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ABSTRACT The assessment of liver fibrosis is usually required in the diagnostic and treatment procedures
for chronic liver disease. In this paper, we propose a deep convolutional neural network (DCNN) with multi-
feature fusion (DCNN-MFF) to extract and integrate features from ultrasound (US) B-mode image and
Nakagami parametric map for significant liver fibrosis recognition. The DCNN-MFF model mainly consists
of three branches, among which the first two branches are used for extracting deep features respectively
from the US B-mode image and the Nakagami parametric map, while the remaining branch is designed for
extracting quantitative US features from the Nakagami parametric map. At the backend of the DCNNmodel,
the extracted deep and quantitative features are fused together for final decision making. The performance
of the DCNN-MFF model was evaluated on an animal dataset collected from 84 rats with 168 liver lobes
under various fibrosis stages. Across five-fold cross-validation, the accuracy, sensitivity, specificity, and
area under the receiver operating characteristic curve (AUC) achieved by the proposed DCNN-MFF model
for significant liver fibrosis recognition were respectively 0.827 (95% confidence interval [CI] 0.762-
0.881), 0.821 (95% CI 0.729-0.892), 0.836 (95% CI 0.731-0.912), 0.869 (95% CI 0.809-0.916), which are
significantly better than those provided by the comparative methods.

INDEX TERMS Liver fibrosis, ultrasound, deep learning, Nakagami imaging, feature fusion.

I. INTRODUCTION
Chronic liver disease (CLDs) is a significant cause of morbid-
ity and mortality on a global scale [1]. The excessive accu-
mulation of extracellular matrix proteins caused by CLDs,
such as virus hepatitis, non-alcoholic fatty liver disease, drug-
induced liver injury, and immunological liver injury [2], [3],
may result in different levels of liver fibrosis. According
to the METAVIR scoring system [4], [5], liver fibrosis can
be classified into five stages: S0, no fibrosis; S1, minimal
fibrosis; S2, moderate fibrosis; S3, severe fibrosis; and S4,
cirrhosis. For better managements of patients with CLD,
a precise and periodical estimation of the liver fibrosis stage
is important for establishing the optimal time and strat-
egy of therapy as well as for predicting the response of
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treatment. In particular, the identification of significant liver
fibrosis, which is defined as fibrosis stages ≥S2 [6]–[9],
is of significant clinical importance as it signals the neces-
sity for antifibrotic treatments [6], [10] for patients with
CLD. Currently, histopathological examination based on liver
biopsy is still regarded as the gold standard for liver fibro-
sis staging. However, liver biopsy is invasive, and may be
subject to the sampling error and cause other complica-
tions [11], [12]. Moreover, it is impractical to perform liver
biopsy repeatedly for monitoring the progress of liver fibrosis
state.

In clinical practice, for repeatable examinations of liver
fibrosis, conventional reading on ultrasound (US) B-mode
images is usually performed to inspect the changes in liver
echogenicity and nodularity as well as signs of portal hyper-
tension. However, the diagnosis based on visual inspection
of US B-mode images is subjective and empirical. The
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misdiagnosis from inexperienced radiologists may lead to an
inaccurate treatment to the liver fibrosis. As an alternative
to conventional reading, computer aided diagnosis (CAD)
systems have been developed for more convenient and objec-
tive assessments of liver fibrosis. Conventional CAD sys-
tems usually extract handcrafted features from US B-mode
images and rely on a traditional classifier for fibrosis clas-
sification. For instance, Mojsilovic et al. [13] developed
a filter bank method to extract wavelet features from liver
B-mode images, after which a Bayes classifier was used for
liver cirrhosis classification. Yeh et al. [14] collected image
features based on gray level concurrence and nonsepara-
ble wavelet transform and used support vector machine as
the classifier for liver fibrosis classification. Wu et al. [15]
assessed US liver images by making use of a variety of
texture features, including the spatial gray-level dependence
matrices, the Fourier power spectrum, the gray-level dif-
ference statistics, and the Laws texture energy measures.
They used Bayes classifier and the Hotelling trace crite-
rion to evaluate the performance of the handcrafted features.
In recent years, studies on deep learning, particularly deep
convolutional neural network (DCNN), have mushroomed.
This can be evidenced by the explosive growth of DCNN-
based applications including but not limited to image clas-
sification [16], object detection and recognition [17], and
natural language processing [18]. In contrast to traditional
classification methods, DCNN automates the feature extrac-
tion procedure, and the features extracted by a DCNN model
is usually in a larger amount. Due to the powerful feature
learning ability, there is a trend to apply DCNN methods for
solving more specialized problems, such as video surveil-
lance [19], [20], remote sensing image processing [21], [22]
and medical image analysis [23]. Particularly, the applica-
tion of DCNN models for liver fibrosis classification in US
B-mode images has been also investigated. For examples:
Meng et al. [24] concatenated a VGGNet [25] and a fully
connected network (FCNet), with the former for deep feature
extraction and the latter for classification, for stratifying liver
fibrosis in US B-mode images based on transfer learning.
Mitani et al. [26] investigated the effect of image augmenta-
tion on a DCNN in classifying a cirrhosis liver on US B-mode
images. Lee et al. [27] tested a set of wellknownDCNNmod-
els, such as AlexNet [28], GoogleNet [29], and VGGNet,
and trained them on liver US B-mode images by leveraging
the transfer learning technique. They found that VGGNet
had better performance than the other DCNN models for
liver fibrosis classification. The above-mentioned intelligent
algorithms are developed based on B-mode images, which
are constructed from post-processed US radiofrequency (RF)
signals, i.e. US echoed waves. The B-mode imaging process
involves a series of technical operations including filtering
of the RF signals, envelope detection, log compression, and
gain/dynamic range adjustments. These imaging operations
may lead to information loss or distortion of the raw RF
signals, which to some extent restricts the performance of
B-mode image-based algorithms.

Rather than using B-mode images, quantitative US
(QUS) [30] performs analysis based on raw RF signals.
Since the RF signals retain intact frequency information of
echoed US waves, better diagnostic results can be expected
by exploring the information carried by RF signals for anal-
ysis. To date, several QUS techniques with potentials for
assessing liver fibrosis have been developed, which can be
classified into two main categories: envelope statistics and
spectral-based approaches. The approaches based on enve-
lope statistics utilize a particular model to measure the dis-
tribution of RF echo envelope, such that the underlying
information of tissue microstructures can be explored. Var-
ious models, such as Nakagami model [31], Rayleigh model
and homodyned-K model [32], have been studied within a
spectrum of biomedical US applications [33]. On the other
hand, spectral-based approaches are built upon attenuation
parameters or backscatter coefficients. The former includes
the controlled attenuation parameter [34] and attenuation
coefficient slope (ACS) [35], while the latter includes inte-
grate backscatter coefficient (IBC) [36], [37], the effective
scatterer diameter (ESD) and the effective acoustic concentra-
tion (EAC) of scatterers [38]. The spectral-based approaches
also have potentials to uncover tissue microstructures, bene-
fitting from the analysis of amplitude, frequency and phase
of RF signals. Among the aforementioned QUS methods,
the Nakagami model represented by a shape parameter m
and scaling parameter � is most frequently used for char-
acterizing liver fibrosis [31]. In particular, images can be
constructed based on the estimation of Nakagami-m param-
eter, which can be used for liver fibrosis analysis, such as
the works in [39]–[41]. Compared with B-mode image-based
algorithms, QUS techniques have the advantage to describe
intrinsic acoustic characteristics associated with tissue micro-
structures [42], [43]. However, the number of feature vari-
ables available for QUS development is typically small
(usually less than 10). We hypothesize that the performance
could be further improved by increasing the number of feature
variables.1 As mentioned, Nakagami-m parameter can be
estimated from the RF signals for liver fibrosis assessment,
and more importantly, the parameter can be imaged for more
convenient analysis. This suggests that, given the raw RF
signals, a Nakagami-m parametric map can be generated
parallel to the construction of B-mode images, as shown in
Fig. 1. In light of this, it would be natural to apply the deep
learning methods to extract and fuse features from both the
Nakagami-m parametric map and B-mode image for better
assessments of liver fibrosis.

In this paper, we propose a DCNN model with multi-
feature fusion (DCNN-MFF) to extract and integrate fea-
tures from US B-mode image and Nakagami parametric
map for recognizing significant liver fibrosis. The pro-
posed DCNN-MFF model mainly consists of three branches,
among which the first two branches are used for extracting

1The proposed hypothesis has been validated by the ablation test results
presented in Section III-A.
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FIGURE 1. Graphical illustration of B-mode and Nakagami parametric
imaging.

deep features respectively from the US B-mode image and
the Nakagami parametric map, while the remaining branch
is designed to extract quantitative US features from the
Nakagami parametric map. At the backend of the DCNN
model, the extracted deep and quantitative features are fused
to a single vector for final decisionmaking of the liver fibrosis
state (whether significant or not). Experimental results on
an animal dataset show the effectiveness and efficacy of the
proposed DCNN-MFF model for significant liver fibrosis
recognition.

The main contributions of this paper are as follows:

1) A new deep convolutional neural network (DCNN)
is devised to extract and combine features from US
B-mode image and Nakagami parametric map for sig-
nificant liver fibrosis recognition. Particularly, in the
developed DCNN model both deep and handcrafted
features are extracted from the Nakagami paramet-
ric map, which are integrated with the deep features
stemming from the US B-mode image for fibrosis
classification.

2) The added values of deep and handcrafted features
extracted from the Nakagami parametric map to the
deep features of US B-mode images for recognizing
significant liver fibrosis are validated on a rat model
cultured by injecting different doses of dimethylni-
trosamine into the rats for forming livers with various
fibrosis stages.

The rest of the paper is organized as follows. In section II
describes the data acquisition procedures and illustrates the
specific details of the proposed DCNN-MFF model. Exper-
imental results are given in Section III, followed by discus-
sions in Section IV. Finally, Section V concludes the paper.

II. MATERIAL AND METHODS
A. DATA ACQUISITION AND PROCESSING
1) ANIMALS
The animal study was approved by the Experimental Ani-
mal Ethics Committee of Sun Yat-sen University. In our
study, ninety male clean Sprague-Dawley (SD) rats weighing
between 220g to 250g were randomly divided into seven
groups:10 for each of groups 1 to 3, 15 for groups 4 to 7.
All the rats were fed with the same formula and cultured in a

sterile and constant environment, where the temperature and
humidity were maintained at 20◦C to 60◦C and 40% to 70%.
Particularly, group 1 was without any drug injection, serving
as a control group. Groups 2, 3, 4, 5, 6, and 7 were injected
intraperitoneally with dimethylnitrosamine (DMN) at a dose
of 1µL (diluted 1: 100 with 0.15 M sterile NaCl) per 100g
body weight. The drug injection period for each group were
respectively 1, 2, 3, 4, 5 and 6 weeks (for each week, the
drug was injected in the first 3 consecutive days). Two weeks
after the completion of drug injections for each group, DMN-
induced liver fibrosis could be formed and vivo US examina-
tions on the rat livers were conducted to collect US images
and RF signals. Immediately after the US examination, the
rats in the group were sacrificed, and the left and right liver
lobes were excised for separate histopathologic examination.

2) EXAMINATIONS
As mentioned, in our study each rat underwent a US exami-
nation in vivo, followed by a histopathological examination.
Before US examination, the rats were fasted and anesthetized
with 1.5% Pentobarbital Sodium 30mg/kg. Then, a Sonix
TOUCHUS system (Richmond, Canada) equippedwith a lin-
ear array probe (L14-5/38) was used to capture the US images
of the rat liver as well as the corresponding RF signals before
US imaging. The central frequency of the probe is 6 MHz
and the sampling frequency is 40MHz. Immediately after the
US exam, the examined rats were sacrificed and the left and
right liver lobes were excised for separated histopathologic
examination. The sampled liver tissues were taken and fixed
in 10% formalin solution for at least 24 hours. After washing
and dehydration, the samples were embedded in paraffin wax
and sections to a thickness of 5 µm. The paraffin slices
were stained with hematoxylin-Eosin and Masson and then
analyzed under a microscope (BX41, Olympus, Pittsburgh,
PA). Finally, according to the METAVIR scoring system, the
severity of fibrosis in the rat livers was classified into 5 levels
from S0 to S4 as follows: S0 = no fibrosis, S1 = enlarged
portal fibrosis, S2 = periportal fibrosis ± periportal septa,
S3 = architectural distortion but no obvious cirrhosis and
S4 = cirrhosis (probable or definite). Details on the number
of rats and liver samples under various fibrosis stages are
presented in Table 1.

3) NAKAGAMI-M PARAMETRIC IMAGING
The Nakagami distribution was originally proposed to model
radar echoes [44]. The Nakagami distribution also fits well to
the probability density function (pdf) of the ultrasonic enve-
lope. Mathematically, the pdf of the ultrasonic backscattered
envelope R can be represented by

f (R) =
2mmR2m−1

0(m)�m exp(−
m
�
R2)U (R), (1)

where 0(·),U (·) are respectively the gamma function and the
unit step function, m and � represent the Nakagami shape
parameter and scaling parameter, respectively. The Nakagami
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TABLE 1. Number of rats, liver samples and histopathologic results.

parameters m and � can be calculated according to the fol-
lowing formulas:

� = E(R2), (2)

m =
[E(R2)]

E[R2 − E(R2)]
, (3)

where E(·) denotes the operation of expectation.
Extensive studies [45]–[48] have shown that Nakagami-m

parameter is able to uncover tissue characteristics through the
quantification of scatterer concentrations in the tissue. Thus,
in our work, parameter imaging was performed to obtain
the Nakagami parametric map for assessing liver fibrosis.
The imaging procedure goes as follows. For each RF data
point, a squared window centered at this point was used
to estimate the Nakagami parameter m. First, the envelope
for the RF data within the squared window was calculated.
Then, by modelling the pdf of the envelope with Nakagami
distribution denoted by Eq. (1), a Nakagami-m parameter
can be estimated in terms of Eq. (3). Thereafter, the pixel
in the Nakagami parametric map, with the same coordinates
to the RF data point at the window center, was assigned
to be the value of the estimated Nakagami-m parameter.
As such, a Nakagami parametric map with the same size
of the US B-mode image could be obtained by sliding the
window horizontally and vertically in a step of one data point.
Note, the size of the sliding window is a key factor to control
the imaging quality of the Nakagami parametric map. The use
of a larger sliding window yields more stable estimations of
the m parameter, but the corresponding image resolution of
the Nakagami parametric map is lower. In our study, the side
length of the sliding window was empirically set to be a value
of ten times the pulse length of the US wave.

4) ROI SEGMENTATION
To limit our focus on the assessment of fusing features from
the US image and parametric map for fibrosis classification,
we developed a specialized softwarewith graphical user inter-
face to allow users manually delineate on the US image for
identifying the region of interest (liver parenchymal area).
Particularly, in order to get the region of interest (ROI) of
RF signals, we first reconstructed the US images from the
RF signals by following the conventional B-mode imaging

procedures including envelope detection and log compres-
sion. Then, the reconstructed images were viewed by a skilled
sonographer to manually delineate the areas of the left and
right liver lobes, which were then mapped back to the cor-
responding RF signals for identifying the ROIs. Since the
degrees of liver fibrosis in the left and right liver of the rats
may be different, each liver lobe is regarded as an independent
data sample. Thus, we finally obtained 168 data samples, each
of which contains ROI of US B-mode image as well as the
corresponding RF signals.

B. THE PROPOSED DCNN-MFF MODEL
As shown in Fig. 2, the proposed DCNN model with
multi-feature fusion (DCNN-MFF) mainly consists of three
branches from Branch-1 to Branch-3. Branch-1 and Branch-2
are used for extracting deep features respectively from the
segmented US B-mode image and Nakagami parametric
map, while Branch-3 is dedicated to collecting handcrafted
quantitative features from the Nakagami parametric map.
At the backend of the model, the deep features derived from
Branch-1 and Branch-2 are integrated to single feature vector,
which is then fused with the handcrafted quantitative features
from Branch-3 to output a 512-dimensional feature vector for
final differential diagnosis between significant liver fibrosis
(≥S2) and non-significant liver fibrosis (<S2). In what fol-
lows of this subsection, we shall describe in depth the various
components of the DCNN-MFF model.

1) BASELINE NETWORK
In Branch-1 and Branch-2 of the DCNN-MFF model, deep
features are extracted by using a baseline network modified
from VGG16 [25]. As shown in Fig. 2, the baseline net-
work contains 13 convolutional layers (CLs, indicated by red
arrows) which can be grouped into five convolutional blocks
(CBs): each of the first two CBs has 2 CLs, while each of the
rest CBs has 3 CLs. The 13 CLs are directly borrowed from
VGG16, as the stacking of multiple CLs improves the ability
of the DCNN model to extract complex high-level features.
Right after the 13 CLs, global average pooling(GAP) [49]
is used to integrate the feature maps of the last CLs into
a 512-dimensional feature vector. This is different from the
original VGG16, which uses fully connected (FC) layers for
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FIGURE 2. Overview of the proposed DCNN model. Branch-1 and Branch-2 are used for feature extraction from US B-mode image and
Nakagami parametric map, respectively, and Branch-3 is used for manual feature extraction from the Nakagami parametric map.

feature vector extraction. Such a modification aims to reduce
the number of parameters in the model, since a model with
the larger number of parameters is prone to overfit, espe-
cially when there are no sufficient data to be used for model
training. Compared with the FC layer with a large number of
parameters, GAP has no parameters to be learned, and thus
replacing the FC layers with GAP can alleviate the overfitting
problem to some extent. The baseline network is used by
Branch-1 and Branch-2 to extract deep features respectively
from US B-mode image and the Nakagami parametric map.

2) HANDCRAFTED QUANTITATIVE FEATURES
In order to enhance the performance of the DCNN model,
a set of handcrafted quantitative features from the Nakagami
parametric map (Branch-3) were extracted to assist the deep
learning network for decision making. Specifically, by fol-
lowing the feature definitions in Radiomics [50], a total
of 73 handcrafted features were extracted from the Nakagami
parametric map, including 14 statistics features (mean,
median, maximum, minimum, range, mean absolute devia-
tion, root mean square, variance, standard deviation, skew-
ness, kurtosis, uniformity, energy, entropy) and 59 texture
features derived from the Gray-Level Co-occurrence Matrix
(GLCM), Gray-Level Run-Length Matrix (GLRLM), Gray-
Level Size ZoneMatrix (GLSZM), NeighborhoodGray-Tone
DifferenceMatrix (NGTDM). These handcrafted quantitative
features extracted in Branch-3 is further fused with the inte-
grated deep features of Branch-1 and Branch-2 for fibrosis
classification.

3) FEATURE FUSION
As shown in Fig. 2, there two times of feature fusion in
the proposed DCNN-MFF model. The first one is the fusion

of the deep features from US B-mode image (Branch-1)
and the deep features from the Nakagami parametric map
(Branch-2), while the other one is the fusion of handcrafted
quantitative features (Branch-3) and the integrated deep fea-
tures of Branch-1 and Branch-2. In general, concatenation is a
straightforward method for feature fusion. However the con-
catenation method only uses the first-order information of the
feature, but fails to take advantage of the correlation between
different features. To seek for a better representation capac-
ity, we employed the multi-modal low-rank bilinear pooling
approach [51] for feature fusion. Specifically, given two dif-
ferent feature vectors, x ∈ Rm and y ∈ Rn, a multi-modal
bilinear model can be formulated to output a o-dimensional
feature vector z =

(
UT x

)
�
(
VT y

)
, where U ∈ Rm×o

and V ∈ Rn×o are two factorized tensors to be learned, �
denotes the element-wise multiplication of two vectors. The
approach can be easily implemented by combining some
commonly-used layers such as fully connection, element-
wise multiplication, dropout, and normalization [52]. as sum-
marized in Fig. 3. After feature fusion, the fused features are
further processed by two FC layers (gray arrows indicated
in Fig. 2) to output the final recognition result. The first
FC layer has 512 neurons activated by rectified linear unit
(ReLU) [53], while the last FC layer has 2 neurons (corre-
sponding to two class labels: 0, non-significant liver fibrosis;
1, significant liver fibrosis) activated by the softmax function
to output the final class probabilities.

4) MODEL PARAMETERS
The configuration of the proposed DCNN model is summa-
rized in Table 2. As mentioned earlier, the 13 CLs of the
baseline model for Branch-1/2 are borrowed directly from
the VGG16 network. We suppose that better classification
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FIGURE 3. Flowchart of multi-modal factorized bilinear pooling for
feature fusion.

results might be obtained by properly adjusting the model
parameters of the baseline model, but the hypothesis should
be evaluated by conducting additional relevant experiments.
Since the aim of our study is mainly to examine the effec-
tiveness of fusion of features drawn from various US image
resources, the original setting of the 13 CLs in VGG16 is
maintained for the development of the baseline model. Right
after the 13 CLs, a GAP unit is used to integrate the feature
maps of the last CLs in Branch-1/2 into a 512-dimensional
feature vector. As previously introduced, GAP is different
from FC layers in VGG16 and it has no parameters need to
be learned. Therefore, the baseline model with GAP module
is less likely to be overfit than the VGG16 network, as the
number of model parameters has been reduced. The feature
fusion module consists of two FC layers (the size of each
is 512, corresponding to the size of feature vector outputted
from Branch-1/2), an element-wise multiplication layer con-
nected by a dropout layer with a dropout ratio of 0.5, and two
regularization layers respectively for power and L2 normal-
ization. As shown in Fig. 2 and Table 2, the feature fusion
module is used to integrate the deep features extracted from
both the US B-mode image and the Nakagami map as well as
the 73 handcrafted quantitative features extracted from the
latter. The fused features are further processed by two FC
layers to gradually yield the final class probabilities: the first
FC layer has 512 neurons and the last FC layer has 2 neurons
corresponding to the binary classification results studied in
the paper.

C. TRAINING STRATEGY
Since the number of data samples in our dataset is typically
small (n= 168), both data augmentation and transfer learning
were used for better training of the DCNN model. The train-
ing procedure is detailed as follows. First, the US B-mode
images and Nakagami parametric maps in the training subset

TABLE 2. Configuration of the DCNN-MFF model.

were flipped horizontally, or rotated between −10◦ and 10◦

in a randommanner, such that the number of training samples
can be substantially enlarged. Thereafter, transfer learning
was adopted to train the DCNN-MFF model on the enlarged
dataset. To be more specific, we firstly assembled a trainable
auxiliary network by connecting the baselinemodel described
in subsection-1 with a fully connected layer containing 2 neu-
rons (corresponding to two class labels: 0, non-significant
liver fibrosis; 1, significant liver fibrosis). The parameters of
the FC layer were initialized by using the Xaiver method [54],
while the remaining layers were initialized by transferring
the parameters of the VGG16 model trained on ImageNet
dataset [55]. Then, the auxiliary network was fine-tuned on
the augmented US B-mode images, and the resulted model
was used to initialize Branch-1 of the DCNN-MFF model.
Similarly, Branch-2 can be initialized by tuning an auxil-
iary network on the augmented Nakagami parametric maps.
Further, by initializing the remaining components (fusion
modules and the last two FC layers) with the Xaiver method,
the whole DCNN-MFFmodel could be trained in a layer-wise
manner, starting from training only the Xaiver-initialized
layers followed by tuning all the layers. The proposed model
as well as the auxiliary network was trained by minimizing
the following cross-entropy loss function.

L =
1
N

∑
i

−[yilog(pi)+ (1− yi)log(1− pi)], (4)
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where yi denotes the true label of i-th rat liver sample, with
‘0’ representing non-significant liver fibrosis and ‘1’ repre-
senting significant liver fibrosis, pi indicates the probability
that the i-th sample is predicted to be with label ‘1’.

D. PERFORMANCE EVALUATION
Five-fold cross-validation was used for performance evalua-
tion. Specifically, we randomly divided the rat liver samples
into five portions, each of which has approximately equal
number of data samples. Of the five portions, three were used
for training, while the remaining two portions were used for
validation and testing respectively. Finally, the classification
performance of the proposed DCNN model was measured
in terms of accuracy (ACC), sensitivity (SEN), specificity
(SPE), the receiver operating characteristic (ROC) curve and
the area under ROC curve (AUC). The above quantities for
performance evaluation were obtained as follows. First, the
mean ROC curve was obtained by merging and sorting the
scored instances [56] resulted from the cross-validations.
Thereafter, the ACC, SEN and SPEwere calculated by identi-
fying the optimal cut-point on the ROC curve [57]. The ACC,
SEN and SPE are defined as follows:

ACC =
TP+ TN

TP+ FP+ TN+ FN
(5)

SEN =
TP

TP+ FN
(6)

SPE =
TN

TN+ FP
(7)

where, TP (true positive) and TN (true negative) denote
respectively the numbers of positive and negative sam-
ples that are correctly classified, while FP (false positive),
FN (false negative) represent the numbers of negative and
positive samples that are incorrectly recognized, respectively.
As mentioned, in our study, positive samples are rat livers
with fibrosis stage ≥S2, while negative samples are rat livers
under fibrosis stage <S2. The AUC values lie in the range
between 0 and 1, representing the probability of correct
classifications. Therefore, a good classification model has an
AUC value close to 1, and the model with AUC value below
0.5 provides inferior performance worse than random guess-
ing. For statistical analysis, 95% confidence intervals (CIs) of
the accuracy, sensitivity and specificity were calculated with
the Clopper-Pearson method [58]. In addition, we used the
DeLong test [59] to compare the averaged ROC curves.

III. EXPERIMENTAL RESULTS
For each cross-validation, the trained model with the highest
AUC value monitored on the validation dataset was selected
as the one for model evaluation on the testing fold. The per-
formances of the proposed model on the training, validation
and testing datasets are summarized in Table 3, where the
results for the validation and testing datasets were obtained
by using the performance evaluation method described in
Section II-D. For the training dataset, the ACC, SEN, SPE
and AUC achieved by the proposed model are all 1.0. For

the validation dataset, the ACC, SEN, SPE and AUC val-
ues are respectively 0.875 (95% CI 0.815-0.921), 0.863
(95% CI 0.777-0.925), 0.890 (95% CI 0.795-0.952), and
0.929 (95% CI 0.879-0.963), while for the testing dataset,
the corresponding values are 0.827 (95% CI 0.762-0.881),
0.821 (95% CI 0.729-0.892), 0.836 (95% CI 0.731-0.912),
and 0.869 (95% CI 0.809-0.916), respectively. Next, we shall
present in turn the evaluations of various branches of the
DCNN-MFF model, and the comparisons against other com-
monly used DCNN models.

A. ABLATION TEST
To show the contribution of each branch in the DCNN-MFF
model, we conducted an ablation test in which the perfor-
mance of the model was evaluated by trimming the branches
alternatively. Specifically, we adjusted the DCNN-MFF
model in Fig. 2 by removing the branches in an order as
follows: Branch-3, Branch-3 and Branch-1 (Branch-3/1), and
Branch-3/2. For the removal of Branch-3, the last two FC
layers at the backend of the DCNN-MFF model were con-
nected directly to the fused deep feature vector of Branch-1
and Branch-2 for fibrosis classification, while for the removal
of Branch-3/1 and Branch-3/2, the last two FC layers should
be linked directly to the remaining branch. Thereafter, the
ablated models were fine-tuned on the training data and
tested on the testing data for comparisons with the original
model. The results are summarized in Table 4. It can be seen
the AUC value decreases from 0.869 (95% CI 0.809-0.916)
to 0.827 (95% CI 0.762-0.881) along with the removal of
branches in the defined order. Compared with the ablated
model using only deep features from US B-mode image
(ablation of Branch-3/2, bottom row of Table 4), the original
DCNN-MFF (no ablation, top row of Table 4) improves the
accuracy, sensitivity, specificity and AUC by 6.5, 5.3, 8.3,
4.2 percentages, respectively. The joint use of deep features
from Nakagami parametric map (ablation of Branch-3, 2nd
row of Table 4) improves the accuracy, sensitivity, specificity
and AUC by 4.2, 3.2, 5.5, 2.4 percentages, respectively, while
the joint use of handcrafted quantitative features improves the
quantities by 2.3, 2.1, 2.8, 1.8 percentages, respectively. The
ROC curves of the ablated models are shown in Fig. 4, where
it can be seen that the ROC curve of the DCNN-MFF model
with no ablation is better than those of the ablated models.
These results demonstrate the usefulness and efficacy of the
joint use of image features from both US B-mode image and
Nakagami parametric map for recognizing significant liver
fibrosis.

B. COMPARISON WITH OTHER DCNN MODELS
We further compare the performance of the proposed model
against the other commonly used DCNN models including
ResNet50 [60], InceptionV3 [61], DenseNet101 [62]. The
comparative models were adapted to our study by changing
the last FC layer to be with 2 neurons to determine whether
the fibrosis is significant or not. Moreover, the parameters
of these models were initialized by using the ones that had
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TABLE 3. Performance of the DCNN-MFF Model on the Training/Validation/Testing Datasets.

TABLE 4. Ablation test results.

FIGURE 4. ROC curves obtained in the ablation test.

been trained on the ImageNet dataset, and all of them were
fine-tuned on the segmented US B-mode images with the
same loss function as defined in the DCNN-MFF model. The
results of the comparative models and the proposed one are
summarized in Table 5. As expected, the proposed DCNN-
MFF model significantly outperforms the other commonly
used DCNN models, benefitting from the joint use of US
B-mode images and Nakagami parametric map. Moreover,
from the upper three rows of Table 5, it can be seen that the
performances of the commonly used models are quite similar.
Further, by comparing the results in the upper rows of Table 5
with those in the bottom row of Table 4, we found the compar-
ative models also provide performance close to the baseline
model of VGG16 (the latter has slightly better performance).
These results suggest that similar performances could be
obtained by replacing the baseline model in Branch-1
and Branch-2 of DCNN-MFF with the other commonly used

FIGURE 5. ROC curves obtained by different deep learning models.

DCNN models. The ROC curves of the comparative models
and the proposed one are shown in Fig. 5. It can be seen that
the curve of the proposed model is significantly better than
the others, with all p-values < 0.05, DeLong test.

IV. DISCUSSION
Due to the advantages of real-time imaging, high sensitivity,
and non-invasiveness, ultrasonography plays an important
role in repeated assessments of liver fibrosis. Nevertheless,
the diagnosis based on visual inspection on US images is
time-consuming and empirical. In this paper, we propose
a DCNN model with multi-feature fusion (DCNN-MFF) to
integrate features from US B-mode image and Nakagami
parametric map for significant liver fibrosis recognition. The
DCNN-MFFmodel mainly consists of three branches, among
which the first two branches are used for extracting deep
features respectively from the US B-mode image and the
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TABLE 5. Comparison of various DCNN models.

Nakagami parametric map, while the remaining branch is
designed for extracting quantitative US features from the
Nakagami parametric map. At the backend of the DCNN
model, the extracted deep and quantitative features are inte-
grated together for final decisionmaking. The added values of
deep and handcrafted features extracted from the Nakagami
parametric map to the deep features of US B-mode images
were validated on an animal data comprising 168 rat liver
lobes with pathologically confirmed fibrosis stages.

As mentioned in the introduction Section, possible CAD
systems could be established by using handcrafted feature-
based methods or deep learning-based approaches. In respect
to handcrafted feature-based methods: Mojsilovic et al. [13]
developed a filter bank algorithm based on nonsepara-
ble wavelet decomposition to extract features from liver
B-mode images. By using a Bayes classification scheme,
they achieved an accuracy of 0.95 for differentiating cirrhosis
(20 human liver tissue samples) from normal (37) and steato-
sis (65) human liver tissues. Yeh et al. [14] applied gray level
concurrence and nonseparable wavelet transform to extract
features from 20 human liver US images. In their study,
the severity of liver fibrosis was graded from 0 to 5, with
Grades 0-3 corresponding to fibrosis stages from S0 to S3 and
Grade 4-5 corresponding to S4 in the METAVIR score sys-
tem. By using support vector machine as the classifier, they
achieved an accuracy 0.72 for differentiating the six fibrosis
grades. Wu et al. [15] evaluated US liver images by using a
group of handcrafted features derived from the spatial gray-
level dependence matrices, the Fourier power spectrum, the
gray-level difference statistics, and the Laws texture energy
measures. In their study, the Bayes classifier and theHotelling
trace criterion were employed to evaluate the performance
of handcrafted features on classifying human normal liver,
hepatoma and cirrhosis. They achieved an accuracy of ∼0.9
for three sets of US liver images. In respect to deep learning-
based approaches: Meng et al. [24] proposed a two-staged
DCNN model with transfer learning to classify liver fibrosis
US images. The network was evaluated to predict normal,
early and late-stage of human liver fibrosis on two testing
datasets. Lee et al. [27] retrained the VGG16 model on a
relatively large dataset containing 13,608 liver US images
of 3446 patients to predict the METAVIR scores. The per-
formance of the retrained VGG16 model was evaluated by
using both internal (300 images of 266 patients) and external
validation (1232 images of 572 patients), resulting accuracies

of 0.835 and 0.764, respectively. As previously mentioned,
all the above-described intelligent methods used US B-mode
images for liver fibrosis classification. Due to the underly-
ing disadvantages of US B-mode images, such as the pre-
viously mentioned information loss and distortion problem,
the performance of CAD systems developed based on those
approaches may be bottlenecked. Therefore, the proposed
method can be considered as a promising tool to further
improve the diagnosis capacity of the conventional B-mode
image-based CAD systems, by exploring and combing the
information carried by the Nakagami parametric map.

Finally, we need to acknowledge that our method has
limitations. One limitation is that a ROI indicating the liver
parenchymal area needs to be manually identified. Moreover,
our method requires the processing of raw RF signals before
US B-mode imaging for fibrosis classification, while the
availability of the RF data on US machines needs the consent
of manufacturers. Finally, the performance of our proposed
method was only assessed on an animal model, while its
effectiveness to assess liver fibrosis on human subjects need
to be further evaluated.

V. CONCLUSION
In this paper, we have proposed a new deep convolutional
neural network with multiple feature fusion (DCNN-MFF)
to extract and combine features from US B-mode image
and Nakagami parametric map for recognizing significant
liver fibrosis. In the proposed DCNN-MFF model, both deep
and handcrafted features are extracted from the Nakagami
parametric map, which are integrated with the deep features
extracted from the US B-mode image. The added values of
deep and handcrafted features extracted from the Nakagami
parametric map to the deep features of US B-mode images
have been validated on an animal model with a number of rats
under various liver fibrosis stages. The proposed method may
serve as a good reference for future extension to assess liver
fibrosis on human subjects. In the future, we shall improve
our model to be a fully automatic network, by which the ROI
of liver parenchymal regions could be conveniently identified
without any necessity of manual delineation.
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