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Stability of Sliding Mode ILC Design for a Class of
Nonlinear Systems With Unknown

Control Input Delay
Xiaoyu Zhang , Senior Member, IEEE, and Richard W. Longman , Member, IEEE

Abstract— This article studied the stability and convergence
of a robust iterative learning control (ILC) design for a class
of nonlinear systems with unknown control input delay. First,
the iterative integral sliding mode (IISM) design was proposed,
which comprised iterative actions. The iterative action made
the convergence of the tracking error under the ideal sliding
mode. Then, a suitable iterative update law was provided for
the IISM-based robust ILC controller. The controller had the
capability of both minimizing the steady tracking error and
suppressing the unrepeatable disturbance. Using the controller,
the closed-loop system stability was analyzed, and the stability
conditions were given. Consequently, the sliding mode con-
vergence in the iteration domain was proved by a composite
energy function (CEF). In addition, by analyzing the influence
of affection on the tracking error, several measures were taken
to solve the chattering problem of the sliding mode control.
Finally, a one-link robotic manipulator and a vertical three-tank
system were used to verify the control design. The application
simulations validated the performance of the proposed sliding
mode iterative learning control (SMILC) design, which achieved
the stability of the nonlinear system and overcame the control
input time delay.

Index Terms— Adaptive, iterative learning control (ILC), non-
linear systems, robust, sliding mode.

I. INTRODUCTION

THE iterative learning control (ILC) method is an excellent
control design for repeating control tasks. In recent years,

it has been widely used in various fields, such as manipulators,
robotics, chemical processes, and accurate disk control, due to
its advantages, especially less requirement of prior knowledge
about the controlled plant. Its steady error can reach nanolevel,
which shows that it is a strong tool to resolve the problem of
perfect tracking [1].

In addition to discrete systems, ILC research work has
been extended to linear and nonlinear systems [2]. For
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continuous-time LTI and LTV systems, different designs were
proposed in both the time domain and the frequency domain,
and the stability and convergence analysis were analyzed in
both domains. It provided perfect tracking performance on
linear systems. However, ILC cannot provide perfect tracking
performance in every situation. If there are noise and nonrepet-
itive disturbances, observers, robust filtering, and combined
controller design are always needed. The iterative learning
feature of ILC encourages the addition of more synthesis
methods to the ILC system design, such as advanced filtering,
signal processing, and other control methods. Longman [3]
discussed the relevance of many of this type of techniques. For
nonlinear systems, research can be divided into two categories.
The first category focused on the systems for affine control
input, such as the studies in the literature [4]–[8]. The affine
nonlinear systems use a key assumption that the nonlinear
dynamic is smooth and usually expressed as a global Lipschitz
constraint. The in-depth studies on the nonlinear ILC can
be found, including robust performance, transient learning,
initial variations, repeating disturbance, and model uncer-
tainty [4]–[6]. Another category of research on nonlinear ILC
is aimed at nonaffine systems in control input [9]. Meanwhile,
scholars also conducted in-depth studies on ILC designs for
discrete-time nonlinear systems. Discrete-time models of non-
linear systems may not be easy to obtain. However, compared
to continuous-time counterparts, discrete-time models always
obtain simpler application control algorithm. This applies to
both affine systems and nonaffine systems [10]–[14].

The development of control theoretical research is so exten-
sive that many individual articles often discuss special topics.
These have led to numerous topics related to ILC. In addition
to controller structures, update laws, and convergence analysis,
the popular papers in control theory or engineering fields
have also attracted a lot of attention such as “robustness,”
“optimal and optimization,” “event-triggered control [15],” and
“quantized feedback [16].” Especially, the topics of robustness,
adaptability, and compensation have advanced the develop-
ment of the ILC algorithm [17]. For example, the H∞ frame-
work is used to resolve ILC problems. H∞ performance index
and the convergence along the iteration have been analyzed.
The linear matrix inequality (LMI) technique was also adopted
in many convergence analyses [18].

Although many ILC design approaches have been devel-
oped, an important topic related to ILC, i.e., the control
problem concerning time-delay systems, still requires in-depth
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study. Delays are inherent in many applications, such as batch
processes and networked controlled robots and vehicles. Many
actuators and sensors usually introduce delay, which degrades
the performance of a control system. Many delay-related
studies were only conducted within the framework of classical
ILC. Meng et al. [19], [20] presented a PD-type ILC for
uncertain linear systems with state time delay, proved the
convergence by Lyapunov-like technique, and achieved the
robust ILC algorithm. Wang et al. [21] adopted the T-S fuzzy
model to establish an adaptive ILC control scheme for the state
time delay of the linear systems. Liu et al. [22] proposed an
ILC control method based on the internal model control (IMC)
structure for batch processes of a linear transfer function
model, including uncertainties and time delay. Some scholars
discussed some special systems with time delay. For instance,
Dai et al. [23] investigated the P-type ILC schemes of a system
described by parabolic partial difference equations with delay.
Lan and Zhou [24], [25] and Lazarevic et al. [26] considered
fractional-order linear time-delay systems.

The systems with state time delay have been investigated
in some studies. For example, Chen and Zhang [27] extended
a CEF-based adaptive ILC strategy for nonlinear time-varying
systems with state delays. It can deal with time-varying delays
with a common adaptive learning law in the iteration domain.
Wang et al. [28] proposed a robust ILC scheme for batch
processes with uncertain perturbations and state time-varying
delay and tried to convert it into a robust control problem
of the uncertain 2-D system. Wei et al. [29] proposed an
adaptive ILC scheme for a class of nonlinear systems with
unknown time-varying state delay and introduced a boundary
layer function to construct the error variable that relaxed the
identical initial condition. The integral Lyapunov function and
the appropriate Lyapunov–Krasovskii function were used to
analyze the stability and convergence. Part of the research
focused on the robust ILC scheme for nonlinear systems.
For example, Shen [30] proposed an ILC algorithm for non-
linear systems with dead-zone input and state time delay
with measurement noise. The nonlinear dynamics in systems
required conditions similar to the Lipschitz continuity, and
the update law was obtained through optimization. Ma [31]
adopted the likely conditions and proposed an ILC design
for nonlinear systems with multiple state delays. Meanwhile,
the external disturbances and output measurement noises were
also discussed. Bu et al. [32] proposed a robust ILC design for
uncertain linear systems with time-varying delays and random
packet dropouts. This design transformed the ILC design into
a robust stability problem for a 2-D stochastic system through
the LMI form of the delay-dependent stability condition.
Yan et al. [33] proposed an ILC scheme using the Lyapunov
approach for a class of nonlinearly parametric time-delay
systems with initial state errors. This method compensated for
the nonlinearly parametric time-delay uncertainties.

The control input delay generally exists in control engi-
neering applications, and it has not been studied in depth in
the ILC control scheme design for nonlinear systems. The
control input delay is often related to the control implemen-
tation issues in many industrial processes; thus, it affects the
tracking performance in the ILC design. From this perspective,

there are still many problems that need to be studied. One
problem is how to get an effective update law for nonlinear
systems while requiring less prior knowledge of the plant.
Li et al. [34] investigated the convergence and robustness
of a P-type ILC design for nonlinear discrete-time systems
with multiple input delays, which resolved the main problem.
However, this method has obvious shortcomings: the tracked
trajectory is also assumed to have an identical delay model,
and the update law requires the delay information. This P-type
ILC design method was improved in [35]. However, in the
improved design, the update law still needs the minimum
delay information. Meanwhile, corrective measures for the
iterative initial error and external disturbances were added,
and the error inequalities were reconstructed from a compact
form of 2-D linear inequalities [35]. Hao et al. [36], [37]
proposed a robust ILC method using a 2-D system description
of batch process operation for industrial batch processes with
input delay. To compensate for the input delay, a 2-D state
predictor was established to predict the augmented system
states. Delay-dependent stability conditions were established
according to LMIs. However, the conditions must be satisfied
that the delay-free part of the 2-D system can be stabilized in
the absence of uncertainties. Importantly, their work is only
effective for discrete linear uncertain systems.

Therefore, this work focused on the stability and conver-
gence of a robust ILC control design for continuous nonlinear
systems with unknown control input delay. First, a sliding
mode surface, i.e., iterative integral sliding mode (IISM),
was designed to cause the convergence of the tracking error.
It can cause the tracking error to continuously converge with
the iteration process and eliminate the reaching phase from
the initial time instant. Correspondingly, an ILC controller
composed of the known vector and the unknown vector was
given, in which the unknown was updated by the update
law in the iterations. Then, the convergence analysis was
performed, and the convergence conditions in both the time
domain and the iteration domain were obtained. Further-
more, the chattering-free problem was considered, and the
corresponding measures were listed. The measures leading
to nonideal sliding mode were investigated to observe the
effect on the tracking error converging. Finally, the design was
applied to a one-link robotic manipulator control system and
a vertical three-tank system, and its performance was verified
through the application simulation results.

The contributions of this research are as follows.
1) IISM Was Proposed: It has the advantage of no reaching

phase, and therefore, the tracking error in the reaching
phase of the sliding mode can be eliminated. In addi-
tion, the proposed IISM has the iterative action; thus,
the tracking error under the sliding mode converges to
zero as the iteration time approaches infinity.

2) A robust ILC control design based on the IISM was
proposed for a class of nonlinear systems with unknown
control input delay. It guarantees the convergence of
the sliding mode and the tracking error in both the
time domain and the iteration domain while rejecting
the unrepeatable disturbance. The design conquers the
control input time delay, and the convergence conditions



4348 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

are independent of the time delay. Therefore, the design
does not require any delay-related assumptions except
the delay itself.

The rest of this article is organized as follows. First,
the problem is described in Section II. Then, in Section III,
the design of an IISM surface is described, and its ideal
sliding mode dynamics are analyzed. Next, in Section IV,
the ILC controller design based on the IISM is presented,
and the method of the design to ensure the reachability
of the IISM in the time domain is analyzed. Subsequently,
in Section V, the CEF is used to prove the convergence of
the sliding mode and tracking error in the iteration domain.
The chattering-free problem of the presented ILC design is
synthesized in Section VI. Finally, the application simula-
tion results of a one-link robotic manipulator and a vertical
three-tank system are used to verify the control design in
Sections VII and VIII, respectively, and the conclusions are
drawn in Section IX.

II. PROBLEM FORMULATION

Consider a special class of nonlinear systems with paramet-
ric uncertainty and control input delay

ẋk,i = xk,i+1, i = 1, 2, . . . , n − 1
ẋk,n = θT (t)ξ(xk, t)+ b(t)uk(t − τ )+ φ(xk, t)
yk(t) = xk,1(t)

⎫⎬
⎭ (1)

for t ∈ [0, T ], where xk(t) = [xk,1, xk,2, . . . , xk,n]T is
the measured state vector, uk(t) ∈ R is the single con-
trol input signal, ξ(xk, t) ∈ R

p is the known nonlinear
field vector, θ(t) ∈ C p(R) is the unknown time-varying
parameter vector, b(t) ∈ C(R) is the unknown nonlinear
control gain vector, φ(xk, t) ∈ R represents unknown unre-
peatable modeling uncertainties and external disturbances,
yk(t) denotes the output, k represents the kth iteration, τ ∈ R

is the unknown time delay of the control input, and p ∈ R is
a known positive scalar.

The control task is to make the output yk(t) track a
predesigned trajectory yd(t) ∀t ∈ [0, T ], and its state vector
is xd(t) = [yd, ẏd, . . . , y(n−1)

d ]T = [xd,1, xd,2, . . . , xd,n]T . The
tracking must be repeatable and completed within a time
interval [0, T ].

The system parts are considered to satisfy the following
assumptions.

Assumption 1: The system nonlinear function f (xk, t) :=
θT (t)ξ(xk, t)+φ(xk, t) satisfies the global Lipschitz continuity
condition.

Assumption 2: b(t) > 0 is continuously differentiable ∀t ∈
[0, T ].

Assumption 3: �φ(xk, t)� ≤ dm(t) with the scalar function
dm(t) > 0 ∀ t ∈ [0, T ]. Sometimes, dm(t) is a constant scalar
dm that denotes the upper boundary.

Assumption 4: The parameter vector θ(t) has the upper
bound, i.e., �θ(t) � ≤ θm with θm is the known constant scalar.

Assumption 5: The time delay satisfies 0 ≤ τ ≤ τm < T ,
where τm is some unknown constant scalar.

Assumption 6: The predesigned trajectory yd(t) is n-order
continuously differentiable ∀t ∈ [0, T ].

In this article, �·� represents the Euclidean norm.

The initial conditions of our ILC design are as follows.
Assumption 7: The system state is with identical initial

conditions, xk(0) = x(0), k = 0, 1, . . ., and satisfies the initial
resetting condition, i.e., xk(0) = x(0) = xd(0).

Assumption 8: u(t) = 0∀ t ∈ [−τ, 0).
Assumption 9: ξ(0, t) = 0 ∀t ∈ [0, T ].
Assumption 10: φ(0, t) = 0 ∀t ∈ [0, T ].
In practice, the control gain b(t) cannot be infinite or

zero. Therefore, the following assumption is required for the
unknown control gain b(t).

Assumption 11: The control gain b(t) has the minimum
value except for the upper bound bm , i.e., 0 < ε ≤ b(t) ≤ bm .
Moreover, its time derivative has a boundary

|ḃ(t)| ≤ b̄m .

III. IISM DESIGN

Based on the control problem description in Section II,
the dynamic of the tracking error ek(t) = xd(t)− xk(t) is{

ėk,i = ek,i+1, i = 1, 2, . . . , n − 1

ėk,n = y(n)d − θT (t)ξ(xk, t)− b(t)uk(t − τ )− φ(xk, t)
(2)

which can be written as{
ėk(t) = Aek(t)+ B[y(n)d − θT (t)ξ(xk, t)

− b(t)uk(t − τ )− φ(xk, t)] (3)

where

A =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0 0

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦.

It can be seen that (A, B) is controllable.
In this section, the IISM design is proposed and com-

pared with the integral sliding mode (ISM) without iteration
actions.

A. IISM Switching Surface Design

The IISM switching surface is proposed as

sk(t) = CT [ek(t) − ek(0)]
+

∫ t

0

[
(K T − CT A)ek(ι)

+ K T
p ek−1(ι)− Qsk(ι)− Gsgnsk(ι)

]
dι (4)

where ek(0) = xd(0) − xk(0) is the initial value of the
tracking error vector; C ∈ R

n is a predesigned parameter
vector that makes that CT B = 1 and K , K p ∈ R

n are
the designed parameter vectors that will be addressed in
Section III-B; Q > 0 and G > 0 are all scalar con-
stants to be selected for determining the convergence of
sk(t) that will be addressed in Sections IV and V; sgn(·)
denotes the symbolic function; and ι represents the integration
variable.

The definition of the IISM (4) is a causal dynamic system,
whose flow diagram is shown in Fig. 1. Its inputs come from
ek(t), ek(0), ek−1(t), and its output is sk(t).

It is obvious that sk(0) = 0, which means that the initial
value of the sliding mode is on the origin.
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Fig. 1. IISM dynamic diagram.

According to (4), it can be got that

sk(t) =
∫ t

0

[
CT ėk(ι)+ (K T − CT A)ek(ι)+ K T

p ek−1(ι)

− Qsk(ι)− Gsgnsk(ι)
]
dι

and

ṡk(t) = y(n)d − θT (t)ξ(xk, t) − b(t)uk(t − τ )− φ(xk, t)

+ K T ek(t)+ K T
p ek−1(t)− Qsk(t)− Gsgnsk(t) (5)

by using (3).
If the controller uk(t − τ ) drives the tracking error ek(t) on

to the sliding mode surface and makes it remains there ideally,
the sliding modes sk(t) = 0 and ṡk(t) = 0. It means that

y(n)d − θT (t)ξ(xk, t)− b(t)uk(t − τ )

−φ(xk, t)+ K T ek(t)+ K T
p ek−1(t) = 0.

Then, the equivalent control is achieved as

uk,eq (t − τ ) = b−1(t)
[
y(n)d − θT (t)ξ(xk, t)− φ(xk, t)

+ K T ek(t)+ K T
p ek−1(t)

]
. (6)

Substituting (6) into (3), we get the dynamic equation of
ek(t) under the ideal sliding mode

ėk(t) = (A − B K T )ek(t)− B K T
p ek−1(t) (7)

which shows us that it can easily be a convergent process if
the parameter vector K is set to make A − B K T stable.

From (7), it can be seen that when the ideal sliding
modes sk(t) = 0 and ṡk(t) = 0 are reached, the tracking
error dynamic under the sliding mode (4) is an iterative
linear dynamic process. The tracking error of the previous
iteration ek−1(t) will fix the tracking error ek(t) of the next
iteration.

Remark 1: The proposed IISM is a dynamic subsystem
with self-feedback and uses ek(t) and ek−1(t) as its inputs.
Therefore, its dynamic contains iterative action of the tracking
error and leads to a linear dynamic (7) in both the time and
iteration domains, while the tracking error stays on the sliding
mode surface sk(t) = 0.

B. Tracking Error Convergence Under the Sliding Mode

Theorem 1: Under Assumptions 1–10, the tracking error of
the dynamic (2) in the ideal sliding modes sk(t) = 0 and
ṡk(t) = 0 converges to the origin as the iteration number
approaches to infinity, that is

lim
k→∞

ek(t) = 0

if there exist the appropriate sliding mode parameters K and
K p and the positive definite symmetric matrices P and R that

make the inequality[
ĀT P + P Ā + R −P B K T

p

∗ −R

]
< 0 (8)

holds where Ā = A − B K T .
Proof: Select a Lyapunov function of ek(t) along with the

dynamic (7) in the ideal IISM sliding mode as

V m
k (t) = eT

k (t)Pek(t)+
∫ t

0
eT

k (ι)Rek(ι)dι. (9)

Seeking for its difference along the iterations

�V m
k (t)

= eT
k (t)Pek(t)− eT

k−1(t)Pek−1(t)

+
∫ t

0

[
eT

k (ι)Rek(ι)− eT
k−1(ι)Rek−1(ι)

]
dι

=
∫ t

0

[
ėT

k (ι)Pek(ι)+ eT
k (ι)Pėk(ι)

]
dι

+ eT
k (0)Pek(0)− eT

k−1(t)Pek−1(t)

+
∫ t

0

[
eT

k (ι)Rek(ι)− eT
k−1(ι)Rek−1(ι)

]
dι

=
∫ t

0
eT

k (ι)[ ĀT P + P Ā + R]ek(ι)dι

− 2
∫ t

0
eT

k (ι)P B K T
p ek−1(ι)dι

−
∫ t

0
eT

k−1(ι)Rek−1(ι)dι− eT
k−1(t)Pek−1(t)

=
∫ t

0

[
ek(ι)

ek−1(ι)

]T [
ĀT P + P Ā + R −P B K T

p

∗ −R

][
ek(ι)

ek−1(ι)

]
dι

− eT
k−1(t)Pek−1(t).

The difference �V m
k (t) < 0 between the two iterations except

that ek(t) = 0, ek−1(t) = 0, if the inequality (8) is satisfied.
The tracking error ek(t) will converge to zero along with
the iteration k → ∞ according to the Lyapunov stability
theory.

C. ISM Switching Surface Design Without Iteration

To analyze the affection of iteration in the sliding mode,
we describe the ISM without iteration in the following.

By deleting the iteration item about ek−1(t) in (4), i.e.,
K p = 0

sk(t) = CT [ek(t) − ek(0)]
+

∫ t

0
[(K T − CT A)ek(ι)− Qsk(ι)− Gsgnsk(ι)]dι

(10)

is got, and by (6), the equivalent control in the sliding mode
sk(t) = 0 and ṡk(t) = 0 is

uk,eq(t − τ ) = b−1(t)
[
y(n)d − θT (t)ξ(xk, t)

−φ(xk, t)+ K T ek(t)
]
. (11)

Consequently, the dynamic equation of ek(t) in the ideal
sliding mode becomes

ėk(t) = (A − B K T )ek(t) (12)

which shows that it is a stable time process without iteration.
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However, the controller (6) or (11) is an analytic one that
only exists on the theoretic layer. It cannot be implemented
because of too much unknown information.

IV. ILC CONTROLLER DESIGN

The ILC controller is designed as

uk(t) = ϑ̂T
k (t)ψ(t) (13)

where

ψ(t) = [
ξT (xk, t), y(n)d + K T ek(t)+ K T

p ek−1(t), 0.5sk(t)
]T

(14)

is a known smooth dynamic function vector and ϑ̂k(t) is the
estimation of the unknown dynamic vector

ϑ(t) = [−b−1(t)θT (t), b−1(t),−b−2(t)ḃ(t)]T (15)

which is a time-varying parameter vector to be updated by the
learning algorithm (update law)

ϑ̂k(t) = ϑ̂k−1(t)+ ψ(t)[β1sk(t)+ β2sgnsk(t)] (16)

where β1 and β2 are all arbitrary-design positive scalars.
Remark 2: The controller (13) has the advantages of both

the ILC controller and the SMC controller. It updates its
learning parameter vector ϑ̂k(t) in every iteration accord-
ing to the update law (16) and eventually completes the
unknown information learning and makes the sliding mode
value sk(t) converge to zero from the initial time con-
stant. On the other hand, it has the essential SMC charac-
ter in the time domain because part of the sliding mode
sk(t) contains the high gain control function, which can
reject the unrepeatable modeling uncertainty and disturbance
φ(xk, t).

Then, it follows the Razumikhin theories and theorems
on the solution of retarded functional differential equation
(RFDE) [38]. Because ϑ̂k(t) and ψ(t) are function vectors
of ek(t) and xk(t), there exist a constant q > 1 such that∥∥ϑ̂T

k (t − τ )ψ(t − τ )
∥∥ ≤ q

∥∥ϑ̂T
k (t)ψ(t)

∥∥ (17)

for any solution of system (1) or (2). The similar application
may refer to [39]. Based on this, the stability and convergence
analysis are given as follows.

A. Reachability of the IISM in Time Domain

Theorem 2: The IISM (4) reaches sk(t) = 0 from the initial
time instant under the ILC controller (13) if the parameter G
of the sliding mode surface satisfies that

G ≥ dm + bmq
∥∥ϑ̂T

k (t)ψ(t)
∥∥ + bm�(ϑ(t) − ϑ̂k(t))

Tψ(t)�
(18)

where q > 2 is the Razumikhin parameter that satisfies (17).
Proof: Consider a Lyapunov function at the kth

iteration

Vk(t) = s2
k (t)

2b(t)
(19)

and seek its derivative along the time domain

V̇k(t) = b−1(t)sk(t)ṡk(t)− 0.5b−2(t)ḃ(t)s2
k (t)

= sk(t)[b−1(t)ṡk(t)− 0.5b−2(t)ḃ(t)sk(t)].

By (5), the above equation becomes

V̇k(t) = sk(t)[ϑT (t)ψ(t) − uk(t − τ )

− b−1(t)φ(xk, t)− b−1(t)Qsk(t)

− b−1(t)Gsgnsk(t)].
Applying the controller (13) to the above, we have

V̇k(t) = sk(t)
[
(ϑT (t)− ϑ̂T

k (t))ψ(t) + ϑ̂T
k (t)ψ(t)

− ϑ̂T
k (t − τ )ψ(t − τ )

− b−1(t)φ(xk, t)− b−1(t)Qsk(t)

− b−1(t)Gsgnsk(t)
]
. (20)

Based on (17), the following inequality is got:
V̇k(t) ≤ |sk(t)|

(�(ϑ(t) − ϑ̂k(t))
Tψ(t)� + q

∥∥ϑ̂T
k (t)ψ(t)

∥∥)
+ b−1(t)

(
dm|sk(t)| − Qs2

k (t)− G|sk(t)|
)
. (21)

It is obvious that

V̇k(t) ≤ −b−1(t)Qs2
k (t) (22)

stands if the condition (18) is satisfied, which means that the
IISM (4) can be reached asymptotically. From (4), we know
sk(0) = 0, so the sliding mode is reached from the initial time
instant and retains there.

Remark 3: From condition (18), it can be seen that the
convergent character of the IISM (4) in the time domain is
determined by the iteration approximation error ϑ̂k(t)− ϑ(t).

Corollary 1: The IISM (4) reaches on sk(t) = 0 from
the initial time instant under the ILC controller (13) if the
parameter G of the sliding mode surface satisfies that

G ≥ dm + bm�(ϑ(t)− ϑ̂k(t))
Tψ(t)� (23)

and the control input time delay τ = 0.
Proof: Based on the proof of Theorem 2, considering the

Lyapunov function at the kth iteration the same as (19) and
seeking its derivative along the time domain using (5) and (13),
one gets

V̇k(t) ≤ |sk(t)|(�(ϑ(t)− ϑ̂k(t))
Tψ(t)� + b−1(t)dm |sk(t)|

− b−1(t)Qs2
k (t)− b−1(t)G|sk(t)|.

It is obvious that

V̇k(t) ≤ −b−1(t)Qs2
k (t)

stands if condition (23) is satisfied, which means that the
IISM (4) can be reached asymptotically. We know that sk(0) =
0, so the sliding mode is reached from the initial time instant
and retains there.

B. Further Analysis

Lemma 1: The sliding mode (4) reaches on sk(t) = 0 from
the initial time instant under the ILC controller (13) if the
parameter G of the sliding mode surface satisfies that

G ≥ dm + bmq
∥∥ϑ̂T

k (t)ψ(t)
∥∥ + bm�ψ(t)�

ε2

√(
1 + θ2

m

)
ε2 + b̄2

m .

(24)
Proof: According to (15) and Assumptions 4 and 11,

the norm of ϑ(t) satisfies

�ϑ(t)� ≤ 1

ε2

√
ε2

(
1 + θ2

m

) + b̄2
m . (25)
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According to the proof of Theorem 2, condition (18) can be
set as

G ≥ dm + bm
[
(1 + q)

∥∥ϑ̂T
k (t)ψ(t)

∥∥ + �ϑT (t)ψ(t)�].
The scalar q > 1 is easily selected as q = q + 1 due to
its unknownness by (17). Next, by using (25) into the above
inequality, the overall proof of Theorem 2 still holds under
condition (24). Lemma 1 is proved.

Remark 4: It can be seen that the convergent character of
the IISM (4) in the time domain is determined by the known
information �ψ(t)� and �ϑ̂k(t)�. In addition, if the parameter
G meets the following condition:
G = dm + bmq

∥∥ϑ̂T
k (t)ψ(t)

∥∥ + bm�ψ(t)�
ε2

√(
1 + θ2

m

)
ε2 + b̄2

m

the convergence is independent on the approximation error in
the iteration domain.

Lemma 2: The IISM (4) reaches on sk(t) = 0 from the ini-
tial time instant under the ILC controller (13) if the parameter
G of the sliding mode surface satisfies that

G ≥ dm + bm�ψ(t)�
ε2

√(
1 + θ2

m

)
ε2 + b̄2

m (26)

and the control input time delay τ = 0.
Proof: According to the proof of Corollary 1, condi-

tion (18) can be set as

G ≥ dm + bm�ϑT (t)ψ(t)�.
Next, by using (25) for the above inequality, under condi-
tion (26), it is generally proved that Corollary 1 still holds.
Thus, Lemma 2 is proved.

Remark 5: The results of Theorem 2, Corollary 1, and Lem-
mas 1 and 2 can also work on the ISM without iteration (10).
Whether the sliding mode (6) has the iteration action does not
interfere with its reachability.

V. CONVERGENCE ANALYSIS

This section donates to the convergence in the iteration
learning domain.

Theorem 3: For the tracking error system (2) under
Assumptions 1–10, the ILC controller (13) with the update
law (16) drives the IISM (4) of the closed-loop system
asymptotically converging to the origin as the iteration number
approaches to infinity, that is

lim
k→∞ sk(t) = 0

if the sliding mode parameter G satisfies

G ≥ dm + qbm�ϑ̂T
k (t)ψ(t)�. (27)

Proof: Select the composite energy function (CEF) at the
kth iteration as

Jk(t) = J 1
k (t)+ J 2

k (t)+ J 3
k (t) (28)

where

J 1
k (t) = β1

2b(t)
s2

k (t), J 2
k (t) = β2

b(t)
|sk(t)|

J 3
k (t) = 1

2

∫ t

0
ϑ̃T

k (ι)ϑ̃k(ι)dι (29)

with ϑ̃k(t) = ϑ(t) − ϑ̂k(t).

Seek the difference of Jk(t) between two successive itera-
tions k and k − 1

�Jk(t) = Jk(t)− Jk−1(t)

= �J 1
k (t)+�J 2

k (t)+�J 3
k (t) (30)

where the difference items �J 1
k (t), �J 2

k (t), and �J 3
k (t) are

deduced as follows.
By (29) and using (16), (19), and (20), the following

difference is got:
�J 1

k (t) = β1

∫ t

0
V̇k(ι)dι− β1Vk−1(t)

= β1

∫ t

0
sk(ι)

[
ϑ̃T

k (ι)ψ(ι)+�uτk (ι)
]
dι

− β1

∫ t

0
b−1(ι)φ(xk, ι)sk(ι)dι

− β1

∫ t

0
b−1(ι)G|sk(ι)|dι

− β1

∫ t

0
b−1(ι)Qs2

k (ι)dι− β1Vk−1(t) (31)

where �uτk (t) = ϑ̂T
k (t)ψ(t) − ϑ̂T

k (t − τ )ψ(t − τ ).
By (29) and according to (5) and (13)–(15), the following

difference is got:
�J 2

k (t) = β2

∫ t

0
[b−1(ι)|sk(ι)|]
ιdι− J 2

k−1(t)

= β2

∫ t

0
sgnsk(ι)

[
ϑ̃T

k (ι)ψ(ι)+�uτk (ι)
]
dι

− β2

∫ t

0
b−1(ι)φ(xk, ι)sgnsk(ι)dι

− β2

∫ t

0
b−1(ι)Gsgn2sk(ι)dι

− β2

∫ t

0
b−1(ι)Q|sk(ι)|dι− J 2

k−1(t). (32)

By (29) and according to the definition of ϑ̃k(t), the fol-
lowing difference is got:

�J 3
k (t) = 1

2

∫ t

0

[
ϑ̃T

k (ι)ϑ̃k(ι)− ϑ̃T
k−1(ι)ϑ̃k−1(ι)

]
dι

= 1

2

∫ t

0
[ϑ̃k(ι)− ϑ̃k−1(ι)]T

× [ϑ̃k(ι)− ϑ̃k−1(ι)+ 2ϑ̃k−1(ι)]dι
= 1

2

∫ t

0
[ϑ̂k−1(ι)− ϑ̂k(ι)]T

× [2(ϑ(ι)− ϑ̂k(ι))+ ϑ̂k(ι)− ϑ̂k−1(ι)]dι
=

∫ t

0
[ϑ(ι)− ϑ̂k(ι)]T [ϑ̂k−1(ι)− ϑ̂k(ι)]dι

− 1

2

∫ t

0
�ϑ̂k(ι)− ϑ̂k−1(ι)�2

2dι. (33)

Then, substituting the update law (16) into (33), we get the
following difference:

�J 3
k (t) = −β1

∫ t

0
sk(ι)ϑ̃

T
k (ι)ψ(ι)dι

− β2

∫ t

0
ϑ̃T

k (ι)ψ(ι)sgnsk(ι)dι

− 1

2

∫ t

0
�ϑ̂k(ι)− ϑ̂k−1(ι)�2

2dι. (34)
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Substituting the difference results (31), (32), and (34) of
J 1

k (t), J 2
k (t), and J 3

k (t), respectively, into (30), we get the
difference of the CEF (28) as follows:
�Jk(t) = β1

∫ t

0

[
�uτk (ι)− b−1(ι)φ(xk, ι)

]
sk(ι)dι

+ β2

∫ t

0

[
�uτk (ι)− b−1(ι)φ(xk, ι)

]
sgnsk(ι)dι

− β1

∫ t

0
b−1(ι)Qs2

k (ι)dι

−
∫ t

0
b−1(ι)(β1G + β2 Q)|sk(ι)|dι

− β2

∫ t

0
b−1(ι)Gsgn2sk(ι)dι− β1Vk−1(t)

− J 2
k−1(t)− 1

2

∫ t

0
�ϑ̂k(ι)− ϑ̂k−1(ι)�2

2dι. (35)

The norm of the difference �uτk (t) between the time t and
t − τ can be got as∥∥�uτk (t)

∥∥ ≤ q
∥∥ϑ̂T

k (t)ψ(t)
∥∥

by the principle of (17), where q > 2 is the existing unknown
Razumikhin scalar constant. Thus, applying condition (27)
into (35), one can easily conclude that

�Jk(t) < 0

except Jk(t) = 0. Therefore, the sliding mode sk(t) will be
driven to the origin along the successive iterations if k → ∞.
The proof is completed.

It is obvious that the following result holds based on
Theorem 3.

Corollary 2: For the tracking error system (2) under
Assumptions 1–10, the ILC controller (13) with the update
law (16) drives the IISM (4) of the closed-loop system
asymptotically converging to the origin as the iteration number
approaches to infinity, that is

lim
k→∞ sk(t) = 0

if the control time delay τ = 0 and the sliding mode parameter
G satisfy

G ≥ dm . (36)
Proof: Based on the proof of Theorem 3, consider

the same CEF at the kth iteration as (28) and seek the
difference of Jk(t) between two successive iterations. Because
the control input time delay is τ = 0, �uτk(t) = 0.
Consequently, we get the difference of the CEF (28) as
follows:
�Jk(t) = −

∫ t

0
[β1 sk(ι)+ β2sgnsk(ι)]b−1(ι)φ(xk, ι)dι

− β1

∫ t

0
b−1(ι)Qs2

k (ι)dι

−
∫ t

0
b−1(ι)(β1G + β2 Q)|sk(ι)|dι

− β2

∫ t

0
b−1(ι)Gsgn2sk(ι)dι− β1Vk−1(t)

− J 2
k−1(t)− 1

2

∫ t

0
�ϑ̂k(ι)− ϑ̂k−1(ι)�2

2dι.

If the condition G ≥ dm is applied to the above, �Jk(t) < 0
is got. Therefore, Corollary 2 is proved.

Remark 6: Compared with that of the time domain (16),
the iteration convergence condition (27) eliminates the infor-
mation of the approximation ϑ̃k(t). However, it includes the
necessary rejecting forces to the unrepeatable disturbance or
unmodeled dynamics and to the redundancy resulted from the
time delay τ . If τ = 0 and the unrepeatable disturbance is
φ(xk, t) = 0, the parameter G ≥ 0 is enough to guarantee
the convergence in the iteration learning. This characteristic
determines that the sliding mode design parameter G is
important both in the time domain and the iteration domain.
In addition, it can be considered that the treatment for the time
delay is transferred to G.

Remark 7: In practice, the parameter G can be selected or
designed as follows. Because the value of the scalar q > 2
is unknown and only exists theoretically, it can be estimated.
Therefore, we can select

G = dm + (2 + ε)bm

∥∥ϑ̂T
k (t)ψ(t)

∥∥ (37)

where ε > 0 is the arbitrary tuning scalar according to the
situation of the time delay.

Remark 8: Note that the results in this article are not
changed while using dm(t) to replace of dm according to
Assumption 3.

VI. MEASURES FOR CHATTERING FREE

As we were known, SMC control always contains chattering
problems due to its high gain control character for rejecting
disturbance. Therefore, there is a chattering problem in our
method. The switching actions are inherent in the signal of
sgn(·).

The proposed sliding mode ILC control contains two types
of chattering phenomena. One is in the iteration domain,
which is caused by the update law (16) that includes the
signal of sgn(·). Another is in the time domain, which is
due to the action of the controller (13). The chattering in
the time domain is not easy to analyze because the signal
of sgn(·) rests on the IISM (4). However, when the IISM
is kept at the origin by the controller (13), the situation
becomes not satisfactory. Any slight action can cause the
deviation of the ideal sliding mode. Then, the signal of sgn(·)
will produce a switching action with an amplitude of G.
Although it is filtered by the integral function, which reduces
switching frequency, its switching amplitude becomes larger.
Especially, the value of the chattering sk(t) is used to the
update law (16). Therefore, the control action includes a
chattering phenomenon in the time domain. If one wants
to guarantee the reachability of the IISM (4) in the time
domain, according to conditions (18) and (23) or (24) and (26),
the parameter G needs to be bigger to get the high-gain control
action.

Three measures for chattering free were taken.
1) Minimizing the Parameter G: As controller (13) can

learn to stabilize the sliding mode sk(t), the IISM (4)
does not need to quickly converge in the time domain.
Therefore, if τ = 0, we set G to satisfy condition (27)
or (36).
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2) Minimizing the Parameter β2: Although the parameter
β2 has the iterative learning function, it causes the
chattering phenomenon in both the iteration domain and
the time domain. Its original function is to accelerate
the convergence and guarantee the reachability of the
IISM (4), which is useful under the condition of unpre-
dictable disturbance in the iteration domain. However,
the value of β2 is not easy to be selected because
of the unpredictable counterparts. Simulation result has
shown that it can make the learning process fluctuate
within a certain area between adjacent iterations, that is,
the chattering occurs in the iteration domain.

3) Using the Saturation Function sat(·) to Replace the
sgn(·): It is a classical method to solve the chattering
problem of the SMC control method. The saturation
function is expressed as

satsk(t) =

⎧⎪⎨
⎪⎩

1, sk(t) ≥ ϕ

sk(t)/ϕ, |sk(t)| < ϕ

−1, sk(t) ≤ −ϕ.
(38)

When |sk(t)| ≥ ϕ, sat(·) can be considered as the same
function as sgn(·). When |sk(t)| < ϕ, sat(·) can be
considered as a linear function of sk(t). In addition,
the positive scalar ϕ > 0 is called the boundary layer of
the sliding mode.

The above three measures were taken to overcome the
chattering problem. Then, the IISM can be rewritten as follows
using (5):

sk(t) = CT [ek(t) − ek(0)]
+

∫ t

0

[
(K T − CT A)ek(ι)

+ K T
p ek−1(ι)− Qsk(ι)− Gsatsk(ι)

]
dι (39)

and

ṡk(t) = y(n)d − θT (t)ξ(xk, t) − b(t)uk(t − τ )− φ(xk, t)

+ K T ek(t)+ K T
p ek−1(t)− Qsk(t)− Gsatsk(t). (40)

Due to the chattering free measure of saturation function,
sk(t) �= 0, and ṡk(t) �= 0. Undoubtedly, according to SMC
theory, the IISM (39) will be located in the inner boundary
layer under the ILC control (13), i.e., |sk(t)| ≤ ϕ. The
corresponding tracking error is then analyzed as follows.

Theorem 4: For the tracking error system (2) with Assump-
tions 1–10, the tracking error within the sliding mode bound-
ary layer |sk(t)| ≤ ϕ satisfies

lim
k→∞

ek(t) ≤ ϕ�[I s − Ā]−1 B(s + Q + G/ϕ)�∞ (41)

over [0, T ] as the iteration number approaches to infinity.
Proof: According to (38) and (40), the equivalent control

of the controller is achieved as

uk,eq (t − τ )

= b−1(t)
[
y(n)d − θT (t)ξ(xk, t)− φ(xk, t) + K T ek(t)

+ K T
p ek−1(t)− ṡk(t)− (Q + G/ϕ)sk(t)

]
(42)

while the IISM is in the inner of the boundary layer
|sk(t)| ≤ ϕ.

By substituting (42) into (3), we can get the dynamic
equation of ek(t) within the sliding mode boundary layer

ėk(t) = (A − B K T )ek(t)− B K T
p ek−1(t)

+ B[ṡk(t)+ (Q + G/ϕ)sk(t)] (43)

which shows us how the sliding mode value affects the
tracking error. Its description the frequency domain is

(I s − Ā)Ek(s) = B(s + Q + G/ϕ)Sk(s)− B K T
p Ek−1(s)

(44)

and obviously

Ek(s) = (I s − Ā)−1 B(s + Q + G/ϕ)Sk(s)

− (I s − Ā)−1 B K T
p Ek−1(s).

According to Theorem 1, the sliding mode parameters satisfy
condition (8), and then, Ek−1(s) does not affect the tracking
error value when k → ∞. Therefore, the tracking error value
in the frequency domain becomes

Ek(s) = (I s − Ā)−1 B(s + Q + G/ϕ)Sk(s)

when the iteration times k → ∞. Then, (41) holds. The proof
is completed.

Remark 9: Theorem 4 shows the effect of the nonideal
sliding mode on the tracking error. Through (41), the para-
meter G is most relevant to the tracking error when the
iteration approaches infinity. This is the cost of rejecting the
unrepeatable disturbance φ(xk, t). According to (41), we can
design a better parameter K to make the minor bound of the
tracking error.

VII. APPLICAITON EXAMPLE I

Consider the following one-link robotic manipulator:
ẋk,1 = xk,2

ẋk,2 = − gl

ml2 + J
cos xk,1 + 1

ml2 + J
u(t − τ )+ φ(xk, t)

xk(0) = x0(0) ∀t ∈ [0, 1] (45)

where xk,1 is the joint angle, xk,2 is the angular velocity, xk =
[xk,1, xk,2]T is the state vector, m = (3 + 0.1sint) kg is the
mass, l = 1 m is the length, J = 0.5 kg ·m2 is the moment of
inertia, and τ denotes the control input delay. According to (1),

set ξ(xk, t) = cos xk,1. A = [ 0 1
0 0

]
and B = [ 0

1
]

according to

the math description (3). This robotic manipulator was from
the literature [40].

The desired trajectory was selected as xd,1 = yd = sin t
and xd(0) = [0, 1]T . First, we designed the IISM surface
by (39). In the predesign step, CT = [1, 1] was set to
satisfy CT B = 1, and K T = [800, 201] was set to ensure
that A − B K T is a stable matrix. In addition, the tracking
error conditions (8) and (41) were considered. The parameter
Q = 40 was selected, and sk(t) at the kth iteration was
got

sk(t) = ek,1(t)+ ek,2(t)− ek,1(0)− ek,2(0)

+
∫ t

0
[800 ek,1(ι)+ 200 ek,2(ι)+ K T

p ek−1(ι)

− 40sk(ι)− Gsatsk(ι)]dι.
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Fig. 2. Tracking error maximum values following the iteration times.

Fig. 3. Joint angle and angle velocity tracking curves.

The parameters K p and G and the boundary layer ϕ were set
by different cases in the following.

A. Simulation Results When τ = 0

To validate our method and illustrate its merits, we first
conducted the simulation when the time delay was τ =
0 and then compared with the second-order sliding mode
(second-order SM) ILC method in [40].

Let xk(0) = xd(0) and φ(xk, t) = 5 sin3 t . The disturbance
was repeatable; thus, the parameter G was set to G = 0 with
ϕ = 0. The parameters of iterative learning in (16) were set
to β1 = 20 and β2 = 0. First, K p = 0 was set, i.e., the sliding
mode did not have iterative action. Then, K p = [90, 120]T

was set. The trends of the maximum tracking error values
with iteration times were obtained, as shown in Fig. 2. When
K p �= 0, the tracking errors are smaller and converge faster
than the results at K p = 0, which demonstrates the function
of the iterative action in the IISM. When K p = [90, 120]T ,
the tracking curves of the joint angle and angular velocity
after iteration k = 40 are shown in Fig. 3. From the results,
it is obvious that the rejecting control action is not required in
the condition of the repeatable disturbance. The corresponding
IISM converges over the iteration times are shown in Fig. 4.
Then, we set β2 = 2 to testify the chattering phenomenon
caused by β2. Fig. 5 shows that the sliding mode value is
chattering within a neighbor of zero when β2 = 2. However,
the sliding mode converges faster in contrast with Fig. 4, and
the tracking errors converge faster and have fluctuations due to
β2 �= 0, as shown in Fig. 6. The corresponding control torque
has a chattering phenomenon, as shown in Fig. 7.

Then, the tracking effects of the two methods were com-
pared. The second-order sliding mode ILC in [40] was applied,
and the parameters were set the same as in the literature. Fig. 8

Fig. 4. IISM converging curves along with the iteration times.

Fig. 5. IISM values when β2 = 2.

Fig. 6. Tracking error comparison when β2 = 0 and β2 = 2.

Fig. 7. ILC control torque based on IISM when β2 = 2.

shows that the tracking errors of our IISM method are very
smaller from the initial iteration time, while the tracking errors
of the second-order sliding mode method are bigger from the
initial iteration time. The comparisons of the sliding mode
values and control torque values after k = 40 iteration between
the IISM method and the second-order SM method are shown
in Fig. 9 and Fig. 10, respectively. The results are also shown
in Fig. 11. After 40 iterations, the error track in the phase
plane of our method is obvious within a smaller range than the
other method. This is because the IISM eliminates the reaching
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Fig. 8. Tracking error maximum values comparison following the iteration
times between the IISM method and the second-order SM method.

Fig. 9. Sliding mode values comparison after k = 40 iteration between the
IISM method and the second-order SM method.

Fig. 10. Control torque values comparison after k = 40 iteration between
the IISM method and the second-order SM method.

Fig. 11. Error track comparison in phase plane after k = 40 iteration between
the IISM method and the second-order SM method.

phase of the sliding mode. Therefore, the ILC control method
based on the IISM achieves the smaller tracking errors from
the initial iteration times. This is its special advantage.

Consequently, we verified the ability of the IISM method
to reject unrepeatable disturbance. First, we set φ(xk, t) =
5d sin3 ωt , where the amplitude d and frequency ω were
randomly generated at the interval (0, 1) in each iteration.
Correspondingly, the parameters G = 5.5 and ϕ = 0.01 were

Fig. 12. Tracking error maximum values comparison following the iteration
times between the IISM method and the second-order SM method.

Fig. 13. Control torque values comparison after k = 40 iteration between
the IISM method and the second-order SM method.

selected in the IISM. Then, the same second-order sliding
mode ILC in [40] was applied under the same unrepeatable
disturbance. The results are shown in Fig. 12. The IISM
method can suppress the unrepeatable disturbance with minor
ripple along the iteration times, while the second-order sliding
mode method has bigger fluctuations along with the iterations.
The corresponding control torques are shown in Fig. 13, which
indicates that there is no chattering phenomenon in the control
torque signal of the IISM method.

B. Simulation Results When τ �= 0

When there is the control input time delay, the second-order
sliding mode ILC method in [40] cannot be applied. We illus-
trate the results of the proposed IISM-based ILC method.

First, the control input time delay was set τ = 0.01 s.
There was no unrepeatable disturbance, i.e., ϕ(xk, t) = 0.
The following parameters were set: β1 = 0.1, β2 = 0,
G = 2.1�ϑ̂T

k (t)ψ(t)�, and ϕ = 0.002. The other para-
meters in the IISM and control law were set the same,
as mentioned in this section. The simulation results are shown
in Figs. 14–16. Although the joint angular velocity x2 cannot
track the reference signal xd,2 perfectly from the initial time
instant, the angle signal x1 can track the reference signal xd,1

perfectly, which is shown in Fig. 15. In addition, Fig. 16
shows that the sliding mode converges to the area within
the boundary ϕ = 0.002 along with the iteration times k.
To verify the effect of rejecting the unrepeatable disturbance,
we set φ(xk, t) = 5d sin3 ωt to be the same in Section VII-A
and obtain the result in Fig. 17, which shows the trends of
the maximum tracking errors |ek,1|max and |ek,2|max along the
iteration times k. It can be seen that the random unrepeatable
disturbance only has minor effect on the tracking error.



4356 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Fig. 14. Tracking error maximum values following the iteration times when
the control input time delay τ = 0.01 s.

Fig. 15. Joint angle and angle velocity tracking curves when the control
input time delay τ = 0.01 s.

Fig. 16. IISM converging curves along with the iteration times when the
control input time delay τ = 0.01 s.

Fig. 17. Tracking error maximum values following the iteration times when
the control input time delays τ = 0.01 s and φ(xk , t) = 5d sin3 ωt .

Then, the control input time delay was set to a bigger value
τ = 0.1 s. This is a big delay for the manipulator driving
system. The ILC based on the IISM was applied to the one-link
robotic manipulator. A bigger control input time delay caused
greater tracking error. The learning parameter β1 = 0.004 was

Fig. 18. Tracking error maximum values following the iteration times when
the control input time delay τ = 0.1 s and φ(xk , t) = 5d sin3 ωt .

Fig. 19. Joint angle and angle velocity tracking curves when the control
input time delay τ = 0.1 s and φ(xk , t) = 5d sin3 ωt .

Fig. 20. Control torque curves when the control input time delay τ = 0.01 s
and τ = 0.1 s with φ(xk , t) = 5d sin3 ωt .

set because the “overlearning” results in oscillating when the
sliding mode value is big. G = 5.5 + 14�ϑ̂T

k (t)ψ(t)� was
set in order to guarantee the convergence because of the big
control input time delay. Other parameters were not changed
and the same as in this section.

The simulation results are shown in Figs. 18–20. The
tracking errors are greater when the control input time delay
is bigger, as shown in Fig. 18 in contrast with Fig. 14. The
trajectory tracking effect is shown in Fig. 19, which becomes
worsen. However, the ILC based on the IISM in this article
still stabilizes it without chattering, and the control torques
under different time delays are shown in Fig. 20.

VIII. APPLICATION EXAMPLE II

A three-tank system is a typical industrial process to be
difficultly controlled, especially as liquid levels are coupled,
nonlinear, and have a big inertia with input time delays.
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Many researchers have studied its liquid-level control prob-
lem [41]–[45]. We used a vertical three-tank system to validate
the proposed sliding mode ILC design, and the following
approximate transfer function model was adopted to describe
the liquid-level dynamic [44], [45]:

H3(s)

U(s)
= H3(s)

H2(s)

H2(s)

H1(s)

H1(s)

U(s)
= k p1k p2k p3 e−τ s

(T1s + 1)(T2s + 1)(T3s+1)
(46)

where h1(t), h2(t), h3(t), and u(t) are the liquid levels of
the first tank, second tank, third tank, and the pump control
voltage, respectively, whose corresponding Laplace transfor-
mations are H1(s), H2(s), H3(s), and U(s), respectively;
T1–T3 are the time constants of the corresponding tanks; k p1,
k p2, and k p3 are the corresponding transmission gains; and
τ is the time delay of the control input flow caused by the
pipe.

Based on the transfer function description (46),
the state-space model can be got as

ḣ(t) = Ah(t)+ Bu(t − τ )

A =

⎡
⎢⎢⎢⎢⎢⎣

− 1

T1
0 0

k p2

T2
− 1

T2
0

0
k p3

T3
− 1

T3

⎤
⎥⎥⎥⎥⎥⎦, B =

⎡
⎢⎣

k p1

T1
0
0

⎤
⎥⎦

where h(t) = [h1(t), h2(t), h3(t)]T is the level state vector.
The state-space model can be transformed by

T = 103

⎡
⎢⎢⎢⎣

0 0 1

0
k p3

T3
− 1

T3
k p2k p3

T2 T3
− k p3

T2 T3
− k p3

T 2
3

1

T 2
3

⎤
⎥⎥⎥⎦, z(t) = T h(t)

into the other state-space model

ż(t) = T AT −1z(t)+ T Bu(t − τ )

where z(t) = [z1(t), z2(t), z3(t)]T is the transformed state
vector. Substituting the matrices T , A, and B , we get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

żk,1 = zk,2

żk,2 = zk,3

żk,3 = −
[

1

T1T2T3
,

1

T1T2
+ 1

T2T3
+ 1

T1T3
,

1

T1
+ 1

T2
+ 1

T3

]
zk

− k p1k p2k p3

T1T2T3
× 103 u(t − τ )

(47)

where zk = zk(t) = [zk,1(t), zk,2(t), zk,3(t)]T is the state vector
z(t) along the iteration domain k.

For system (47), the sliding mode ILC control scheme was
designed using the proposed IISM method, while the tracked
curve was yd = 103 hd,3(t), with hd,3(t) being the aimed
liquid level of the third tank. The control task was to make
h3(t) tacking hd,3(t) with the tracking error ek(t) = [yd −
zk,1, ẏd − zk,2, ÿd − zk,3]T converging. The parameters in (47)
do not need to be known in the proposed method, but, in the
application simulation, they were set as T1 = 72, T2 = 34.4,
T3 = 23, k p1 = 0.26, k p2 = 1, and k p3 = 1 referring

Fig. 21. Step responses h3(t) of the vertical three-tank system along with
the iterations.

to [44], [45]. The application simulation works were done as
follows in the cases of τ = 0 and τ �= 0.

A. Simulation Results When τ = 0

First, the step signal hd,3(t) = 0.1 was selected, and the
following parameters were set in the IISM (4): CT = [1, 1, 1],
Q = 2, K T = [0.88, 41, 101], K T

p = [0.02, 0.1, 1], G =
0.001, and ϕ = 0.001. For controller (13), ξ(zk, t) = zk(t),
β1 = 1 × 10−6, and β2 = 0 were selected for the update
law (16). The response output h3(t) of the vertical three-tank
system was observed under the step reference signal. Its
responses along the iteration are shown in Fig. 21, and
satisfactory transient performance is obtained only after ten
iterations learning.

In contrast, we also applied the PID-SFCS control scheme
in [45] to the vertical three-tank system, whose controller
comprises a PID subcontroller and a state feedback subcontrol

UPID(s) = 0.042(49.9s + 1)(49.4s + 1)Er(s)

s(4.91s + 1)
uSF(t) = −[2.55, 0.46, 0.03]h(t)

where Er (s) is the Laplace transform of the tracking error
er (t) = hd,3 − h3(t). The step response output h3(t) was also
observed and compared to that of the presented IISM method,
as shown in Fig. 22. It can be seen that the transient response
of the IISM method has the smaller overshoot, tuning time,
and steady-state error.

To show the better tracking performance, the following
reference signal was considered the target curve:

h3,d (t) =

⎧⎪⎪⎨
⎪⎪⎩

0.12 sin
π t

2400
, t ≤ 1200

0.03 sin

(
π t

1200
− 0.5π

)
+ 0.09, t > 1200.

(48)

Except β1 = 3.5 × 10−6, all the parameters had no change.
Only after ten iterations of learning, its tracking outputs h3(t)
along the iterations are shown in Fig. 23 and its sliding mode
values in Fig. 24. In addition, the results of the IISM method
were also compared with those of the PID-SFCS method,
as shown in Fig. 25. The tracking output of the proposed
IISM method has an obviously smaller steady-state tracking
error.

Remark 10: The initial condition is h3(0) = hd,3(0) = 0,
while the reference signal is the step signal hd,3(t) = 0.1.
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Fig. 22. Step responses h3(t) under the PID-SFCS and IISM methods.

Fig. 23. Tracking responses h3(t) of the vertical three-tank system along
with the iterations when τ = 0.

Fig. 24. Sliding mode value sk(t) along with the iterations when τ = 0.

Fig. 25. Tracking responses h3(t) under the PID-SFCS and IISM methods
when τ = 0.

B. Simulation Results When τ �= 0

Due to the length of the pipeline, there usually exists the
input flow time delay. If the time delay is τ �= 0, the PID-SFCS
scheme can still be used with a limited range of τ . However,

Fig. 26. Tracking responses h3(t) under the PID-SFCS and IISM methods
when τ = 50.

Fig. 27. Tracking responses h3(t) under the PID-SFCS and IISM methods
when τ = 80.

Fig. 28. Tracking responses h3(t) of the vertical three-tank system along
with the iterations when τ = 80.

Fig. 29. Sliding mode value sk (t) along with the iterations when τ = 80.

we would demonstrate that the proposed IISM method has a
better tracking performance by overcoming the time delay.

First, we set τ = 50, K T = [0.64, 81, 101], β1 = 8 × 10−7,
and G = 0.001+12�ϑ̂T

k (t)ψ(t)�, and the other parameters had
no change. After 30 iterations of learning, the tracking outputs
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Fig. 30. Tracking responses h3(t) under the IISM methods when τ = 120
and τ = 240.

Fig. 31. Maximum tracking error |hd,3 − h3|max along with the iterations.

h3(t) of the PID-SFCS method and IISM method are shown
in Fig. 26. Then, we set τ = 80, K T = [0.52, 41, 81]n and
G = 0.001 + 24�ϑ̂T

k (t)ψ(t)�, while the other parameters had
no change. After 50 iterations of learning, the tracking outputs
h3(t) are shown in Fig. 27. From the figure, the PID-SFCS
scheme cannot stabilize the time-delay system dynamic when
τ = 80. On the contrary, the proposed IISM method is still
effective. In this case, the tracking outputs h3(t) along the
iterations are shown in Fig. 28, and its sliding mode values
are shown in Fig. 29. In addition, τ = 120, 240 were all set to
verify the performance without any parameter change except
G = 0.001 + 36�ϑ̂T

k (t)ψ(t)� as τ = 240. The results are all
shown in Fig. 30.

From Figs. 26, 27, and 30, it can be concluded that the track-
ing performance of the proposed IISM method is superior to
that of the PID-SFCS method. Furthermore, the IISM method
has the ability to stabilize the system with the unknown control
input time delay without the requirements of knowing the exact
parameters.

From Figs. 24 and 29, it can be seen that, by selecting
the appropriate parameters, the value of the proposed IISM
can be driven to zero along with the iterations. In addition,
the tracking outputs in Figs. 23 and 28 get closer to the
reference trajectory along with the sliding mode converging.

Fig. 31 shows the maximum tracking errors
|hd,3(t) − h3(t)|max along with the iteration k under
different time delays τ . At a bigger time delay, the maximum
tracking error converges to a greater value.

IX. CONCLUSION

This article proposed an ILC control design based on the
IISM surface to address the tracking problem of a class of

nonlinear systems with unknown control input time delay.
First, the IISM surface with iterative actions was proposed.
The iterative actions in the IISM can reduce the tracking
error without affecting the control design and convergence
performance. The IISM also contains switching action to
ensure reachability in both the time domain and the iteration
domain. Then, the ILC controller was proposed based on the
IISM. The update law of the controller is related to the IISM
that promotes the sliding mode to converge to the origin in the
iteration domain. The analytic results about the tracking stabil-
ity under the controller were obtained. Finally, to overcome the
chattering shortcoming of the SMC, measures were taken, and
their influences on the tracking error were obtained through the
analytic results. To verify our control design, the simulation
applications on a one-link robotic manipulator and a vertical
three-tank system were conducted. The results revealed that
the IISM-based ILC has the capacity to stabilize the tracking
from the initial iteration and the ability to overcome the
unknown control input time delay.
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