for health monitoring, most of them are
however limited by their monitoring time and capability of moni-
toring a few physiological parameters. In addition, most reported
monitoring systems require active participation of the users and
restrict their physical independence. Another concern about the
wearable systems evolves from their ease-of-use [68], [126]
particularly among the older population who reportedly showed
a tendency of not even activating their wrist-based fitness devices
[126]. Therefore, a wearable system must be user-friendly in
terms of initial setup, connectivity and operational procedures.
Also, an easier initial set-up process can encourage the users to
continue using the devices [68], [126].

Nevertheless, all these promising research works on portable
and affordable monitoring tools can potentially pave the way
towards realizing a compact and wearable health monitoring
system. However, rigorous clinical trial, which most of them
currently lack, must be conducted to validate the clinical efficacy
of these tools. Fig. 6 presents the summary of the portable patient
monitoring systems discussed in this section.

IV. PROPOSED MONITORING DEVICE

A. System Specifications

As discussed in section I, the most common symptoms of
COVID-19 include fever, shortness of breath and dry cough.
Some individuals may also show the elevated blood pressure,
increased heart rate, loss of taste and/or smell, and diarrhea. As
the disease progresses towards severe pneumonia, the patient
may start having difficulty in breathing, which is likely due to
reduced lung function/capacity. Consequently, the oxygen level
in the blood may reduce to below the normal range.

Health condition may deteriorate rapidly in some patients that
may require immediate medical attention in the form of ventila-
tion and admission to the ICU. Therefore, it is critical to remotely
identify and monitor these symptoms in non-clinical settings to
ensure efficient and effective utilization of healthcare service
capacity. To deal with this, we propose a wearable tele-health
monitoring system, which allows for the identification of critical
patients early enough for timely medical intervention.
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TABLE III
MONITORED PARAMETERS, USED SENSORS, SPECIFICATIONS, AND MEASUREMENT APPROACH

(∗FEV1 – forced expiratory volume in 1 second and TV – tidal volume (Future work)).

On the patient side, a multi-sensor data acquisition module
containing five types of sensors for – temperature, ECG, PPG,
sound (microphone) and motion (accelerometer) is used to
measured BT, HR, HRV, SpO2, coughing, BP, RR. The lung
function/capacity can further be estimated by exploiting sensor
fusion techniques. The data from multiple sensors are sent over
Bluetooth to a local node that performs data alignment and initial
signal processing. The pre-processed data from the patient side
are then sent to the central server for further processing such
as data archiving, fusion, detailed analysis and visualization. Fi-
nally, the physiological data can be viewed by the health provider
on the terminals such as cellphones, tablets or computers. The
multi-parameter monitoring capability of the proposed system
can also be used to monitor patients with chronic cardiorespira-
tory diseases.

The specifications of the proposed system were determined
by analyzing the requirements for monitoring COVID-19 pa-
tients and comparing other patient monitoring systems from the
literature and available commercially. The specifications ensure
precise and reliable monitoring of the patients’ physiological
condition. The sensors used in the proposed monitoring system,
their specifications and the parameter measurement/estimation
methods are summarized in Table. III.

B. Hardware Design

We investigated and compared the performance parameters
of the required sensors to achieve the system specifications. The
following sensors are selected to obtain the required physical
parameters in the wearable monitoring system.

1) Sensor Selection: Temperature sensor: Temperature
sensor measures body temperature. The low-cost NTC (negative
thermal coefficient) thermistors or silicon-based sensors (< $1)
are commonly used for the temperature measurement of the con-
tactable surface. Here, a silicon-based sensor (LMT70YFQT) is
chosen in our proposed system. The typical accuracy is ±0.05
°C from 20 °C to 42 °C [98]. The sensor is embedded in an
elastic band and mounted on the chest to ensure good contact
with the skin, which guarantees an accurate body temperature
measurement.

ECG and PPG Sensor: There are two types of PPG sen-
sors: transmission type and reflection type. Since the proposed
monitoring device is mounted on the left chest, we choose a
reflection-type PPG sensor. This PPG sensor works by shining
the red and near IR light to the artery. The reflective optical power
is then collected by the sensor to determine the SpO2 from the

difference of the light absorption by oxyhemoglobin (HbO2)
and hemoglobin (Hb) at the red and near IR wavelengths,
respectively.

The ECG sensor is used to provide the standard single-lead
ECG waveforms, from which the physical parameters such as
RR, HR, and HRV can be retrieved. The ECG signal can also
be fused with PPG signal to estimate the BP and to improve
the accuracy of other parameters such as RR, HR, HRV. The
ECG and PPG signals need to be time-synchronized to obtain
an accurate estimate of BP. Therefore, an integrated ECG and
PPG sensor MAX86150 is chosen for the proposed system [99].
This sensor consists of a photodetector, red/IR LEDs and low-
noise readout electronics for the single-lead ECG sensor module
and can provide synchronized ECG and PPG (both red and IR
wavelength) signals.

Microphone: A microphone is used to record the sound of
cough. The acoustic properties of cough sounds are analyzed to
estimate several important parameters such as cough frequency,
intensity and patterns. An omnidirectional electret condenser
microphone (CMC-6027-24L100) is chosen for the cough mon-
itoring module due to its high sensitivity, which is typically -24
dB when measured with a 1 kHz sine wave at a 94 dB sound
pressure level (SPL) [100].

Accelerometer: The accelerometer does not directly generate
a physiological parameter. However, the output signal from the
accelerometer can be used to estimate the degree of chest expan-
sion such as respiration, coughing events. This information, in
addition to the information from the ECG, PPG and microphone
will be used in an AI-based platform to achieve a surrogate
measure of lung function. In addition, the accelerometer data
can also be used to estimate and correct for motion artifacts
in the ECG and PPG signals. A small, low-power and highly
integrated inertial measurement unit (IMU) BMI160 is used in
the monitoring system. The IMU includes a tri-axial accelerom-
eter, which quantifies the chest movement. The complete patient
monitoring system is shown in Fig. 7.

2) Fast Prototype: To evaluate the feasibility and perfor-
mance of the proposed monitoring system, a fast prototype was
built by integrating the aforementioned sensors, off-the-shelf
evaluation boards and data acquisition device. A MAX86150
Evaluation System comprising a sensor board (MAX86150
evaluation kit) and a data acquisition and transmission board (a
MAX32630FTHR microcontroller board) is used to get the syn-
chronized ECG and PPG signals [101]. The MAX86150 evalu-
ation kit was modified to enable a flat surface on the board that
allowed for mounting the monitoring system on the left chest.
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Fig. 7. Complete patient monitoring system.

For the cough monitoring module, a data logger (Biometrics
DataLOG MWX8) was used to acquire the analog output signal
from the electret condenser microphone (CMC-6027-24 L 100)
[102]. The data logger has a reconfigurable input signal range
and sampling rate and can store the recorded data into the
local SD card and/or send to a computer through Bluetooth.
The accelerometer signals are obtained from an IMU board
(MetaWear CPro) [103], which transmits data wirelessly into
a smart device for further processing. A LMT70 temperature
sensor evaluation module (LMT70EVM) [104] was used to
measure the body temperature. The prototype of the monitoring
system and its mounting on the chest are presented in Fig. 8.

C. Computing Platform Design

The software methods used for processing the acquired sig-
nals are implemented in MATLAB and include the signal pro-
cessing of raw PPG and ECG signals collected by the proposed
device. These two signals can be processed to output parameters
including HR, HRV, SpO2, RR, and BP. The overview of the
computing platform is presented in Fig. 9.

1) Signal Processing: The raw PPG signals (both infrared
and red wavelengths) go through a filtering process which in-
cludes a 10th order polynomial detrend and a 4th order bandpass
Butterworth filter with cutoff frequencies of 0.5 and 5 Hz.
The infrared light PPG signal was found to have better SNR
compared to the red light PPG signal in general, and therefore
was chosen for feature extraction, which includes finding the
maxima and minima of the signal that correspond to the systolic
peak and endpoints of the pulses, respectively.

The period of the PPG pulses is estimated by identifying
the dominant frequency through FFT analysis. Outlier data
resulting from motion or noise artifacts are first removed. Then,
a threshold of 0.4 times the maximum PPG value is used with
MATLAB’s findpeaks function along with the wave period to
detect PPG pulse maxima and minima. Any abnormally large

Fig. 8. Wearable health monitoring system a) hardware prototype b)
mounting on the chest.

peak interval windows are continually rescanned with an ad-
justed threshold local to each window to find any missing points
of interest.

The raw time-synchronized ECG data is detrended and passes
through a bandpass filter with cutoffs at 8 and 40 Hz. ECG
R-peak detection uses a similar threshold-based approach, with
0.6 times the average maximum value being the minimum ac-
ceptable R-peak value. Points where the time intervals between
the ECG and corresponding PPG peaks are abnormally high
or the ECG signals experience motion or noise artifacts are
eliminated.

2) HR and HRV: HR and HRV are determined based on
R-peak spacing in the time domain, i.e., the R-R intervals.
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Fig. 9. Overview of the computing platform.

Upper and lower limits are determined based on the median RR-
interval. The R-R intervals outside of this range are discarded.
Heart rate is determined as the inverse of the mean accepted R-R
interval, converted to beats per minute. HRV is calculated in the
time-domain as the RMSSD of acceptable R-R intervals [68].

3) SpO2 Estimation: SpO2 can be obtained from the red
and infrared (IR) PPG signals using Eq. 1[105].

SpO2 (%) = 110 − 25 × R. (1)

Here,

R =
RMSac(red)

DCred
/
RMSac(IR)

DCIR
. (2)

The AC component of the PPG signals corresponds to the
pulsatile part of arterial blood volume, while the DC component
represents the non-pulsatile part. The oxygenated hemoglobin
in the blood absorbs IR and red wavelengths of light differently
[106],[68]. Highly oxygenated blood absorbs more IR light than
the red light, resulting in a larger IR signal than the red signal and
consequently a smaller R and higher SpO2. Conversely, at lower
oxygenation, the relative absorbance of the red wavelength is
higher than the IR light, resulting in a higher R value, and lower
SpO2.

However, instead of using the root mean square or mean
values of the entire PPG signals as shown in [105], the AC and
DC values are calculated for each PPG pulse. This allows for
detecting and discarding the outliers in the estimation and makes
the estimation of SpO2 more accurate and robust against noise
and motion artifacts.

4) PTT and BP: PTT is the delay for the pulse pressure
wave, reflected as the dilation of the arterial wall, to travel

Fig. 10. Typical representation of pulse transit time (PTT).

from one arterial site to another [107]. PTT is known to have a
strong negative correlation with systolic blood pressure (SBP),
whereas PTT and diastolic blood pressure (DBP) have a rela-
tively weaker, but observable inverse relationship [108].

PTTs are calculated as the time difference between each
validated ECG R-peak and the point on the neighboring PPG
rising portion with the highest slope (Fig. 10). Past research has
suggested using one of many PPG feature points such as the
peak, minimum, or the point with a maximum positive slope
in PTT calculations. However, using the point with maximum
positive slope was found to provide the most reliable results.
The PWV can be estimated using the Moens–Korteweg equation
using parameters including PTT and the distance of the sensor
from heart (L) [109].

Here, PWV is expressed in terms of the elastic modulus of
the artery wall (Ein), the arterial wall thickness (h), the density
of blood (ρ), and the artery radius at the end of diastole (r).

PWV =
L

PTT
=

√
Ein h

2 ρ r
(3)

The arterial wall elastic modulus can be expressed as a func-
tion of mean blood pressure, Pt as demonstrated in [110],

Ein = E0 e
γ Pt (4)

where E0 and γ are constant coefficients. The values of these
coefficients are the same used in [111], found through an exper-
imental fit, where E0 = 1429 mmHg and γ = 0.031 mmHg-1.
Using both equations, a one-point calibration model was con-
structed, as in [111].

DBP =
1

3
SBP0 +

2

3
DBP0 +

2

γ
ln

(
PTT0

PTT

)

− (SBP0 − DBP0)

3

(
PTT0

PTT

)2

(5)

SBP = DBP + (SBP0 − DBP0)

(
PTT0

PTT

)2

(6)

One reference BP pair (SBP0 and DBP0) is obtained from a
cuff-based BP monitor and its corresponding PTT0 are together
used for cuffless estimation of BP for the rest of the time interval.

5) Respiratory Rate: The ECG waveform also contains in-
formation about the respiratory sinus arrhythmia (RSA) and the
modulation of R-peak amplitudes (RPA). RSA represents the
changes in heart rate due to respiration, in which the ECG R-R
intervals are shortened during inspiration and prolonged during
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Fig. 11. Cough signal energy with time.

expiration [112]. Respiratory rate can be estimated solely from
the PPG or ECG RSA; however, estimation accuracy can be
improved by fusing information from both the RSA and RPA
waveforms. The RSA and RPA waves are extracted follow-
ing the procedure reported in [113] and are fused to estimate
the RR.

Firstly, for RSA extraction, a new vector is created which
stores R-R intervals (in ms), where each index corresponds to
the time that the interval occurred. The time of occurrence is
chosen as the midpoint between each ECG R-peak for each
R-R interval. Cubic spline interpolation is used to resample
this new vector data at 2 Hz, acquiring the interbeat interval
waveform (IIW). Finally, the RSA waveform is acquired from
the IIW using a 6th order Chebyshev type 1 bandpass filter, with
cutoff frequencies between 0.1 and 0.5 Hz, and a 3 dB passband
ripple, employed forwards and backwards. The same filtering
process is used for the RPA wave, however, instead of the R-R
interval, each point in the new vector represents the R-peak
amplitude at that time. Both time-domain and frequency-domain
analysis are performed on the RPA and RSA waveforms. In the
time-domain, peaks of the breathing pulse are identified, where
peaks must be at least 1 second apart such that the breathing
rate is <60 breaths per min. The inverse of the mean breathing
interval is then used as a candidate for breathing rate. In the
frequency-domain, FFT dominant frequencies are found for the
RSA and RPA waves. If they are found to be too noisy, the
time-domain analysis candidates are used alone. Otherwise, a
common dominant frequency is found between the RSA and
RPA and chosen as the breathing rate once converted to breaths
per minute.

6) Cough Frequency: The microphone signal was first fil-
tered by a low-pass Butterworth filter with a cut-off frequency
of 250 Hz. The signal was then segmented into 0.2 s windows
with an overlap of 0.05 ms. The natural logarithm of signal
energy (E) for each window was calculated. Finally, a threshold
was applied on the signal energy to detect a cough (Fig. 11).
The cough frequency then can be obtained by counting the total
number of coughs in an hour.

7) Lung Volume: The motion data from the chest-mounted
accelerometer was used to estimate the lung volume. The chest
expands with inhalation and the more air is inhaled, the more
expansion the chest experiences. Therefore, the accelerometer
can be reliably used as surrogate tool for estimating lung volume.
In a preliminary attempt to estimate the lung volume from the
accelerometer data, it was first filtered using a fourth-order low-
pass filter with a cut-off frequency of 1 Hz. The spectral density
of the signal was then calculated by using FFT. The spectral

Fig. 12. Graphical user interface (GUI) application demo for the display
of physical parameters from the wearable monitoring system.

Fig. 13. A sample ECG measured with the proposed system.

density of the accelerometer signal corresponds to the amount
of air inhaled by the lung.

D. Graphical User Interface for Data Visualization

An Android-based graphical user interface (GUI) application
was designed to display the physical parameters measured using
the proposed wearable monitoring system, as shown in Fig. 12.

The physical parameters were divided into 6 categories: Heart
(HR and HRV), Blood pressure (SBP and DBP), Breath (SpO2
and RR), Lung (capacity and function), Temperature (T) and
Cough (Frequency). A color bar was designed for each parameter
to indicate whether the parameter is in the normal range. The
green color means the parameter is in the normal range while the
red color indicates the parameter exceeds the normal range and
the blue color denotes the parameter is below the normal range.
These indicators provide an easy way for the users to assess their
health condition.

V. PERFORMANCE EVALUATION

A. Hardware Validation

The proposed monitoring system comprises several sensors
and peripheral circuitries. Therefore, it is necessary to validate
the function of the integrated device to ensure that it meets the
specifications consistently and reliably.

1) ECG Signal: The ECG signals were acquired from the
chest. A sample ECG signal is shown in Fig. 13. The character-
istic peaks of the ECG signals i.e., P, QRS complex and T waves
are readily identifiable in the measured signal.

2) PPG Signal: The MAX86150 Evaluation system can
provide reflective PPG signals with red and IR wavelength lights
emitted from the built-in LEDs. The red and IR PPG signals
measured from fingertips and left chest are shown in Fig. 14.

Since the commercial pulse oximeter usually show a calcu-
lated value rather than the raw PPG waveforms, it is difficult
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Fig. 14. Measured PPG signals from a) fingertip, and b) chest.

Fig. 15. Chest movement measured with accelerometer a) respiratory
expansions b) coughing.

to compare PPG waves from our system with the commercial
device. Therefore, the PPG signals were used to calculate the
SpO2 value with our developed SpO2 algorithm (see details
in the section of Algorithms Validation). Then the calculated
value was used to compare with the SpO2 value from a CE ap-
proved commercial pulse oximeter (CONTECTM Pulse Oxime-
ter, model: CMS50D).

3) Chest Movement: Chest movement was measured with
a tri-axial accelerometer. Fig. 15 shows chest movement with
respiratory expansion and coughing. The periodic respiratory
movement is clearly visible in Fig. 15(a), whereas in Fig. 15(b)
the cough-induced movement dominates the respiratory move-
ment.

4) Coughing Signal: The analog signal from the audio-
based monitoring module was used to measure and analyze the
acoustic properties of cough such as cough frequency, intensity
and patterns. In order to validate its function, a respirologist
mimicked different types of coughing activities, which were
measured with the acoustic sensor. Fig. 16 shows examples of
different cough signals.

5) Body Temperature: Skin temperature was measured
while keeping the device mounted on the chest. Fig. 17 shows the
skin temperature curve obtained from the device. The readings
from a commercial thermometer (KAZ thermometer, model:
V901G-CAN) was 36.2°C, which is the same value with the
measurement from the prototype of monitoring system.

B. Algorithm Validation

The computing platform was validated using data measured
from healthy volunteers as well as from publicly available
datasets such as the BIDMC PPG and Respiration Dataset

Fig. 16. Acoustic signals of different coughing types a) single cough
b) double cough c) throat clear, and d) wheezy cough.

Fig. 17. Measured skin temperature curve.

(Beth Israel Deaconess Medical Centre, Boston) [12],[13] and
Capnobase [14], as appropriate.

Synchronized ECG and PPG signals are obtained from the
chest and fingertips, respectively, while the subjects are at rest.
These signals were typically twenty seconds to one minute in
length. SpO2 and heart rate measurements were also obtained
using a commercial pulse oximeter (CONTECTM Pulse Oxime-
ter, model: CMS50D). Reference blood pressure measurements
were taken using a cuff-based device (Omron Blood Pressure
Monitor, model: BP769CAN) after the ECG and PPG measure-
ments as a reference for systolic and diastolic blood pressure.
The protocol followed for the blood pressure measurements
are in accordance with ANSI/AAMI/ISO standards [114],[115],
with an adequate resting period of 10-15 minutes at room tem-
perature, and measurements taken over bare skin. The subjects
were seated on a chair with a supportive back and feet flat on
the floor, with the designated arm rested on a table, ensuring the
cuff is at heart level.

1) Heart Rate: A total of 26 ECG data samples with refer-
ence measured heart rates were used for the validation of heart
rate. Validation was performed for data from both lab subjects
and online databases including a subset of the MIMIC II database
and a subset of MIMIC III [13]. The mean absolute error in HR
was calculated to be 1.02 bpm, with a standard deviation of 2.25
bpm.

2) Oxygen Saturation: SpO2 was calculated from the dual
wavelength PPG sensor worn by three different subjects in the
lab over five distinct data samples and compared to the reference
values obtained with commercial pulse oximeter (CONTECTM

Pulse Oximeter, model: CMS50D). The mean absolute error
was calculated to be 1.09% with a standard deviation of 0.77%
that is within the error limit (±2%) of most commercial pulse
oximeters [116].
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Fig. 18. Relationship between measured lung volume and spectral
density of the signal from chest-mounted accelerometer.

3) Blood Pressure: Blood pressure was measured for each
volunteer using a cuff-based device following a strict protocol,
as previously mentioned. The average of 3 subsequent mea-
surements for SBP and DBP was used as the reference value,
while the initial measurement was used for one-point PTT-BP
calibration. The BIDMC and MIMIC III databases allowed
for more accurate validation since continuous SBP and DBP
signals can be used as the ground truth rather than discrete
cuff-based BP measurements performed in earlier cases. A total
of 22 synchronized ECG, PPG, and BP measurements were
thus obtained both from the volunteers and publicly available
databases. The mean absolute error (MAE)± standard deviation
from all sources was 3.41± 2.17 mmHg and 1.61± 1.49 mmHg
for SBP and DBP, respectively. This result satisfies the clinical
standards of a BP monitor that considers an MAE of < 5 mmHg
and standard deviation of < 8 mmHg acceptable with respect to
a reference cuff-based sphygmomanometer device [117].

4) Respiratory Rate: Respiratory rate estimations were
purely validated from the online public dataset, Capnobase [14].
A total of 28 synchronized ECG, PPG, and reference CO2

signals were used, all of which are continuous 8-minute time
samples. The MAE of the respiratory rate estimated based on
ECG-derived waveforms was 0.62 breaths per minute, with a
standard deviation of 2.17 breaths per minute, when compared
to the reference CO2 signals.

5) Lung Volume: In order to show the feasibility of a chest-
mounted accelerometer to estimate the lung volume, the motion
data from a chest-mounted accelerometer and measurements
from a clinical spirometer were obtained simultaneously under
the supervision of an expert respirologist. The spectral density
of the accelerometer signal showed a linear relationship with
the amount of air inhaled. Fig. 18 shows one example of the
relationship between the spectral density of the accelerometer
signal and the lung volume. This observation may potentially
enable estimating lung volume using a simple, low-cost, and
wearable sensor like an accelerometer. In addition, information
from the PPG signal can be fused with the accelerometer data
by exploiting AI techniques to further improve the estimation
accuracy that we aim to explore in future.

C. Performance Comparison

Several portable and wireless multi-parameter monitoring
systems are currently available in the market. However, they

are not capable of monitoring a comprehensive list of parame-
ters that may prove to be important for monitoring COVID-19
patients or patients with chronic diseases. The HR obtained from
the proposed device is accurate within 1.02 bpm, which is com-
parable to the accuracy (errors <1 bpm) of the CARESCAPE
One monitoring device [118]. The other commercial devices
typically had MAEs within 1-3 bpm. In addition, a MAE of 0.62
breaths per minute was obtained for the respiratory rate, whereas
most of the existing devices typically have errors between 1 and
2 breaths per minute.

Our estimated SpO2 is accurate within 1.09%, which is better
than the Philips IntelliVue MX800 [119], which has an accu-
racy within ±2% at rest. Other commercial monitoring devices
were typically accurate within ± 2-3%, while commercial pulse
oximeters have mean absolute errors <2%. Furthermore, the
SBP and DBP estimations had mean absolute errors of 3.41
mmHg and 1.61 mmHg, respectively that showed comparable
performance to existing devices [117]. Nevertheless, the per-
formance of the proposed device requires rigorous validation
on a much larger group of people including patients. Table IV
presents a comparison between several state-of-the-art health
monitoring systems, including the proposed one.

VI. PERSPECTIVES AND RESEARCH CHALLENGES

As COVID-19 is a novel disease, the mitigation of the pan-
demic and care of patients currently poses several challenges
due to the limited understanding of disease progression, current
monitoring abilities and treatment options. With continuing
improvement of the understanding of the virus in addition to the
development of new technologies, the care of patients can largely
be ameliorated. Currently, health information of COVID-19
patients is mainly recorded after the confirmation of infection
and information regarding the health of patients prior to being
infected with COVID-19 is largely not known. Having a device
that can measure physiological parameters prior to the onset of
disease can be beneficial to healthcare workers and individuals to
monitor symptoms more accurately, and thus take preventative
measures earlier to prevent transmission.

Information collected over the long-term (both prior to and
after infection) can also allow for more accurate comparisons
between infected and non-infected individuals. This would be
especially useful for individuals who may be pre-symptomatic
or have minor symptoms not noticeable when outwardly self-
monitoring. This information will also be beneficial for allocat-
ing resources and monitoring trends to prepare for increases in
cases.

A monitoring device with multiple sensors also allows the
system to compensate for missing information from a faulty,
damaged or disconnected sensor(s) and still provide reason-
ably accurate medical information. In addition, the integration
of various sensors to provide information regarding several
physiological parameters can allow for medical professionals to
provide more specific care to individuals, particularly in the case
of multiple organs being affected (as detected by a monitoring
device). Having this additional information can also allow for
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TABLE IV
PERFORMANCE OF THE PROPOSED DEVICE COMPARED TO COMMERCIAL DEVICES

medical professionals to have a comprehensive understanding
of their patients’ health.

The pandemic comes with an additional challenge that lim-
its access to regular healthcare services for the elderly and
patients with cardiac and respiratory diseases due to visitor

restrictions imposed by the healthcare facilities. However, the
existing systems also limit the ability to assess patients with
cardiac and respiratory disease remotely on a more regular or
continuous basis [132],[133] that otherwise may help to identify,
predict, and monitor cardiovascular and respiratory problems
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remotely. Respiratory monitoring tools such as peak flow me-
ters are generally used to measure peak expiratory flow rates
(PEFR). However, its utility has been questioned, particularly
with low completion rates. Although mini-spirometry devices
and impedance oscillometry are available for in-home use, they
are, however, not routinely used due to their limited accuracy.
Furthermore, the bulky system used for cardiovascular health
monitoring are often obtrusive, prohibitive, and impractical for
regular in-home use, requiring patients to visit medical facilities
frequently. Therefore, there remains an unmet need for a portable
system to accurately quantify symptoms of cardiovascular and
respiratory diseases, and deterioration in cardiac and lung phys-
iology and functional capacity outside the hospital setting. Such
devices can potentially allow identifying at-risk populations and
closer monitoring for deteriorating patients outside the hospital
setting.

Furthermore, creating user-friendly technologies can allow
users to easily understand data collected about their health, and
allows for medical professionals to easily adapt to, use and
understand different devices and the information they provide.
Increasing the ease of use can also increase the likelihood
that individuals will continue to use monitoring devices for a
longer timeframe, which ultimately improves the understanding
of physiological parameters of COVID-19 patients and non-
infected individuals.

A fully integrated compact wearable monitoring system is
therefore indispensable for enabling in-home monitoring of pa-
tients of COVID-19 and other chronic diseases. The successful
implementation of the proof-of-concept wearable monitoring
device thus enables us to develop a fully integrated compact
wearable monitoring system in future. Such a system may com-
prise of two parts – a disposable part, which includes 2 commer-
cial Ag/AgCl ECG electrodes and a reusable part that includes
the waterproof and disinfectable enclosure, main circuit board, a
rechargeable battery and a reusable patch with two female-type
snap buttons to collect ECG signals from the ECG electrodes.
The main circuit board contain the accelerometer, interface for
the microphone, the PPG sensor, temperature sensor, the BLE
module and a microcontroller.

The PPG sensor and the temperature sensor will be exposed
and in contact to the skin through the openings made on the lead
of the enclosure, the reusable patch, and the disposable patch.
The enclosure will be made water resistant (Ingress Protection:
IP67) with a double-sided adhesive gasket, similar to the wa-
terproof cell phones. In addition, we aim to make use of the
concept of sensor fusion to estimate the lung functions and lung
capacity using the information obtained from different sensors.
However, the accuracy of the sensor fusion technique can be
affected if the signals from different sensors are not synchro-
nized. For example, in the case of cuffless BP estimation, BP is
estimated from the PTT. Therefore, proper time-synchronization
is required between ECG and PPG waveforms to ensure accurate
calculation of PTT, and BP, thereby.

In addition, the data from the accelerometer, which is used to
sense the chest movement, can be fused with the acoustic signal
from the microphone to enhance the accuracy of the audio-based
cough monitoring. The accelerometer data can also be used to
estimate and correct for motion artifacts to increase the quality

Fig. 19. A fully integrated compact wearable health monitoring system.

of the ECG and PPG signals. Therefore, the accelerometer also
needs to be time-synchronized with other sensors. To address
this issue, a synchronized global clock can be used to sample
the signals from all sensors. Alternately, the global clock can
be used to insert timestamps for each signal that will allow
processing the data from different sensors by using their timing
information. Fig. 19 presents the diagram of a fully integrated
compact wearable health monitoring system.

Another important issue for the wearable device is the lifetime
of the battery after one charge. Since the suggested quarantine
time for a COVID-19 patient is 14 days, a minimum 14-day
lifetime for the battery of the COVID-19 monitoring system is
necessary to enable continuous and uninterrupted monitoring
after one full charge cycle. Therefore, the power requirements
of the signal conditioning and processing circuits of the system
should also be taken into the consideration at the initial stage of
component selections. Some other controlling techniques can
also be employed. For example, the system can be designed
to have different operation modes such as sleep mode, normal
mode, and active mode. Each mode will run at different data sam-
pling clocks and different data acquisition frequencies. Based on
the lung function of the patient, the system can automatically
enter different operation modes. If the lung function of the
patient is improving, the data acquisition frequency can be
reduced. On the contrary, if the lung function deteriorates, the
data acquisition frequency can be increased. Wireless charging
techniques or energy harvesting techniques can potentially be
used to enhance the operating time of the system to enable
continuous monitoring for a long period of time.

VII. CONCLUSION

Although preventative measures to reduce the spread of the
SARS-CoV-2 currently exist, improved methods of symptom
monitoring can largely reduce the community spread of the
virus, in addition to enhancing the monitoring of general phys-
ical health. Accurate monitoring of physiological parameters
without the need for periodic testing or frequent hospital visits
is highly beneficial, especially during the COVID-19 pandemic.
The cardiovascular system and respiratory system are both
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complex, integrated and are implicated in several diseases. The
cardiovascular system is an integral part of the transport of
oxygen, nutrients, and by-products of metabolism. Failure of this
mechanism leads to acute or chronic heart failure. Symptoms of
chest pain, palpitations, shortness of breath, fatigue and chest
tightness are possible symptoms suggesting an increase in the
workload presented. This may be due to an impairment in
cardiac contractility, reduced blood supply or oxygenation to the
myocardium and/or vascular disease. Furthermore, respiratory
physiology maintains homeostasis, providing oxygen uptake
and carbon dioxide elimination from the body. If this equilibrium
is not properly maintained, respiratory failure may result. Symp-
toms of cough, shortness of breath, wheeze and chest tightness
are the body’s way of alerting patients of an increased workload,
by either an acute infection or an impairment in the muscles of
respiration, airway obstruction, vascular disease, and/or alveolar
gas exchange. Having an improved understanding of one’s phys-
ical health may also improve mental well-being, by decreasing
anxiety surrounding one’s health condition. To date, there exists
several monitoring devices that assist with the identification, pre-
diction and monitoring of acute and chronic heart diseases and
respiratory diseases. The use of simple, wearable, non-obtrusive
sensor devices with remote monitoring can reduce hospital visits
and admissions. Advances in engineering coupled with a simple,
easy to use design in an outpatient setting is the way of the future.
In conclusion, the proposed device showed promising results in
this preliminary stage of development with good compliance
to the clinical standards for measuring a variety of parameters
including heart rate, saturated blood oxygen levels, systolic and
diastolic blood pressure, respiratory rate and lung volume. The
device is able to collect all of these signals using a simple,
wearable chest-based device, which allows for flexibility and
comfort not found in many existing commercial devices, span-
ning both consumer-based and clinical models. By accurately
and remotely monitoring several physiological parameters in
a user-friendly manner, this device holds great promise for
ameliorating healthcare. Nevertheless, the performance of the
proposed device must be validated on a much larger and diverse
group of people including patients that we plan to address in our
future work.
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