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ABSTRACT Over the years, deep learning algorithms have advanced a lot and any innovation in the
algorithms are demonstrated and benchmarked for image classification. Several other field including side-
channel analysis (SCA) have recently adopted deep learning with great success. In SCA, the deep learning
algorithms are typically working with 1-dimensional (1-D) data. In this work, we propose a unique method
to improve deep learning based side-channel analysis by converting the measurements from raw-trace of
1-dimension data based on float or byte data into picture-formatted trace that has information based on
the data position. We demonstrate why ‘‘Picturization’’ is more suitable for deep learning and compare how
input and hidden layers interact for each raw (1-D) and picture form. As one potential application, we use
a Binarized Neural Network (BNN) learning method that relies on a BNN’s natural properties to improve
variables. In addition, we propose a novel criterion for attack success or failure based on statistical confidence
level rather than determination of a correct key using a ranking system.

INDEX TERMS Binarized neural network, deep learning, multi-layer perceptron, non-profiled side-channel
attack.

I. INTRODUCTION
Machine learning has seen great application in different use
cases. Popular techniques likeMLP (Multi-Layer Perceptron)
[5] and CNN (Convolutional Neural Network) [18], [24] are
widely utilized, but not limited to, in solving classification
problems of variable complexity. Security evaluation with
techniques like side-channel analysis [7], [13], [17], [19],
[21]–[23], [32], [33] has also seen rapid adoption of MLP
and CNN. The key idea here is to map the measured samples
in a side-channel trace to input of a neural network while
mapping the output labels to sensitive intermediate values.
The network tries to learn the trace to sensitive value mapping
in the training phase to classify attack traces with unknown
labels.

The research on application of deep learning has been
growing rapidly since its introduction byMaghrebi et al. [23],
where they showed how MLP was utilized to break popular
masking countermeasures. Cagli et al. [7] later demonstrated
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the use of shift invariance property of CNN to counter jitter
based countermeasure, further improved by data augmenta-
tion techniques. Another work by Picek et al. [26] showed
how the commonly used Hamming weight model leads to
imbalanced training datasets and proposed techniques to
overcome it. In [17], the authors propose the use of added
Gaussian noise as a regularization technique to improve
attack efficiency for different datasets while keeping the same
VGG-like network. In recent work, Zaid et al. [33] further
improved the attack efficiency by optimizing the network
for each dataset individually. Recently, Masure et al. [22]
proposed a comprehensive study of deep learning techniques
with formal links to well established side-channel metrics.
Machine learning schemes such as autoencoders are shown
to be used to reduce the noise level in side-channel traces
[32]. Perin et al. [25] also utilize the ensemble models to
concentrate on the generalization for profiling attack. While
all these techniques operate in a profiled or supervised setting,
Timon [31] proposed an attack technique in the non-profiled
setting, using training accuracy of the correct key as a distin-
guisher against wrong key.
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Although all the noted previous work have shown inter-
esting results, they processed side-channel trace as a one-
dimensional stream of data. Kim et al. [17] adapted a
VGG-like networkwhich performedwell in audio application
to side-channel applications, owing to similarity in data type.
However, it is well known that MLP and CNN are well suited
for image classification. Research and optimizations of MLP
and CNN have been demonstrated on image datasets like
MNIST, CIFAR-10, SVHN etc. Thus, it is natural that these
networks perform best on images.

The initial idea for treating side-channel as images was
put forward by Park et al. [28]. Later, Hettwer et al. [14]
considered picture trace form for side-channel analysis since
many machine learning techniques are naturally developed
for picture dataset such as MNIST and CIFAR, and report
better performance as compared to treating SCA trace as a
1-dimension data. In this work, we conduct a comprehensive
analysis of side-channel analysis that treat traces as images.

A. MOTIVATION
The previously conducted studies on side-channel analysis
have only focused on how to apply a machine learning
scheme without modifying any of its properties. As pre-
viously stated, we transform the raw trace to conform to
MNIST style to use inherent properties of the machine learn-
ing scheme. This is based on the results shown in the previous
study [20]. As illustrated in Figure 1, we can recognize ‘‘7’’
as a handwritten number.

FIGURE 1. 7 value represented in the MNIST dataset.

In fact, the ’7’ is represented using a hexadecimal value.
While a single point in MNIST data is represented as a
hexadecimal value, a float value is used to represent the
concentrated form of the figure. Without the concentration,
the value ‘‘7’’ is represented as shown on the right-hand
side of Figure 1. Then, we describe why we remove the
concentration. Above all, this MNIST style is significantly
helpful in learning the data in terms of side-channel analysis.
We expect that the best performance can be achieved if the
trace is converted to MNIST style, because machine learning
schemes, such as MLP, CNN, and BNN, have been advanced
based on MNIST-style datasets.

B. CONTRIBUTIONS
We can summarize our contributions as follows

• We conduct a comprehensive analysis of side-channel
analysis when treating traces in a picture form rather

than original trace form. Our performance outper-
forms [14] by around 5×. Considering, in ASCAD
datasets, our scheme only requires 7,000+3,000 traces
to find correct key (non-profiled), while 50,000+250
traces are required in previous study (profiled).

• We provide detailed justification why the picture trace
form outperforms original form in Section III-B. The
weights of deep learning structure in picture trace form
have a lot of solution range to learn the trace, as com-
pared to original trace. Due to this fact, there is a dis-
advantage point for easy learning. Since our suggested
form induces overfitting, we employ BNN as a solution
for the first time in terms of side-channels.

• As indicated in [31], one cannot use the identity as
leakage model in non-profiling scenario. Therefore,
we should deal with the imbalanced leakage model
(Hamming weight) making it difficult to use guessing
entropy as a selection criteria [28]. To overcome this
obstacle, based on Bernoulli distribution, we utilize
the accuracy result of deep learning for attack success
or failure rather than guessing entropy. Additionally,
we prove that single bit of intermediate value is con-
nected to the accuracy of machine learning result based
on Bernoulli distribution and thus Guessing entropy is
not required.

II. PRELIMINARIES
Deep Learning (DL) is a particular type of neural network-
based machine learning that uses multiple layers in the net-
work. It has also been applied to various fields, such as image
and speech recognition. In this section, we briefly describe
how to apply DL techniques, such as MLP and BNN, to side-
channel analysis.

A. MULTILAYER PERCEPTRONS (MLP)
The general objective of MLP is to classify some input vector
x ∈ RD based on its labels l(x) ∈ L = {l1, l2, · · · , l|L|},
where D is the dimension of the input data to be categorized
and L is the set of classification labels. The goal of an NN
is to produce a function NN : RD

→ R|L| that takes x ∈ RD

as the input vector and output y of the scores as the output.
In other words, the final goal is to create the score vector
l(x) based on NN (x), updating the internal properties. In
general, an NN comprises input, output, and hidden layers.
In terms of side-channel analysis, the input vector can be
represented as points of a trace, and the output is compared
to hypothetical intermediate variable, such as a Hamming
weight model [4], to learn the expected result. Moreover,
this hypothetical variable is usually encoded using a one-hot
encoding scheme.

1) CONSTRUCTION OF MLP
In this section, we provide an example of a simple MLP. The
number of inputs, also known as points, is four, and as shown
in Figure 2, the example MLP comprises two hidden layers
with three neurons and an output layer with two neurons.
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FIGURE 2. Example of a simple MLP.

In addition, a bias neuron is included in all layers, except for
the output layer. All arrows in Figure 2 represent weights,
as illustrated in Figure 3. Typically, prior to performing DL,
the values of weights and the bias neurons are initialized from
a normal distribution using the Xavier scheme [11]. To obtain
the expected result from the output layer, some operations
are performed to determine the output of each neuron. This
procedure is called forward propagation. However, in this
part, the weights have not been updated yet, so the achieved
results might not be optimum. Optimal weights and bias
values required to obtain the expected result are tuned via
backward propagation during the learning process. This is
done by comparing the expected result and the result of the
output layer. The expected result is sometimes encoded using
one-hot encoding. If one-hot encoding is applied to a single-
bit-Hammingweight model, the output layer should comprise
two neurons. If the Hamming weight value is 1, then the
expected result is encoded to [1, 0] or [0, 1]. More precisely,
by comparing [y1, y2] and the one-hot encoded value, back-
ward propagation is performed to update all weights.

2) FORWARD PROPAGATION
Forward propagation can be calculated as shown in Figure 3.
A single neuron in all hidden layers and the output layer is
computed by simple multiplication, addition, and an activa-
tion function. In the figure, x1 · w1 + x2 · w2 + x3 · w3 + b
is operated prior to calculating the activation function. Then,
the activation function fact such as sigmoid, tanH, ReLU, soft-
max, and Swish, is computed to calculate forward propaga-
tion. Excluding the output layer, ReLU is sometimes adopted
for all hidden layers.

3) BACKWARD PROPAGATION
The core of MLP is backward propagation because each
weight can be updated to learn the expected result. Backward
propagation is performed by comparing the expected result
l(x) and the output of MLP NN (x). Here, an error function,
such as Euclidean distance, can be used to learn the expected
result. Normally, an error function E : RD

→ R can be

FIGURE 3. Calculation for a single neuron in hidden and output layers.

defined, e.g., as the Euclidean distance between the MLP
output and the one-hot encoded label, as follows:

E(x) =
|L|∑
i=1

(l(x)[i]− NN (x)[i])2 (1)

where l(x)[i] and NN (x)[i] indicate the label value and the
output neuron value, respectively. The error function value
represents the gap between the expected result and the MLP
output. In other words, backward propagation narrows the
gap. To reflect the error for all training data X = (xi)1≤i≤T ,
a loss function is defined as follows.

L =
1
T

T∑
i=1

E(xi) (2)

The weights can be updated using a gradient descent tech-
nique [12], which is applied to the loss function L. Because
loss function variables are based on the weights, the weights
are trainable. Here, this concept is denoted as Lw. In other
words, based on the gradient descent technique, the weights
in the loss function can be updated with ∇Lw. Utilizing the
t-th result,Lw(t), (t+1)-th weights can be learned as follows:

w(t + 1) = w(t)− α∇Lw(t) (3)

where α denotes the learning rate. The total quantity for
training T is consumed to learn w. However, even though the
T quantity is used, the T quantity can be reused to learn w,
which is referred to as an epoch.

For side-channel analysis, DL is applied as follows.
• Input layer The points of a trace correspond to the
number of input values.

• Output layer The adversary sets the expected result. If
the target intermediate variable for attacks is the Ham-
ming weight of a single bit of the S-box output, then the
output layer has two neurons where one-hot encoding is
applied.

• Hidden layer Excluding the input and output layers,
DL can be applied to the intermediate layers in order
to learn a more accurate result than a single-layer NN.
This hyperparameter significantly depends on a rule of
thumb, i.e., the adversary selects the parameter based on
trial and error.

• Learning rate A ratio utilizing the previous training
result is used to update the weight, between the range
of 0.0 and 1.0.
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• Activation function To activate each neuron, activation
functions such as sigmoid, tanH, ReLU, and softmax
can be applied. Empirically in many studies, ReLU is
applied to hidden layers and softmax is used for the
output layer.

• Initialization Initialization involves setting the initial
values of weights and biases. The initial values can be
set as random variables in a Gaussian distribution or
additional techniques can be used.

4) ADDITIONAL FUNCTIONS
Various additional functions are used to avoid some obstacles,
such as overfitting and inefficient use of memory, in machine
learning schemes. We describe the two techniques that are
used in this study.
• Batch size The total training data are divided into
batches or sets, in order to avoid overfitting by updating
the weights based on batch size.

• Dropout The key idea is to randomly drop units from
the NN during training. That is, only some connections
are updated. Here, the range is between 0.0 and 1.0. For
example, 1.0 means no drop.

B. BINARIZED NEURAL NETWORK (BNN)
In this section, we introduce the concept of BNN. In recent
works, the BNN variables are used for image classification
works, so they are suitable for our picture-formatted scheme
[15]. For implementation, BNN can reduce the memory and
computational requirements of a deep NN. The core idea is
binarization of all possible components, such as activations
and weights. After converting the input to+1 and−1, we can
utilize the binarization of weights and activations. The binary
computation is shown to be 7 times faster than float compu-
tation and more energy efficient than MLP [8]. This would
result in a faster evaluation even though the BNN might have
higher complexity compared to MLP [8].

1) BINARIZATION OF WEIGHTS
When calculating initialization and forward propagation,
applying binarization is not problematic. The primary issue
with binarization is back-propagation. Courbariaux et al. [15]
found very simple solutions for maintaining the real values of
trained weights.

WB = sign(WR) (4)

After updating the weights using gradient descent, they
are normally real values (WR). For binarization, we can use
the sign function resulting in a tensor with values of +1 and
−1. Then, in order to use forward propagation, WB can be
obtained from the binarization ofWR.

2) BINARIZATION OF ACTIVATIONS
To perform backward propagation, we need to make the acti-
vation function learnable. Normal backward propagation can-
not be applied to a BNN because the output of the activation

FIGURE 4. Trace for side-channel analysis.

function is −1 or +1. [15] suggested using gradient descent
considering binarization, as follows.

∂L
∂aR

=
∂L
∂aB
∗ 1|aR|≤1 (5)

Here, aB is the binarized output of the activation func-
tion and aR is the real value input to the activation func-
tion. 1|aR|≤1 evaluates to 1 if |aR| ≤ 1; otherwise 0.
This zero drops out the gradient if the input of the acti-
vation function is greater than absolute value 1. We uti-
lize an open-source BNN that is publicly available at
https://github.com/uranusx86/BinaryNet-on-tensorflow.

III. PICTURE TRACE AND ANALYSIS
In this section, we introduce a preprocessing method for
power traces and the basic attack principle. In general, if an
event occurs at one time (t), there is a voltage value that has
a single point value, which is a one-dimensional vector. For
example,

v(trace) = 2.34

A collected power trace is a sequence of these voltages. If
there is n-time point, one can express n-dimension (i.e., n-
time) as

v(trace) = (2.34, 1.36, 2.50, 2.97, . . .)

The floating with the n-dimensional vector is described as
follows (Figure 4), and is a normal power trace, where the
x-axis indicates time and the y-axis indicates voltage.

In Figure 4, the voltage on the time axis expresses
‘‘degree’’, and the power trace can be visualized for human
recognition. One can recognize power flow through upper
markings and lower markings, which represent a high degree
of voltage and represent a low degree of voltage, respectively.
However, a real voltage flow is an n-dimensional vector
sequence.

We perform side-channel analysis withpicture-formatted
power traces. There are many methods for converting
an n-dimensional vector sequence into a picture. We use
the approach from the MNIST database. As illustration,
in Figure 5, we show a handwritten number ‘‘7’’, and we can
perceive the value through some values in a 28 × 28 area.
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FIGURE 5. ‘‘7’’ represented in MNIST database with concentration.

FIGURE 6. picture-formatted trace for side-channel analysis.

Here, there are visually unnecessary areas that are treated as
the value ‘‘0’’, which means NULL. We seek to visualize a
power trace using this method. Figure 6 shows a visualized
power trace, which is a fundamental shape that we desire to
change from a vector sequence to a picture. Here, the mean-
ingful line is 1, and 0 represents nothing (like a foundation
that helps us perceive the relative location of point ‘‘1’’). We
call it a picture trace. The steps for obtaining a picture trace
are described as follows.

A. PICTURE ENCODING
1) DECIDING THE RESOLUTION
Resolution determines how a picture trace is represented in
detail. To obtain all information from the original power trace,
we know the original trace’s resolution when the trace is
collected from the collecting device, e.g., an oscilloscope.
Otherwise, we can easily conduct a brute-force search to find
the resolution. Figure 7 shows how we determine the resolu-
tion when converting a power trace to a picture trace. Here,
the original trace is an n-dimensional vector space whose size
is equal to the number of points; however, the size of a picture
trace is expressed as (number of points× resolution).

Note that we can select a smaller resolution, which
results in a smaller input size. This facilitate relatively
faster learning and reduces memory consumption. How-
ever, some information from the original trace might be
missing, which can distort the real information in sensitive
data. In what following, we discuss how to control such
content.

FIGURE 7. Determination of resolution for a trace.

2) DRAWING THE ‘‘Picture’’
The drawing is the main step in generating a picture trace
from an original trace. To draw a picture, we must determine
the position of a point and place a dot in fixed space. In
other words, we should determine the position of all points
within the defined resolution. The related position of a point
is determined using the upper bound, lower bound, and the
chosen resolution. First, the gap, i.e., the difference between
the lower and upper bounds, needs to be computed. Note that
each gap in each trace differs; however, the transformed traces
must be identical to realize the same analysis standard and
facilitate simple implementation.

Gap = upperbound − lowerbound (6)

Here, the upper bound is the maximum voltage value and
the lower bound is the minimum value of all sample power
traces. After computing the boundary, the related location is
computed. The resolution is denoted as n, and the voltage
value at a specific time is denoted as v; thus, the related
location is computed as t = ϕ(v), which is an intuitive
concept.

ϕ : R → Zn (7)

t = ϕ(v) =
⌊
v− lowerbound

Gap

⌋
× n ≤ n (8)

Finally, we can generate an n(resolution)-th vector with
related location t that is an integer in [0, n− 1]. The method
for expressing the picture follows MNIST; however, there is
no depth in our power trace. Therefore, ‘‘1’’ represents the
related location, and ‘‘0’’ means NULL. Assuming that the
related location is t , the n-th vector is computed as follows.

δ : Zn → (Z2)n

δ (t) = (a0, a1, . . . , an−1)

ai =

{
0 (i 6= t)
1 (i = t)

The final picture of each trace is a set of vectors δ(t). The
picture is {δ1 (t1) , δ2 (t2) , . . . , δm (tm)}.

3) REDUCING THE REDUNDANCY WITH FILTER
The reducing step is the elimination of unnecessary parts
of the picture. The newly drawn picture-shaped trace has
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FIGURE 8. Overlapping traces for generating the filter.

FIGURE 9. Generating final figure trace based on the filter.

unchanged ‘‘1’’ to ‘‘0’’ or ‘‘0’’ to ‘‘1’’. This area has no effect
on power analysis. In our experimental results, most of the
unchanged sections of the pictures are ‘‘0’’, i.e., generally the
foundation. Note that we cannot know an unchanged section
from a single trace, and thus, filter out the unchanged portions
by brute force search of each trace. The filter is created by
stacking all picture traces and selecting vectors with a value
of ‘‘1’’.

Figure 8 shows the method used to generate the filter. The
filter eliminates unchanged ‘‘0’’ values; thus, we obtain only
meaningful locations (Figure 9). The output picture on the
right side of Figure 9 is inside the filter boundary.
In our results, filtering the picture traces reduces the input

size of the ASCAD example by approximately 90%. Reducing
the input size enables efficient learning time and reduces the
number of training epochs.

Additionally, we can consider the efficient method to save
the points because the points of picture-formatted traces are
composed of 1 or 0. Unlike the original traces, the multiple
points can be compressed to single data. For example, eight
0/1 points can be stored single byte data. Then, we can save
the 1/8 data size.

B. CORRECT KEY DETERMINATION
For correct key determination, the previous non-profiling
attack published in CHES 2019 [31] selected the best train-
ing speed, compared to other incorrect keys. However, this
method assumes that DL with a correct key will learn in
a more efficient way of providing labels. This means that
weights and bias with higher training accuracy can com-
pute correct labels for any power trace. However, a highly
accurate training trace does not guarantee finding a correct
key (Section IV-C), because DL can fall into the overfitting
problem. In some cases, the learning with incorrect keys
could have a faster learning speed.

Thus, we need to develop other standards to determine cor-
rect keys. We use a validation set for the final determination
of correct or incorrect keys withmathematical confidentiality.

Note that this validation set is not used for the learning
phase. In fact, we require additional power traces to determine
a correct key. For our method working, the validation set
must be uniformly distributed for each label. For example,
single-bit labeling has approximately 50% ‘‘1’’ and 50% ‘‘0’’.
Accuracy is estimated by the number of equal result between
the labeling with computed by guessing key by cryptographic
operation and the labeling with machine. Here, the validation
set has n power traces with exactly 50% ‘‘0’’ and 50% ‘‘1’’.
We set Bernoulli trials(Bern) with success; the result of the
same labeling between machine and cryptographic operation.
The probability mass function is Bern(x, p) = p when x = 1
(success), and Bern(x, p) = 1 − p when x = 0 (failure) and
the distribution following to Bernoulli trials that is matching
between labeling with guessing key and the labeling with
correct key is X ∼ Bern(x, p). In our 1 bit model, X fol-
lows Bernoulli trials X ∼ Bern(x, 1/2). For each validation
traces, Bernoulli trials X1,X2, . . . ,Xn are independent. Then,
their sum is distributed according to a binomial distribution
with n, 12

n∑
k=1

Xk ∼ B(n,
1
2
)

If n is sufficiently large, B(n, p) is given a normal distribu-
tion [34]

N (np, np(p− 1))

For example, if n equals 3000, the binomial distribution
can be approximated as a normal distribution. By using
the number of correct prediction x, we calculate the cumu-
lative distribution function (CDF) of x successes based
on normal distribution approximation. Therefore, the dis-
tribution follows N (1500, 750), and we can determine
whether the selected key for the error possibility is cor-
rect, using a probability density function, where the lower
cumulative distribution P

(
x, 1500,

√
750

)
is computed

as
∫ x
−∞

1
√
2πσ

e
−

1
2

(
x−1500
σ

)2
. If 1600 passes in 3000 queries of

key= 0x33, P
(
1600, 1500,

√
750

)
= 0.999869. Here, the

desired correct key is 0x33, and error rate is 1− 0.999869 =
0.000131. This is a very strong evidence 0×33 is correct key
regardless of other key’s result.

Multiple bits can be applied to this method but one bit
model is ideal and perfectly balanced. On the other hand, one
can perform each bit separately, and if one of the result of
each bit shows meaningful confidential level, correct key can
be determined by provable confidentiality. One does not need
to test other bits as well as other key candidates.

C. CHARACTERISTICS OF PICTURE TRACE
1) EASY LEARNING WITH DIFFERENT FORMAT OF INPUTS
A notable difference in picture traces is that the alteration
of voltage for each trace changes the vector’s location. For
example, as shown in Figure 10, there are only two power
traces, and three voltage values at three times. The left side
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FIGURE 10. Example of easy learning.

of Figure 10 shows normal traces, i.e., a three-dimensional
vector sequence. The first trace’s third value is 0.1, and the
second trace’s third value is 0.2. The right side of Figure 10
shows the picture trace. Here, the input vectors of the pic-
ture trace are [0, 1, 0, 0, 0, 1, 1, 0, 0] in the first trace and
[0, 1, 0, 0, 0, 1, 0, 1, 0] in the second trace. Alteration of
these two traces is a location change expressed as [1, 0]
to [0, 1]. The normal trace’s alteration is 0.1 to 0.2 that is
changed value. Actually, information of inputs can be reduced
when resolution is lower than original trace’s environment.
However higher resolution does not guarantee good perfor-
mance of analysis, we will show the result after this chapter.
More important factor for success of attack is not always
maximal information but the more proper format and size of
inputs for efficiency of ML. We will show the experimental
result with variation of resolution.

Now, we will show how to work changed inputs in each
nodes. According to expanded dimension of input space,
it can find proper solution easily to learn faster for NN
fitting with weight and bias. Figure 11 shows an intuitive
appearance of learning using normal traces. For understand-
ing of the principle, we set comparison between learning of
normal traces and picture traces with specific structure and
actual numbers; in the last layer of the NN with softmax
and one-hot encoding, the voltage values of the two traces
are 1 or 2. The last step of the network selects a location
with a greater value of P1 or P2 after softmax. Note that
softmax is only used to normalize the final value from 0 to 1;
thus, an upper neuron is selected when xiw1 + b1 is greater
than xiw2 + b2; otherwise, a lower neuron is selected. If the
learning process is performed effectively, the NN computes
a different selection that depends on input 1 or 2 as xi. Let
us consider that input 1 makes the network select the upper
neuron and input 2 makes the network select the lower neuron
(Figure 11). For the desired result, w1 + b1 > w2 + b2 if the
input is 1 and 2w1 + b1 < 2w2 + b2 if the input is 2. Note
that these inequalities share the same variablesw1, b1,w2, b2,
with opposite inequality signs.

FIGURE 11. Intuitive appearance of final layer using normal traces.

Here, we find the solution. If we set b2−b1 = t , we obtain
the following:

w1 > w2 + t (9)

w1 < w2 + t/2 (10)

Figure 12 shows the area that is sufficient for those inequal-
ities, where the x-axis indicates w2 and the y-axis indicates
w1. The blue area indicates the values of weights that solve
the simultaneous inequality. According to Figure 12, we can
identify two conditions. The first condition is that t must
have a negative sign, which means that b1 must be greater
than b2. As long as, t has positive sign, the simultaneous
inequality does not have solutions with any real number ofw1
and w2; this means the learning failure. The second condition
is that the area satisfying the simultaneous inequality can be
considerably narrow relative to variable t . Even though there
are solutions, the machine will likely struggle to learn to find
the desired solution without requiring many epochs.

Here, we assume that the input is (1,0) and (0,1) (rather
than 1 and 2), which is a picture trace example (Figure 13).
Note that this case requires four weights, i.e., w11,w12,w21,

and w22. As in the previous example, w11 + b1 > w12 +

b2 when the input is (1, 0), w21 + b1 < w22 + b2 when the
input is (0, 1). Unlike normal traces, each neuron has its own
weight value that can affect to connect next layers’ inputs.
Here, we set t = b2 − b1. Then, we obtain the following:

w11 > w21 + t (11)

w21 < w22 + t (12)

There are five variables on two simultaneous inequali-
ties, e.g., w11,w21,w22,w12 and t . Regardless of the values
of the four variables, the value of the remaining variable
allows simultaneous inequality to work by itself. There is no
dependencies on each variables, and no conditions such as
Figure 12.
In the intermediate layers, there is no choice function,

i.e., only the weight and bias influence the inputs to the
next layer. Figure 15 shows a model where the input affects
multiple neurons. Here is a concrete example with specific
structure and numbers for understanding the final layer’
example above, with one neuron in the first layer and two
neurons in the second layer with ReLU. This example can
intuitively demonstrate huge increases in the neuron size.
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FIGURE 12. Area of solution of final layer using normal traces.

FIGURE 13. Intuitive appearance of final layer using figure traces.

We concentrate on only ‘‘one neuron to one neuron,’’ whose
output is n1 (ignore n2 in here). Here, we assume that the
input is 0.5 or 0.6; normally power traces are normalized
in [0,1]. Then, the output of n1 is 0.5w1 + b1, 0.6w1 + b1,
or 0, as computed by ReLU activation. To improve learning,
we seek a huge difference between 0.6w1+b1 and 0.5w1+b1.
The difference between the two values is normally 0.1w1
in our example; however, due to ReLU, there cannot be a
difference between 0.6w1 + b1 and 0.5w1 + b1. If both are
negative, then both are ‘‘0’’; this case is learning failure. In
contrast, if either of 0.6w1 + b1 and 0.5w1 + b1 is negative,
a few of the values of w and b make the equation sufficient;
see the bottom-right of Figure 14. When we consider the
most positive case, the maximum probability is 0.25, i.e.,
on of the four areas. Therefore, the probability has a value
of at most 0.25 in the learning system when we only consider
normal traces. In other words, the weight and bias are stochas-
tically affected by each other’s value to successfully learn the
traces.

0.5w1 + b1 < 0 (13)

0.6w1 + b1 > 0 (14)

denotes,

b1 < −0.5w1 (15)

b1 > −0.6w1 (16)

Figure 16 shows the intermediate layer of a picture trace.
Similar to the last layer example shown in Figure 13, here,

FIGURE 14. Intuitive appearance of an intermediate layer using normal
traces.

FIGURE 15. Intuitive appearance of hidden layer using normal traces.

(1,0) or (0,1) matches different weightsw11,w12,w21, and
w22 independently, which affects the next layer’s neurons
more than the normal inputs shown in Figure 15.

To realize better learning, we seek a huge difference
between w11+b1 and w21+b1. Irrespective of whether or not
w11 + b1 < 0, w21 + b1 can theoretically have any positive
value. In fact, it depends on the scale of b1’s value; however,
it affects the same addition on each part. Thus, we ignore b1 in
our theoretical analysis here. Therefore, the difference in the
result of the next neurons is theoretically 0 to infinity, owing
to only each weight value. Because a single-bit-difference
Hamming weight has a significant impact according to the
inputs, in a side-channel attack with Hamming weight, this
property critically works on improvement of learning perfor-
mance. The examples above shows small element of whole
structure. Nevertheless, the characteristics of the elements are
spread to whole network for sure.

2) OVERFITTING: A NEGATIVE ASPECT OF PICTURE TRACE
According to different attack models, most of the voltage
information of a power trace for a side-channel attack is
simple noise that is not used to find the correct key. Here,
large inputs do not correspond to significant amounts of
information, and larger inputs may induce additional noise.
With a normal trace, additional noise slows the learning pro-
cess because noise interferes with finding a solution. Thus,
we consider the following simple mapping rule.

More noise = Slower learning

However, picture trace makes learning easy with many
weights, biases, and input sizes. We find simultaneous equa-
tions with many variables using only a single simple equa-
tion. There are many possible solutions; however, only one
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FIGURE 16. Intuitive appearance of hidden layer using figure traces.

solution is correct. In this case, deep learning produces a
network with weights and biases, but this is a wrong answer.
In addition, there are significant noise levels in power traces
for a side-channel analysis in some attack models. Thus,
we present another simple mapping rule.

More noise

+Higher learning ability

+More inputs and following weight and bias

= overfitting

Therefore, DL with a picture trace is more susceptible to
overfitting problems, because of the following reasons.

1) Considerable noise (some of the attack models in side-
channel analysis)

2) Several inputs, followed by weights and biases
3) Higher learning ability
Therefore, overfitting is a characteristic of analysis with

picture traces. Many studies have investigated reducing over-
fitting, e.g., using sufficient traces, L1 and L2, regulariza-
tion, and dropout or early stop. Those techniques do not get
noticeable ‘‘reducing overfitting’’ effects in our environment;
only drop-out slightly turns down overfitting. In a BNN, the
outputs of the activation function are−1 or+1; therefore, the
NN has a structural limitation relative to finding the correct
answer with variables. This limitation allows us to expect
to remove overfitting, e.g., dropout, which randomly ignores
some neurons. We can expect BNN to reduce overfitting.

IV. EXPERIMENTAL RESULTS
In this section, we describe our experiments and present
the results. The experiments were conducted on the masked
AES traces measured from ChipWhisperer lite [9] and the
ASCAD database [27]. The resolution for the picture traces
was set to the maximum, and a quarter of the maximum
resolution. Reducing the resolution may result in loss of some
information. However, it makes learning faster, and to some
extent, reduces overfitting caused by reduction in the number
of weights related to inputs to the first layers. The only differ-
ence between the first-order attack and higher-order attacks
is the assignment of the label. If one uses power traces that
have masked sensitive data, the label is generated by the pure
data. If the masking value is known, the label can be set with
unmasked values. Thus, our first-order attack uses unmasked
labels with known masking values. In addition, the second-
order attack uses exactly the same power traces and sets labels
the S-box output without masking. Assuming a second-order
attack, the machine can solve difficult problems.

FIGURE 17. Result of correlation coefficient of CW traces.

In addition, we describe how MLP and BNN schemes are
used to perform side-channel analysis in this work. MLP is
one of the commonly used machine learning for side-channel
analysis. We also employ a BNN in side-channel analysis
because its scheme fits the proposed approach. To the best
of our knowledge, this is the first time that a BNN has been
employed in side-channel analysis.

A. MLP/BNN BASED DL ATTACK ON MASKED AES TRACES
FROM ChipWhisperer LITE
The target operation is AES SubByte and the target data
are the S-box output (fourth-order S-box). The data are ran-
domized by exclusive-or, with random 8-bit masking. First,
we check the correlation power analysis (CPA) [4] on the
power traces, and as expected, the key cannot be recov-
ered from the first-order attack. The CPA results are shown
in Figure 17. There are two correlation coefficient lines
on 100 points. The blue line indicates the analysis of the
S-box output with known masking, which is the first-order
CPA attack on the S-box output, and the pink line indicates
the CPA with only masking value. We make simple sample
power traces that only involve a fourth SubByte operation
and masking value of over 100 points. Each correlation coef-
ficient is formed up to 0.8 ∼ 0.9. One can easily expect that
the first-order analysis is well conducted with a DL attack
using the known mask values.

Figure 18 shows the attack results with MLP and BNN,
where the left graph shows the first-order attack and the right
graph shows the second-order attack. In both graphs, Figure-
α means a deep learning attack with picture trace using
resolution α. Normal means a DL attack with normal traces,
where 256 is the maximum resolution as per ChipWhisperer
specifications and 64 is an example of reducing the resolution
to one-quarter of 256. There are two red lines: the lower line
indicates minimum accuracy for a confidence level of 99.9%
and the upper line indicates 99.99% confidence level with
3, 000 validation traces. If the accuracy is higher than the
upper line, the key is correct at 99.99%.

The hyperparameter settings are listed in Appendix A.
According to Figure 18, the result with picture traces has
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FIGURE 18. Result of first and second order MLP/BNN attacks on CW
board.

higher accuracy than that with normal traces regardless of
the resolution and attack orders. The result differs with dif-
ferent variables, such as hyperparameters, number of layers,
or number of neurons. Therefore, we cannot easily say that
the picture traces show better results. For epoch 200, the
accuracy of normal traces is 0.9.

The results of the second-order attack are shown to achieve
better improvement. The attack accuracy with picture traces
is higher than the accuracy obtained with normal traces.
Moreover, lower resolution produces a better result, which
is also the case in the first-order attack. This is due to the
small input size and reduced overfitting, and thus, the lower
resolution reduces noise. The attack with normal traces fails
even at extremely high epochs, for example, epoch 10, 000.
This is an unexpected result because the accuracy of the
first-order attack is 0.9 on training epoch 200. As a result,
a DL attack with picture traces performs better than that with
normal traces measured from the ChipWhisperer. As men-
tioned previously, we consider a BNN for the attack because
our proposed method is better-suited to a BNN architecture.
Compared to MLP and CNN schemes, a BNN can reduce the
hardware components and improve the performance because
all weights and activations can be binarized. More precisely,
the BNN outperforms MLP and CNN schemes because
most of the 32-bit floating-point multiple accumulations are
replaced by 1-bit XNOR-count operations. Our proposed
picture-formatted formwell fits the BNN schemewithout any
modification.

The BNN results are quite similar to the MLP results.
In terms of first-order analysis, the BNN outperforms the
normal trace attacks. Even though Figure-256 (Figure 18) in
the second-order BNN analysis cannot find the correct key,
the Figure-64 BNN result reveals the correct key. Thus, the
BNN results are not better than the MLP results. However,
because the learning cost of BNN is significantly less than
that of MLP, BNN still has some merit.

B. MLP/BNN BASED DL ATTACK ON ASCAD DATABASE
We use the ASCAD.h5 file, which is well-aligned. To com-
pare other attack performances using ASCAD, we use the
same NN settings as those used for CHES 2019 [31], but with
7, 000 traces, which is approximately 1

3 the number of traces
used for CHES 2019. The results of the first- and second-

FIGURE 19. Result of first- and second-order MLP/BNN attacks on ASCAD.

FIGURE 20. Result of first-order MLP/BNN attacks on ASCAD50 (left) and
ASCAD100 (right).

order attacks are shown in Figure 19. The encoding resolution
is 113, and 29 is quarter of 113 for the same environment
with ChipWhisperer. Becausewe do not know the power trace
information, we consider all voltage values in ASCAD.h5.
There are 113 different voltage values in integer form from
−47 to 66.

In the first-order attack, the minimum epoch with mean-
ingful accuracy is lower with the picture traces than nor-
mal traces for both Figure-113 and Figure-29. Epoch 1 is
sufficient for obtaining the correct key. This means that the
picture traces demonstrate better performance in the first-
order attack. Note that the red line in Figure 19 has the same
meaning as that of the ChipWhisperer attack environment.

The attack with resolution 29 of picture traces is the best
result in the second-order attack. With normal trace in our
environmental setting (Appendix A), the attack succeeds in
more than the trace epoch 1, 000. Because the minimum
number of training epochs in the first-order attack is only
five, the non-picture trace is less able to solve relatively diffi-
cult problems, such as higher-order attacks. However, picture
encoding provides greater learning ability and organizes the
inputs and neurons to solve difficult problems.

In addition, the validation accuracy of a BNNattack is quite
similar to that of an MLP attack. Even though more neurons
and layers are required (Appendix A), the BNN is expected
to outperform the MLP because the BNN scheme uses more
suitable hardware components [15], [30].

Additionally, we consider the ASCAD50 and ASCAD100
datasets1 which are usually employed to investigate the

1ASCAD100 (ASCAD50) are randomly shifted range between 0 and
100(50) from originalASCAD, respectively. Refer to the detailed information
in [27].
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FIGURE 21. Result of second-order analysis for Figure-29 with all key
candidates (Validation of 3, 000 traces).

resistance of shuffling countermeasure. Considering the stor-
age, Figure-29 is only performed. Actually, the total points of
Figure-29 inASCAD100 is 5-times than Figure-29 ofASCAD
because the fixed 0-value is less than previous one. In other
words, the Reducing scheme in III-A3 might be less effective
if the shuffling countermeasure is well-employed. However,
as stated before, there is some techniques such as single data
saving multiple points and the reducing of the resolution,
in order to shrink the storage size except for filter scheme
in III-A3.

In terms of normal traces of ASCAD50 and ASCAD100,
the accuracy is unstable as well as is not higher. Unlike to
the original, the result of Figure-29 is clearly stable, even if
the accuracy is less than the result of ASCAD. We can also
observe that it allows the result of BNN to get the stable in
terms of accuracy for validation, after converting the picture-
formatted form. Moreover, the BNN outperforms the MLP
result of normal form, although MLP of picture-formatted
form has beyond the BNN.

C. DIFFERENTIAL DEEP LEARNING ANALYSIS (DDLA)
Rather than employing absolute criteria, the accuracy of 256
candidates can be compared instead and a correct key that has
the highest accuracy can be selected. In Figure 21, we show
the accuracy values with 3, 000 validation sets of all key can-
didates for the ASCAD dataset. For the result, some accuracy
values for wrong keys are higher than the red line (99.99%);
however, this does not occur frequently. Indeed, this method
can be used to distinguish the correct key from incorrect
keys. The expected attack time is twice than required when
using absolute criteria with the red line. In addition, even if
one can determine a correct key that has the best accuracy,
we cannot determine that the key with best accuracy is correct
key because there is no mathematical background. In other
words, without applying statistical confidence-level tests, the
best accuracy cannot induce the correct key.

The Differential Deep Learning Analysis (DDLA) [31]
results for picture traces on ASCAD are shown in Figure 22.
Because of overfitting, the training accuracy values are very

FIGURE 22. Result of second-order analysis for Figure-29 with all key
candidates (Training of 7, 000 traces).

high for all key candidates. Interestingly, the correct key
tends to demonstrate high training accuracy for each epoch,
but does not always demonstrate the highest accuracy. In
addition, the results are not statistically significant; therefore,
it is not possible to select a single correct key. This may
depend on the attacker’s heuristic result. Therefore, training
accuracy is not a trustworthy criterion; a validation set must
be applied for correct key determination.

The key point of DDLA is the difference in the learning
aspect between the correct key and wrong keys. Accord-
ing to the BNN result (right side of Figure 22), there is
no overfitting of wrong keys because the training accuracy
values are not greater than 0.525 for wrong keys. In our
experimental results, we could not remove overfitting by any
overfitting elimination method, such as L1 regularization, L2
regularization, or drop-out. The BNN approach can eliminate
overfitting if one does not have sufficient power trace to
separate out a validation set from the collected power traces.
BNN is a good solution to fully use power traces and validate
the accuracy of key candidates with a training set only, such
as DDLA.

V. CONCLUSION
Many researchers have investigated the application of DL for
side-channel analysis. Different learning algorithms, such as
MLP, CNNs, and autoencoders, can be applied to enhance
the performance of side-channel analysis. This paper pro-
poses converting the side-channel information based on an
n-th dimension vector into picture form to fully utilize
the advantage of DL. The experimental results indicate that,
compared to previous schemes using ASCAD and traces from
ChipWhisperer board, the validation accuracy is significantly
higher and the number of learning epochs required to obtain
the secret key can be reduced. In addition, our proposed pic-
ture format enables the retrieval of the correct key in second-
order DL analysis; however, previous works couldn’t recover
the correct key in our criteria based on statistical confidence.

As such, our conversion scheme has the potential to
enhance side-channel analysis. In the future, the following
potential applications will be investigated.

• Using additional dimension to create depth. Some
picture-formatted traces can be overlapped. For exam-
ple, if plaintext is the same, then some traces can be over-
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TABLE 1. DL Hyperparameter for ChipWhisperer on first- and
second-order MLP/BNN attacks.

TABLE 2. DL Hyperparameter for ASCAD on first- and second-order MLP
attacks.

TABLE 3. DL Hyperparameter for ASCAD50 on first-order MLP/BNN
attacks.

lapped by changing the concentration. Therefore, the dot
in picture-formatted traces would have a specific value
rather than ‘‘1’’. Because picture overlapping does not
lose the original information, it differs from the trace
integration of normal traces, such as the average.

• Additional weight to point of interest (PoI). Similar
to the previous potential application, some additional
weight on the critical data, represented as a dot, can be
provided.

• Applying additional DL schemes. Because the target
is converted to the MNIST dataset style, additional DL
schemes, such as BNN, can be applied and may be more
effective, compared to previous side-channel analysis
based on DL. It is also impossible that the normal trace
adds extra weight on PoI, because the extra weight dis-
torts the original attack models.

APPENDIX A
DL HYPERPARAMETER FOR ALL EXPERIMENTAL
RESULTS
The hyperparameter information about our attacks is pro-
vided in this appendix.

TABLE 4. DL Hyperparameter for ASCAD100 on first-order MLP/BNN
attacks.
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