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ABSTRACT The paper presents experimental studies of an asymmetric multi-bolted connection at the
preloading state. Design assumptions and structure of a stand for testing forces in bolts in a multi-bolted
connection were introduced. The tightening process was conducted with a wrench, monitoring the values
of the forces in the bolts using a calibrated measuring system based on resistance strain gauges. The
measurement data was processed using the Matlab R2018b Simulink program. Two methods of bolt
tightening were tested: in one pass (in which the bolts were tightened in a specific sequence and each bolt was
tightened immediately to the full preload value) and in several passes (in which the bolts were also tightened
sequentially but the full preload value was applied to the bolts in three tightening cycles). The influence of
the method and sequence of bolt tightening on the distribution of force values in bolts during and at the end
of the preloading state was investigated. The results were statistically processed and summarized in the form
of diagrams showing the distributions of normalized force values in the bolts for all the considered tightening
cases. The tests were carried out for the selected connection and an assembly method was proposed which
would make it possible to achieve the most even distribution of the force values in the bolts at its end, and
thus before the connection exploitation state.

INDEX TERMS Bolt tightening sequence, multi-bolted connection assembly, preload monitoring, resistance

strain gauges.

I. INTRODUCTION

Multi-bolted connections used as nodes in engineering struc-
tures are critical components of many complex systems that
play a key role in their integrity and stability. Therefore, their
research and analysis are still undertaken by scientists, inter
alia, in [1]-[3].

The essence of multi-bolted connections is the occur-
rence of two states of tension in their case. The first one
is the preloading state, which is the subject of the paper
and which precedes the second state, i.e. the connection
exploitation state. Very often, the preload is necessary for
the proper functioning of the connection under operating
conditions [4]-[6]. Depending on these conditions, standard
bolts or high-strength bolts can be used in preloaded con-
nections. The second of these are made in the following
classes of mechanical properties: 8.8, 10.9, and 12.9. In accor-
dance with PN-EN 1993-1-8 standard [7], two systems of
high-strength preloadable bolts can be adopted for structural
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applications in Europe, namely the HR system and the HV
system. The characteristics of these systems are presented,
among others, in papers [8], [9].

Tightening the bolts is also related to the variability of
the preload values in individual bolts during the connection
assembly process, and thus with uneven distribution of the
preload in the bolts forming the connection at the end of this
process [10], [11]. There is also a long-term loss of preloading
in the bolts [12]. Taking all these phenomena into account,
in many cases, precise tightening of the connection is required
in order to obtain the appropriate (sometimes normalized)
level of the bolt forces. The following experimental methods
are then used to monitor bolt forces or detect loosening:

--Torque wrench method [13]-[15].

--Measurement with the use of resistance strain gauges,
both glued to the outside of the bolt [16]-[21] and inserted
into the hole inside the bolt shank [22]-[24].

--Ultrasonic detection [25]-[27].

--Application of direct tension indicators [28], [29].

--Acoustic method [30], [31].

--Impedance method [32]-[34].

VOLUME 9, 2021


https://orcid.org/0000-0002-8323-1335
https://orcid.org/0000-0001-7254-6051

R. Grzejda, A. Parus: Experimental Studies of Process of Tightening Asymmetric Multi-Bolted Connection

IEEE Access

In addition to the above-mentioned traditional methods
of assessing bolt forces, there are several novel methods.
Nazarko and Ziemianski [35] have used the phenomenon
of elastic wave propagation, introduced and measured by
piezoelectric transducers, to identify the forces in the bolts in
a flange connection. The relationships between the measured
signal changes and the variations of the forces in the bolts
were assessed in this case using artificial neural networks.
Sun et al. [36] have proposed a bolt-loosening detection
method based on the binocular vision. Also, a vision-based
method for the bolts looseness detection has been shown by
Wang et al. [37].

The conducted review shows that currently there are many
methods of monitoring bolt forces and detecting loosening
in bolted connections. In order to select the appropriate test
method, one can take into account the costs and accuracy
associated with it [38]. The most popular method of mea-
suring bolt forces is the method based on the use of resis-
tance strain gauges. In addition to ultrasonic sensing, it is
the method with the highest accuracy [35]. Therefore, this
method has been also implemented in the presented paper.

Until now, experimental studies of the tightening process
of multi-bolted connections have been carried out mainly for
connections showing geometric symmetry. In these works,
both tightening in one pass [39], [40] and in several passes
were considered [41], [42]. Therefore, the aim of the pre-
sented paper was to compare the above-mentioned methods
of bolt tightening. Additionally, in order to add an element
of universality to the tests, they were performed for the
case of an asymmetric multi-bolted connection. The research
described in this paper will be used to verify the modeling
method of the tightening process of arbitrary multi-bolted
connections presented in [43], [44].

Il. RESEARCH STAND
Before starting the creation of the test stand, the following
assumptions were taken into account:

--Stand will only be used to measure the force values in the
bolts.

--External dimensions of the entire connection will be
selected based on the analysis of the sizes of available strain
gauges and the corresponding required dimensions of cylin-
drical surfaces on the shank of bolts used in the connection.

--Elements will be joined by an odd number of bolts.

--Connection will be characterized by an asymmetric con-
tact surface between the joined elements.

Taking into account the above-mentioned assumptions, a
multi-bolted connection was design and built, the diagram of
which is shown in Fig. 1. The tested connection consists of
two plates (2) and (3) with a thickness of 28 mm, fastened
with seven M10x1.25 bolts (5) tightened by high hexagonal
nuts (4). The connection is inclined from the vertical by
30 deg. The plate (2) is welded to the upper plate (1) and
the plate (3) to the base (6). The height of the test stand is
266 mm. All joined elements are made of 1.0577 steel. The
bolts are made in the mechanical property class 8.8, and the

VOLUME 9, 2021

(a) Diagram

(b) General view

FIGURE 1. Tested multi-bolted connection (1 - upper plate, 2,3 - joined
plates, 4 - high hexagonal nut, 5 - M10x1.25 bolt, 6 —base).

nuts in the mechanical property class 8. In order to minimize
the hysteresis phenomenon during calibration, the bolts have
been heat treated. However, to minimize the influence of the
number of contact joints in the multi-bolted connection on the
accuracy of the modeling of the tightening process (planned
at a later date), washers were not included in the connection.
The fasteners used in the test cannot be classified according
to the PN-EN 1993-1-8 standard [7], as it does not provide for
M10 bolt systems without washers. They are special bolt-nut
systems and will be used to validate the bolt modeling method
described in [45].

The structure of the multi-bolted connection described
in the paper is to enable testing of this connection under
the influence of external loads directed at a given angle in
relation to the contact plane of the joined elements using the
INSTRON 8850 testing machine.

The contact surface between the joined elements is shown
in Fig. 2. The area of this surface is limited by a circle with
a diameter of 175 mm. Its size is less than 143 cm? and does
not exceed the required pressure limit for 1.0577 steel.

@ ®
® @ ®
0 @)
®
FIGURE 2. Diagram of the contact surface between the joined elements.

The bolts in the connection have been arranged according
to the recommendations given in the PN-EN 1993-1-8 stan-
dard [7]. The force changes in each bolt were measured using
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four TENMEX TFxy-4/120 strain gauges, with two axes of
measuring ladders arranged perpendicularly to each other,
glued to the bolt in a full strain gauge bridge system. The
view of the bolts is shown in Fig. 3.

FIGURE 3. View of the bolts.

The reading and processing of experimental data was per-
formed with the use of the measuring system, the view of
which is shown in Fig. 4.

IESAM data acquisition system i

- dSPACE connection terminal

NDN power supply ; ——
Multi-bolted connection

FIGURE 4. View of the research stand.

On the described stand, it is possible to conduct a wide pro-
gram of experimental studies, including, inter alia, testing of
a multi-bolted connection in the preloading state at different
values of the preload and with various methods of tightening.

Ill. RESEARCH PROCEDURE

The value of the bolts preload was determined as equal to
22 kN based on the PN-EN 1993-1-8 standard [7] and the
analysis of the permissible values of the pressure between the
nuts and the lower joined element. The process of tightening
the multi-bolted connection was carried out for two assembly
methods: in one pass and in three passes. The comparison of
these methods is summarized in Table 1.

In each of the methods mentioned in Table 1, tests were
performed with the six different tightening sequences shown
in Table 2. Each experiment was repeated three times. In the
further part of the paper, the values of bolt forces defined as
the arithmetic mean of the data obtained in these experiments
are presented.

IV. RESEARCH RESULTS
The distributions of the mean values of forces F),; in the bolts
related to the value of the initial force Fo during tightening
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TABLE 1. Methods of tightening the multi-bolted connection.

Symbol Quantity* Value
Tightening in one pass
Fy preload of the i-th bolt F, =22 kN
Tightening in three passes
Foi preload of the i-th bolt in the first pass ~ 0.2-F,;=4.4 kN
Foi preload of the i-th bolt in the second 0.6-F,;=13.2kN
pass

Foi preload of the i-th bolt in the third pass ~ F),; =22 kN

4={1,2,..,7}.

TABLE 2. Sequences of tightening the multi-bolted connection.

Type Sequence
1 — tightening the bolts sequentially to the = 1-2-3-4-5-6-7
right
2 — tightening every second bolt in arow  1-3-5-7-2-4-6
3 — tightening every third bolt in a row 1-4-7-3-6-2-5
4 — tightening every fourth bolt in a row 1-5-2-6-3-7-4
5 — tightening every fifth bolt in a row 1-6-4-2-7-5-3
6 — tightening the bolts sequentially to the  1-7-6-5-4-3-2

left

TABLE 3. Z index values (%).

Type Tightening in one pass Tightening in three passes
1 1.06 0.45
2 2.07 0.48
3 1.14 0.42
4 1.16 0.43
5 1.23 0.54
6 0.94 0.42

the multi-bolted connection in one pass is shown in Fig. 5.
Analogous diagrams for the case of tightening the connection
in three passes are presented in Fig. 6.

Based on the analysis of the graphs in Figs. 5 and 6, the
following conclusions can be drawn:

1) The value of the bolt tightening force may change after
applying the preload to successive bolts.

2) The variability of the bolt forces value during the
assembly depends on the bolt tightening sequence.
The influence of this phenomenon can be reduced
by tightening the multi-bolted connection in several
passes.

3) The greatest decrease in force in a given bolt
occurs after tightening the bolt located in the
immediate vicinity (e.g., the greatest decrease in
force in the bolt No.l occurs after tightening bolts
No. 2 and 7).

4) During tightening a multi-bolted connection, tighten-
ing consecutively two bolts in the immediate vicinity of
the previously preloaded bolt should be avoided (in this
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FIGURE 5. Distributions of the bolt forces during tightening the connection in one pass.

case two steps follow each other with the greatest force
drops in the previously preloaded bolt, an example of
which is tightening according to type 2).

The distributions of the mean values of forces F),; in the
bolts related to the value of the initial force Fyo at the end
of tightening the multi-bolted connection, depending on the
method of performing the tightening process, are presented
in Fig. 7.
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Based on the analysis of the graphs in Fig. 7, the following
conclusions can be drawn:

1) The distributions of the preload in individual bolts at
the end of the assembly of the multi-bolted connection
may be characterized by some unevenness.

2) The variability of the bolt force value at the end of the
assembly depends on the bolt tightening sequence.
The influence of this phenomenon can be reduced
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FIGURE 6. Distributions of the bolt forces during tightening the connection in three passes.

by tightening the multi-bolted connection in several
passes.
The comparative analysis of the waveforms presented

in Fig. 7 was carried out on the basis of the Z index defined
as:

max min
Fpl. —F

pi
Z = || - 100 (1
pi
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where /" denotes the maximum mean value of the bolt
force in the considered distribution of forces after the
tightening process, and F "l-‘i“ denotes the minimum mean
value of the bolt force in the considered distribution of forces
after the tightening process.

The Z index values obtained for individual tightening
methods are presented in Table 3. Based on its analysis,
the following conclusions can be drawn:
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FIGURE 7. Distributions of the bolt forces at the end of tightening the connection.

1) Tightening bolts in several passes leads to a more even
distribution of bolt forces compared to tightening in one
pass.

2) Inthe case of some connections (such as the considered
several-bolted connection), tightening the bolts sequen-
tially may lead to a relatively even distribution of bolt
forces at the end of the tightening process.

3) The method of bolt tightening according to type 3 in
three passes is recommended as the best among the
tested methods of tightening.

VOLUME 9, 2021

V. CONCLUSION

In the paper, an original laboratory stand intended for
testing a selected asymmetric multi-bolted connection is
presented. The tests were carried out under the condi-
tions of initial tightening the connection. Guidelines for
planning the preloading operation of multi-bolted con-
nections are given. They ensure the smallest scatter of
preload after tightening the bolts. The stand can be used
for further studies in the field of external loading of the
connection.
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