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Abstract—The rail can be competitive with car and air travel
in terms of costs and journey time in countries with developed rail
networks. However, it may potentially play a role in facilitating
pandemic spread when encountering SARS-CoV-2. Mainly
focusing on the role of rail traffic, this research constructs a 2-layer
China rail network topological model based on collected China rail
data, identifying 3 dynamic transmission scenarios. Then
introduces the rail mobility rate into the traditional dynamic
transmission model in epidemiology to fit the model for rail
transportation. Finally, taking SARS-CoV-2 as an example, the
transmission dynamics of sars-cov-2 is studied by simulation
experiments, and the orbital movement rate control in different
scenarios is measured as one of the potential interventions.
Experiment outcomes lead to some managerial insights that (1)
with an initial outbreak on the core layer, a faster response is
required, while with an eruption on the periphery layer, more
appropriate reactions and interventions are encouraged. (2)
Adjusting the rail mobility rate of periphery transmission can be
used to delay the local outbreak of SARS-CoV-2 in previously
unaffected regions.

Keywords-Complex network; rail; Pandemic dynamics;
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L INTRODUCTION

An outbreak of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has led to over 17 million
confirmed cases as of August 2020 [1]. Until now, no approved
vaccine to SARS-CoV-2 has been validated, and interventions
are limited to contact tracing, quarantine, and social distancing.
Compared to other coronaviruses, such as SARS-CoV-1 and
MERS, higher infectiousness of SARS-CoV-2 makes it harder
to control with case-based interventions. In this case, the effects
of measures like intensive testing, isolation, and tracing become
unstable and unpredictable. Therefore, looking into how the
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initial pandemic wave unfolds and on the subsequent
transmission  dynamics contributes to apply these
measurements by defining their intensity, duration, and urgency,
crucial for understanding pandemic transmission dynamic,
evaluating the effectiveness of interventions, and assessing the
potential for sustained transmission to occur in new areas as
well.

More travelers in China show the propensity currently
making interurban journeys by car and air to transfer to high-
speed rail services. A possible preference lies in journeys within
6 hours by high-speed rail, where rail can be competitive with
car and air travel in terms of costs and journey time [2]. Here,
regular travelers are more likely than those elsewhere to use rail.
This convenience of China rail network, however, may
potentially play a role in accelerating transmission of SARS-
CoV-2. Therefore, research on pandemic spread through China
rail network helps to better understand the transmission paths,
identify crucial influencing factors, and evaluate effective
intervention measures, thus gaining time to enhance
surveillance systems and allocate resources. On another note, it
offers other rail transportation developed countries an
alternative approach to estimate risks of pandemic transmission
on the rail network and thus guide rail operators and
policymakers on the design of effective interventions. In this
paper, we present the results covering these issues to explore
further in this area.

The contribution of this study is twofold. First, based on an
empirical dataset, we construct the China rail network
topological model with multiple layers. Thus, several dynamic
transmission scenarios targeting rail passengers are defined,
coming with various rail mobility rates. Second, the rail
mobility rate is introduced into the SEIR model as a parameter,
and then we apply this epidemical model tailored for rail
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transportation on the network in a set of experiments to simulate
the pandemic transmission dynamics and feasible interventions.
The outcomes with managerial insights offer values for
decision-makers in rail sectors.

The rest of the paper is organized as follows. The second
part overviews related theories in epidemiology and complex
network. In the third part, it claims China rail network
topological model construction and the corresponding epidemic
dynamic model with rail mobility rate introduced. Then follows
the stimulation experiments and result analysis in the fourth part.
The whole research is concluded in the final part.

II. LITERATURE REVIEW

A. Epidemiology and transportation

Early research in epidemiology focused on compartmental
models, the original important work of which came from
Kermack and McKendrick in 1927 [3]. Compartmental models
divide the population to compartments with labels in order, for
example, S (Susceptible), I (Infectious), or R (Recovered).
People may progress between compartments. Widely used
compartmental models include SIS (Susceptible-Infected-
Susceptible) model [4] and SIR (Susceptible-Infected-
Recovered) model [5]. These compartmental models provide a
theoretical framework that allows for the study of epidemic
containment, which requires other factors in consideration to
fill in high-resolution details. Factors such as increasing speed
and reach of human mobility, increasing volumes of trade and
tourism, and changing geographic distributions of disease
vectors readily facilitate the global spread of infectious diseases.
In particular, human travel and migration is now a major driving
force pushing infections into previously non-endemic settings
due to growing volumes of travelers and migrants year by year
and thus stirred up interests and enthusiasm among researchers

[6].

While the research on coping with an epidemic outbreak
from the human mobility point of view provides a mature body
of knowledge, the literature on analyzing epidemic outbreaks
and transmission through rail travel, especially on China rail
network is scarce. We consider this as a research gap and an
opportunity to develop substantial contribution.

B.  Complex network and transportation

With the emergence of small-world and non-scale network,
the complex network has attracted lots of attention. Many
researchers applied complex networks in transportation to
further study structure characters of transportation networks,
such as the civil aviation network, the railway network, etc.
Recently there are some research combined dynamics and
complex networks to explore passenger flow [7] or train delay
[8] on transportation networks.

Most of the previous research focuses on random, scale-free,
small world networks with the use of synthetic datasets based
on theoretical models [9]. It creates space for the usage of other
models and the need for real data collection is growing to better
address real-world challenges. On the other hand, reaction to
pandemic transmission and feasible interventions among cities
on China rail network is still urgent and on-demand. Thus, to
fill the research gap and further explore this area, this paper
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identifies a 2-layer China rail network topological model based
on real datasets from China rail, and then simulates pandemic
transmission and control on this network model. To better
reflect the real scenarios, rail mobility rate is introduced as a
novel parameter to further study pandemic diffusion and
intervention, leading to some guides and references for
policymakers in rail operating sectors.

III. METHODOLOGY

The dataset comes from China passenger rail timetable
published on July 16th, 2019, on the website named 12306, an
official e-ticking website launched by the China Railway. The
giant component of the original network is used in this research
to construct a fully connected graph model. The giant
component dataset Ds contains 9569 items, including train
number, departure station, and destination. Pandemic
transmission caused by people traveling among rail stations in
the same city or region goes beyond the scope of this research.
And thus, this research combines those stations and transforms
D; to the dataset Dy, including 3054 items.

A.  China rail network topological model (CRN)

Degree distribution of China rail network leads to an
important question that concerns the degree to which mobility
restrictions can achieve containment at the source of the
pandemic, especially in combination with timely mitigation
policies in the country of origin. To this end, we consider a
simplified modeling framework based on a multi-layer scheme
describing a network of cities (nodes) coupled with rail mobility
(links) whose features reproduce the topological and mobility
properties of real-world rail transportation systems. Since
eigenvector centrality is widely used in the transmission
network, such as pandemic transmission, this paper classifies
nodes through eigenvector centrality and thus builds a 2-layer
China rail network model, including the core layer, and the
periphery layer respectively. Finally, 29 cities and their
connections compose the core layer, and other cities and
regions constitute the periphery layer. These two layers
constitute the main body of the China rail network model,
termed as CRN. For better understanding, the connection
between these 2 layers, core cities and periphery cities on
different layers are projected into the same space, called the
connected layer. Figure 1 indicates geographical layers and
their corresponding topological structures, constructed as the
network model in the following simulation experiment.

The core layer

The core layer

The periphery layer

(a) Geographical model

(b) Abstract topological model

Figure I.  China rail network model (CRN)
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China rail network model is an undirected weighted
network graph, whose nodes represent cities, and edges
dedicate quantities of the train traveling between two cities and
regions. Specifically, the weight of the edge is the proportion of
numbers of trains in dataset Dy,. Based on the node position,
dynamic transmissions on this network model can be classified
as the following:

e  Core transmission: pandemic spreads among nodes on
the core layer

®  Periphery transmission: pandemic diffuses among
nodes on the periphery layer

®  Connected transmission: pandemic transmits back and
forth between the core layer and the periphery layer, or
in other words, on the connected layer.

B.  Dynamic model in epidemics based on rail mobility rate

This paper applies the SEIR model to simulate pandemic
transmission among cities, which are assigned to the following
categories: suspectable cities(S), exposed cities(E), infected
cities(I), and recovered cities(R). Different from traditional
epidemic models, this research introduces rail mobility rate m
into the SEIR model to describe transmission routes among
cities and reflect the spreading process on the complex China
rail network. Rail mobility rate refers to the probability of travel
by rail. Without considering the birth rate and mortality rate of
the sample population, taking city i as an example,
compartments of the city i and one of its neighbor city j change
as below in figure 2.
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Figure 2.  Dynamic transmission model based on rail mobility rate, where f,
¢, and vy are the rates of contact, infection, and recovery in city i, respectively;
m refers to rail mobility rate; correspondingly, mp, me, my are the rates of
contact, infection, and recovery from city i to city j, respectively.

The corresponding dynamic calculus equation of every city
i and its adjacent node j shows the following.
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C. Model indicators and parameter calibration

To clarify the outcomes, this research further defines
measurements of pandemic transmission intensity and
influence range in table 1, based on the common indicators.

TABLEI. MEASUREMENTS AND EXPLANATIONS
Measurements Explanations
Prevalence peak | The maximum value of
Transmission prevalence
intensity

Transmission The time of prevalence
speed showing the maximum value
Recovered peak | The maximum value of
recovered fraction

Influence range

The minimal value of
susceptible fraction

Susceptible
bottom

Specifically, prevalence peak and transmission speed can
reflect eruption intensity on the network, and recovered peak
and susceptible bottom mirror pandemic influence and spread
range on the network, for they usually appear at the end of
pandemic transmission and then stay stable values. These
quantitative measurements describe the pandemic transmission
process in a clear and comprehensive approach, echoing the
corresponding influence on the population and region through
transmission on China rail network.

Parameters involved in the simulation experiments are listed
in table 2, some of which are set and calibrated according to
empirical events and previous research.

TABLE II. MEASUREMENTS AND EXPLANATIONS

Parameter Symbol | Specification and calculation | Calibration

Time T Describe transmission
process, calculates by day

Number of In The number of infected

initial infected nodes when the experiment

cities begins

Positions of Ip Positions infected nodes

initial infected locate when the experiment

cities begins, on the core layer or
the periphery layer

Contact rate B B = Bok, Bo denotes the 1?
probability of contact per
exposure, k denotes the
exposure frequency

Infected rate € € = 1/Te, Te denotes the 1/7*
average latency

Recovered rate v v = 1/Ti, Ti denotes the 1/10.25*
average recovery time

Rail mobility m The proportion of

rate population travel by rail
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a. According to Fang et al. [10], set the following
parameters as =1, Te=7, Ti=10.25

The following settings make the model more in line with the
real situation:

Contact rate [ declines with time

Usually, contact rates of most pandemic diseases decrease
with time [11], while in SARS-CoV-2 the previous research
verified this as well [12], thus, this proposed model sets the
contact rate 3 the same way. During time T after pandemic
outbreaks, from the initial point to 0.3T, the contact rate sets {3,
and then B equals to 0.8f from 0.3T to 0.6T. During the
following 0.2T, from 0.6T to 0.8T, P decreases to 0.7f. In the
final 0.2T, f sets half of the initial value, 0.5p.

Rail mobility rate m varies in different scenarios

Considering a higher flow of population migrates to core
cities and areas compared to migration to periphery ones, and
based on the assumption that China railway dispatching is
designed according to the passenger demands, the rail mobility
rate between two cities can be estimated through the number of
trains traveling back and forth to these cities. Therefore, rail
mobility rates are calculated under the three dynamic
transmission scenarios of the core layer, the periphery layer,
and the connected layer. Taking the core layer as an example,
the number of trains traveling among cities on the core layer is
divided by the number of trains in the dataset, calculating the
rail mobility rate of the core layer is 0.346. The rail mobility
rates of the periphery layer and the connected layer are
computed in the same way, as 0.132, and 0.522, respectively.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

This research conducts the simulation experiment in the
following 2 aspects. The first part shows the pandemic
transmission in the natural condition, analyzing the pandemic
transmission pattern on the China rail network compared to the
spreading process on the Erdos-Renyi (ER) graph. Taken initial
outbreaks into consideration, the second part observes the
differences of pandemic transmission process through
manipulating rail mobility rates under 3 dynamic transmission
scenarios, and thus digs into practical intervention
measurements, providing guidance to policymakers and rail
operating companies. All experiments use prevalence peak,
transmission speed, recovery peak, and susceptible bottom as
indicators to measure the pandemic impacts on the network. In
order to verify the experiment results and reduce the
randomness, the simulation experiment under each condition is
repeated 100 times, with the mathematical average of results
taken on records.

A.  Transmission process in the natural condition

This part conducts a 100-day long experiment simulating
SARS-CoV-2 outbreaks and spreads on the CRN model, with
one initial infected city at a random position, and other
calibrated parameters. The simulation experiment under the
same condition is also conducted on the ER graph. Compared
different transmission process on constructed China rail
network and ER graph, shown in figure 3(a) and 3(c), this
pandemic diffuses faster on CRN model, while it influences in
a larger range on ER graph till pandemic comes to stable at the
end of the transmission. However, this difference cannot count
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all on network structures, because rail mobility rates vary in the
CRN model while it stays stable in the ER graph, which means
inconsistency of rai mobility rates may lead to this result as well.
To further figure out the role of network structures, set rail
mobility rates the same value (m=0.346) in the CRN model and
ER graph. Analyzing the results shown in figure 3(b) and 3(c),
pandemic still disseminates as a leading speed on the CRN
model with the stable rail mobility rate, meaning SARS-CoV-2
requires an urgent response and in-time interventions for its
spreading trend after outbreaks.

recovered fraction

prevalence exposed fraction

1 1

susceptible fraction
1

08

08 0.8

06 06

04 04

0.2 0.2

0 /A 0 /;7 ~_ - 0 A‘ -
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
(a) CRN model (b) CRN model with (c) ER graph
stable rail mobility rate
Figure 3.  SARS-CoV-2 dynamic transmission on (a) CRN, (b) CRN with

stable rail mobility rate and (c) ER graph

B. Intervention and control based on CRN

As mentioned in the first part of the experiment, various rail
mobility rates contribute to different transmission patterns.
Thus, through setting values of rail mobility rates under 3
dynamic scenarios, this part of the experiment probes roles of
rail mobility rates in the pandemic spreading process, leading
to potential intervention policies and measurements for rail
transportation sectors.

To simplify the simulation conditions, this part sets the
number of initial infected cities as 1, and thus initial conditions
of the SARS-CoV-2 outbreak are limited to 2 kinds, node on
the core layer and the periphery layer, respectively. Then taking
the rail mobility rate as a variable, we adjust those of the core
layer, the periphery layer, and the connected layer from 0.05 to
1 with each increment as 0.05 under above 2 initial conditions.

Experiment results reflect transmission strength from
prevalence peak and transmission speed, respectively,
visualized from figure 4 to figure 5. The influence on
prevalence peak shows a similar pattern that prevalence peak
increases with rail mobility rate growing. Figure 5 demonstrates
that a large enough rail mobility rate may substantially facilitate
an outbreak and the subsequent spreading, and meanwhile, the
order of influences on spreading speed through adjusting the
rail mobility rate is the core layer, the periphery layer, and then
the connected layer. From the influence range, as shown in
figure 6 with increasing rail mobility rate, the recovery peak
mirrors an upward trend in various initial conditions. Further,
changing the rail mobility rate of the periphery layer leads to
the most obvious influence, then followed by the core layer, and
the connected layer ranking at the least. Similar to the
transmission speed, when the initial outbreak is located on the
periphery layer, the corresponding alteration of the recovery
peak becomes more significant.
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(a) Initial outbreak on the core layer (b) Initial outbreak on the periphery layer
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Figure 4.  Influence of rail mobility rate on prevalence peak
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Figure 5. Influence of rail mobility rate on transmission speed
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Figure 6. Influence of rail mobility rate on recovery peak

Experiment results mentioned above allow for the following
insights:

a) Adjusting the rail mobility rate of the periphery layer is
one of the potential interventions and measurements affecting
pandemic transmission intensity and influence range.
Experiment results show that with the rail mobility rate of the
periphery layer increasing, prevalence peak and recovery peak
grow at a significant pace. Moreover, pandemic intensity and
influence range exceed those under other conditions when the
rail mobility rate of the periphery layer reaches a certain value.

b) Changing the rail mobility rate of the core layer works
more effectively with the purpose to delay the pandemic
transmission. SARS-CoV-2 spreads rapidly on the China rail
network, proposing a higher requirement to reaction speed and
intervention efficiency. Therefore, taking the rail mobility rate
of the core layer manipulation in the early phase of the
pandemic outbreak can delay local spreads, allow additional
time for preparation of the health system and further effective
treatment, and thus mitigate pandemic risks, even if
containment is ultimately impossible.

¢) When the pandemic outbreak on the periphery layer, it
needs more adjustment and control to rail mobility rates. For all
scenarios, varying the rail mobility rate may more substantially
delay the pandemic spread and limit the influence range on
China rail network, when the initial infected node is located on
the periphery layer.

628

V. (CONCLUSION

In this research, we define a 2-layer complex network model
for the China rail network, termed as CRN, based on an empiric
China rail passenger dataset, leading to the core layer, the
periphery layer, and the connected layer dynamic rail mobility
scenarios. In addition, we introduce the rail mobility rate into
the traditional epidemic SEIR model and then conduct
simulation experiments through CRN. Our analysis reveals that
the pandemic outbreaks start small but scale fast and disperse
over many geographic regions with rail transmission which
makes it comparatively difficult to fully estimate the impact of
the pandemic outbreak on the China rail network and the right
measures to react. To address this uncertainty, a set of
experiments have been conducted to uncover how the pandemic
spreads among cities and areas on the China rail network with
time and further to offer the possibility of intervening the
pandemic impact through adjusting the rail mobility rate of each
dynamic transmission scenario.
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