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Learning to Predict Lidar Intensities
Patrik Vacek , Otakar Jašek , Karel Zimmermann , Member, IEEE, and Tomáš Svoboda , Member, IEEE

Abstract— We propose a data-driven method for simulating
lidar sensors. The method reads computer-generated data, and
(i) extracts geometrically simulated lidar point clouds and (ii)
predicts the strength of the lidar response – lidar intensi-
ties. Qualitative evaluation of the proposed pipeline demon-
strates the ability to predict systematic failures such as no/low
responses on polished parts of car bodyworks and windows,
or strong responses on reflective surfaces such as traffic signs
and license/registration plates. We also experimentally show that
enhancing the training set by such simulated data improves the
segmentation accuracy on the real dataset with limited access to
real data. Implementation of the resulting lidar simulator for the
GTA V game, as well as the accompanying large dataset, is made
publicly available.

Index Terms— Robotics, simulation, sensor development,
machine learning, neural network applications, intelligent trans-
portation systems.

I. INTRODUCTION

THERE have been over 1.2 billion vehicles in use over the
world in 2015.1 When a novel autonomous functionality,

such as autonomous emergency braking, is to be put into
operation, its reliability has to be thoroughly tested, because
the impact on the accident rate is enormous. For example,
if the new functionality exhibit 1 failure out of 1 million
testing frames (9 hours of operating time of 30Hz sensor),
the expected number of failure cases over the world per single
day is over 150 million.2 Consequently, testing on billions of
frames in advance of real deployment is highly desired. It is
hardly feasible to create testing set with billions of annotated
frames which would cover all possible cases. In addition to
that, many tasks comprise online control, which cannot be
tested offline. A trustworthy simulation is the only technically
tractable option.

There are several open-source simulators such as
CARLA [2] or AirSim from Microsoft [3], which offer
viable autonomous driving simulation with a realistic RGB
camera model in a small synthetic world with a limited variety
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of textures and structures. In contrast to these open-source
simulators, research community also reverse-engineered
GTA V game engine. The mentioned game has been
recently shown [4] to have a world model realistic enough
for generating annotated training RGB images that improve
performance on well known semantic segmentation challenges
KITTI [5] or VOC [6]. Nevertheless, the simulation of other
sensors, which are also essential for autonomous-driving
such as lidars, is either missing (GTA V) or it is strictly
geometry-based (CARLA).

Unfortunately, lidar point clouds consisting of geometry
only lack information about the power of a receiving signal
(lidar intensity) and therefore are not fully descriptive for
modeling and evaluation of lidar sensor with full properties.
Importance of including this lidar intensity as a feature has
been demonstrated by [7] as it increases performance in
semantic segmentation. The naive approach to model intensity
feature is to map it as a monotonically decreasing function of
depth. However, depth-based intensity undesirably underesti-
mates behavior in the corner cases with unusual dispersion of
the active signal, such as polished hoods, windows, and shal-
low puddles, registration plates, or traffic signs, see Figure 1
for a few examples. The material behavior is described by
another contributing factor of the received signal, the reflec-
tivity of the scanned objects [8]. However, the procedure
of acquiring realistic material responses to the lidar beam
in the simulation world would require large-scale physical
specifications of generated objects. We propose to leverage
other information about the object, such as its color and label
description and study benefits of these modalities in predic-
tion of lidar response learned from driving scenarios of the
real world.

To close the gap between the real and synthetic data,
we introduce and publicly release a GTA V lidar simulator.
The simulator is trained on the real data to estimate realistic
responses on unusual surfaces. The proposed method builds on
top of the geometrical model, which re-projects the existing
world into the lidar sensor. We enhance the geometrical model
by modeling the strength of the lidar response. Modeling
intensities allows injecting systematic failures and measure-
ment noise into the geometrically simulated measurements.
We experimented with two deep learning architectures [9]
and [10] to learn the intensity estimation in a data-driven way.
The intensity model is further used for enhancing synthetic
data. We show that such data, when combined with the
real training set, improves the segmentation accuracy on real
testing data.

Contributions of this paper are four-fold: (i)

1) We propose a way of modeling intensity from the lidar
geometry, RGB images and class label.
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Fig. 1. Examples of simulated data: Simulated RGB image and close-up of
corresponding lidar scan with intensity encoded in grayscale. Strong responses
appear consistently on reflective surfaces such as traffic signs facing towards
the lidar (b) and license plates (d) despite the shadows in RGB images. Notice
also correctly simulated systematic failures: (i) no or weak responses on the
hood (c+d), (ii) weak response on the frontal mask of the bottom car which
does not have a license plate (c), (iii) weak response on the traffic signs in
the top image, which is facing from the lidar (a).

2) We show that the data-driven simulation of lidar mea-
surements, when combined with real training dataset,
improves the segmentation accuracy on the real data.

3) We provide a publicly available lidar interface for the
GTA V game, which allows for the automatic generation
of synthetic annotated training and evaluation datasets.

4) We provide a large public GTA V dataset for object
detection and semantic segmentation from RGB+lidar
data, which consists of approximately 40 000 frames.

Both source codes and dataset are available for download at
https://github.com/vras-group/lidar-intensity.

II. RELATED WORK

A. Large-Scale Lidar Datasets

Recent advancements in the field of autonomous driving
were influenced by large-scale datasets and benchmarks. This
phenomenon is even more significant with the thriving success
of deep learning. Kitti benchmark has set standards among
public automotive datasets [5]. Besides regular RGB images
of driving scenes, it also includes calibrated lidar readings.
However, the annotation is done only from the RGB cameras

and therefore limited to the frontal view only. This limita-
tion has been eliminated by the very recent SemanticKitti
dataset [11], where all points in lidar point clouds were anno-
tated, excluding a few anomalies. NuScenes [12] is a recently
published dataset that contains thousand driving scenarios. It is
composed of 360 thousand lidar readings, which also include
full annotations.

However, in order to build a fully autonomous vehicle,
datasets of much larger magnitudes and different scenarios are
necessary. Manual annotation is costly and consumes a large
amount of man-hours [13], which makes it intractable for such
a large scale. On top of that, datasets alone do not provide
options for validation of autonomous driving capabilities with
respect to the interpreted scene. These constraints point to the
necessity of realistic and automatically annotated simulators.

B. Simulators With Lidar Point Cloud Properties

It was shown by numerous papers, that many state of the art
detectors use intensity channel as a useful feature in learning
segmentation from lidar [14]–[17] measurements. Intensity can
provide a decisive distinction between two objects of a similar
geometry by providing peak values on specific object parts
similar to attention models [18]–[20] and therefore constitutes
a valuable feature for classification tasks. Unfortunately, most
of the current lidar simulators capable of creating a variable
driving scene do not compute intensity values and offer
geometry only [2], [7], [21]. Carla simulator [2] contains
information about surface material, however, as far as we
can tell, it cannot be leveraged to acquire lidar intensity.
The simulator Blensor [22] offers information about material
reflectivity. However, it is not possible to simulate different
weather conditions. The Blensor also suffers from the fact that
its base Blender was not developed for large scenes, but rather
for smaller objects, and therefore, it is difficult to model a
large world at the needed scale. The Virtual KITTI dataset [23]
provides synthetically generated sequential images with depth
information and pixel-wise annotation. The depth information
can also be used to generate point clouds. However, the point
clouds do not show the same characteristics as a real rotating
lidar, including reflections.

Another option is to use computer games with state-of-
the-art graphics, such as GTA-V. Driving in the Matrix [24]
and Playing for Data [25] unlock the possibility of using
a game engine for data gathering. However, Driving in the
Matrix lacks finer annotation as it only extracts the stencil
layer from the game, which does not differentiate between
many object classes, and Playing for Data still requires a
semi-manual labeling procedure. Both of these works also lack
the ability of the lidar sensor, however, it can be circumvented
by placing virtual cameras at the desired locations, as will
be shown in this work. GTA-V engine was also exploited
by [7], where geometrical lidar has been simulated in the
frontal camera view. It comes, however, without intensity prop-
erties, and class labels of objects’ 3D shape are approximated
by bounding boxes only. GTA-V world has no concept of
reflectivity of the material, and therefore, the returned lidar
reflections are missing.
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C. Simulation of Intensity

Lidar intensity is derived from three main components:
geometric, physical, and environmental model of lidar [8].
The Geometric part is usually solved by basic computer
vision algorithms such as ray-casting and projection of the
points [26]. Physical and environmental models consist of
various sensors and surrounding constants and target prop-
erties, which is usually not available in simulation [27].
These modalities are mainly reflectivity of material and beam
divergence of a laser.

Work of SqueezeSegv2 [9] tried to model intensity using
data; however, it resorted to using geometric information only.
A recent work [28] tries to close domain differences between
real and synthetic data by modeling echo pulse width (EPW)
of the laser via [10] to substitute intensity. However, despite
the fact that EPW is part of the lidar resulting intensity,
the work [29] shows its lack of representativeness as a sole
intensity indicator. Two objects can share the same EPW but
have different reflectivity, so they do not cause the same result-
ing intensity. This work also shows that the implementation
of EPW did not improve the model performance, as it is not
descriptive enough feature for classification algorithms.

To the best of our knowledge, there is no other previous
work trying to model a lidar intensity data-driven way. Also,
none considered modeling intensity from RGB information or
any other modalities besides geometric.

III. METHODS

The proposed pipeline is summarized in Figure 6. The lidar
simulation employs four virtual roof-mounted cameras, which
provides four temporally synchronized streams of RGBD
images at a user-defined framerate. Four-tuples of depth
images are converted into 360◦ point clouds respecting the
geometry of the simulated lidar. This part is briefly summa-
rized in Section III-A. The resulting point clouds are deprived
by random drop noise to rays following the same procedure
from [9]. Finally, the lidar intensity is predicted by a single
deep convolutional network. The intensity predicting network,
as well as the learning procedure, are detailed in Section III-B.

A. Geometrical Simulation

The geometrical simulation of the lidar consists of two
consecutive steps, which are briefly illustrated in Figure 2.
First, a dense point cloud is generated from four temporally
synchronized RGBD images and the known camera calibration
matrices. For each pixel of the virtual RGBD camera, we gen-
erate a corresponding 3D point xego in the camera coordinate
frame as follows

x̄ego =

⎡
⎢⎢⎣

xego

yego

zego

1

⎤
⎥⎥⎦ = P−1

⎡
⎢⎢⎣

xcam

ycam

D
1

⎤
⎥⎥⎦ . (1)

x̄ego are homogenous coordinates of the 3D point in a car
coordinate system, P ∈ R

4×4 is a camera projection matrix,
{x, y}cam are coordinates of each pixel in an image (normal-
ized to the range [-1, 1]) and D is the depth of each pixel.

Fig. 2. Extracting of lidar point clouds - By placing four virtual cameras
on top of the car, we acquire images of a surrounding scene with depth,
RGB, and label information. From these depth images, we construct dense
point clouds in car-ego coordinates using a camera projection matrix (1).
Then ray-casting procedure chooses the closest point in dense point cloud
corresponding to lidar’s angular resolution φ, θ and maximum range. As a
result, newly created lidar point cloud of specific sensor parameters is obtained
with all game source information (e.g. coordinates xego, yego, zego, RGB,
Label) for every scan point.

Fig. 3. Example of point cloud extraction - we model Velodyne HDL
lidar with 64 layers in 360◦ FOV. The procedure consists of the following
steps: (a) Place four virtual cameras, which cover 360◦ FOV, to the position
of the lidar. (b) Extract corresponding labels from the stencil buffer. (c+d)
Reconstruct dense point clouds from all four cameras. (e) Estimate final point
cloud by ray casting and dumping points exceeding maximal the range of the
sensor.

Resulting dense point cloud of 1920 × 1200 = 2304000 3D
points is transformed into world coordinate system using

x̄world = W−1x̄ego, (2)

where x̄world are homogenous coordinates of the 3D point in
the world coordinate system and a world matrix W ∈ R

4×4 is
a transformation matrix. Matrices W and P are obtained from
the RAGE engine of GTA V.
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Fig. 4. Modeling intensity from modalities - We use depth lidar measurements, calibrated images from the camera with lidar reading and existing labels
from the SemanticKitti dataset as a source of input channels to the neural network. Inputs are sent into the neural network in form of an image-like grid
with channels corresponding to the modalities, where label modality is embedded through the embedding layer resulting in a two-dimensional channel grid.
We then compare intensity from real data to prediction in L2 loss function and train the model with backpropagation.

3D points from all four cameras in the world coordinates are
then concatenated into one dense point cloud, and points which
are further than 130 m (operating range of commercial lidars)
from the cameras’ centers are then discarded. This results in
a dense 3D point cloud with approximately 7 × 106 points.
More technical details on extracting these dense point clouds
can be found in [30].

Second, rays corresponding to the real lidar geometry (i.e.,
angular resolution and vertical field of view) are cast on the
dense point-cloud, and the closest corresponding 3D points
are extracted. Since horizontal FOV of the RGBD cameras is
91◦ and image width is 1920 pixels, the angular resolution
of the dense point cloud is approximately 0.047◦, which is
approximately 3.65× finer horizontal resolution than that of
the commercial lidar (Velodyne HDL-64E has a horizontal
angular resolution of 0.1728◦). The output of this procedure
is a geometrically consistent point cloud.

We found that even though it is much more computation-
ally demanding to generate this geometrically precise lidar
representation outside the RAGE engine, it is also much
more precise since ray-casting implemented within the RAGE
engine approximates the 3D shape of the object by a bounding
box as in [7].

B. Data-Driven Intensity Simulation

Since we do not know the exact parameters of the lidar
sensor and the reflectivity of surfaces in the simulated world,
we cannot calculate intensity values directly during the sim-
ulation process. We overcome this drawback by learning
to predict intensity levels from the real measurements in a
data-driven way. The physical properties of “beamed” laser
and received signal energy can be described as fixed sensor
configuration and inconsistent environmental parameters using
the lidar equation [8]. This lidar equation models the power
of received lidar signal Pr , which is directly correlated to
resulting intensity value I via normalization and calibration
of the specific sensor. Since we model intensity using real
data, this conversion will be included when modeling the same
sensor. Lidar equation [8] models the power of the received
signal as follows:

Pr = Pt D2
r

4πr4β2
t
ηsysηatmσ (3)

The received signal intensity Pr can be calculated from
transmitted signal power Pt , receiver aperture diameter Dr ,
traveled distance of laser to the target r , laser beam width βt ,
sensor-specific parameter ηsys , atmospheric transmission fac-
tor ηatm , and back-scattering cross-section σ , which depends
entirely on the target characteristics. Except for σ , all other
parameters are defined in constant lidar configuration. Signal
power (Pt ), laser beam width (βt ), sensor parameter ηsys

and aperture diameter (Dr ) are constants for specific lidar.
Environment factor (ηatm) does not diverse along measuring
sequence in the same weather conditions and range from
the target is known from our geometric simulation. Then we
need to consider target contribution to the intensity, which is
modeled by previously mentioned cross-section σ , denoted as
follows:

σ = 4π

�
ρs As (4)

where � is the scattering solid angle (divergence) of a laser
beam, As is the target area, and ρs is the target’s material
spectral reflectance. The parameters depend on the geometry
and reflectivity of the scanned object, i.e., the property of
its material. We can leverage geometry information in our
simulator, but it does not offer any information about reflec-
tivity. We assume that material can be estimated based on its
color and possibly by information about the type of the object
consisting of that material, i. e. class label. Lidar does not
contain any information about RGB color. To compensate for
the lack of RGB, we use a multi-sensor dataset [11], which
has camera images calibrated with respect to the lidar. From
these camera images, we project RGB channel to lidar scan
points. This dataset also comes already annotated with class
labels.

In contrast to others, we suggest exploiting all modalities
available during the simulation – RGB colors, depth, and
semantic labels. We train a deep convolutional neural network
to predict the intensity from the multi-modal data.

C. Learning of the Intensity-Predicting Network

The intensity-predicting network is trained on the real data
obtained from the SemanticKitti dataset [11]. This dataset
contains 360◦ lidar scans, pixel-level labels, and RGB images,
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Fig. 5. Label diversity in real and synthetic domain - Example of annotations
in both worlds. The Real dataset has a much richer description of present
objects, but thanks to the nature of the simulation world, it is feasible to
introduce new categories in the engine in the future.

which are however available for the forward view only.
We argue, that the training on the forward view generalizes
well on other views because the testing accuracy in other views
is comparable.

The learning process is outlined in Figure 4. To simplify the
learning process, all measured modalities are projected to the
cylindrical projection with a center placed at the position of
the lidar and mapped as channels in a grid consisting of single
lidar beams. Since there is a natural dropout in rays during
lidar sweeps, we add a binary logic mask of successfully
returned rays. Similar binary mask is also added for RGB
color, which is assigned to lidar rays that correspond to RGB
in camera projection. Consequently, the SemanticKitti dataset
is converted to the set of multi-channel 2D images containing
depth (D), red (R), blue (B), green (G), label (L), intensity (I),
ray mask (M) and color mask (CM) values.

We work with the four following input combinations of the
intensity-predicting network: D, D+L, D+RGB, D+RGB+L,
which are all trained to predict the intensity channel (I) from
the aforementioned inputs. The proposed network extends the
existing architecture of Unet [10]. We also experiment with
SqueezesegV2 architecture for comparison with [9]. Contrary
to [9], we omitted XYZ channels, because these do not gen-
eralize when trained only on the forward view. In particular,
D network is identical to the SqueezeSegV2 without XYZ
channels, and the other networks extend the dimensionality
of the input layer accordingly while keeping the other layers
the same. Especially 4-class label modality (L), where every
class value is transformed through embedding layer into a
two-dimensional vector (i.e., it adds two additional input
channels).

SemanticKitti dataset contains 19-class label descriptions.
However, our GTA simulator is able to produce 4-class unique
labels, see the comparison in Fig 5. With a more diverse
object categories, label modality increase precision of intensity
prediction, as can be seen in Table II. That implies the potential
usefulness of label feature in intensity prediction, however due
to lack of categories in the current GTA simulator, we stick
to the 4-class label (car, pedestrian, bicycle, background - all
others).

Predicting the intensity can be seen as a regression problem.
Work [9] proposes the hybrid loss, which classifies intensity

values to bins and also regresses the deviation from the
classified bin, as it, according to [9], should yield better results
of prediction compared to L2 loss. We experiment with both
types of losses. As done in [9], our classification in hybrid loss
is split into 10 bins distributed over the density of intensity
value, and deviation from classified bin was predicted as
another output channel from the model. Therefore in the case
of hybrid loss, our prediction model has ten outputs channels
for bin classification and one for regression of the deviation.
The channels are then summed to the resulting intensity value,
which is compared to real intensity value by a mean squared
error (MSE). We trained and validated the model of intensity
on the SemanticKitti dataset, compared them with training
using masked L2 loss (5). Mask in L2 loss corresponds to the
(M) input channel. Opposed to [9], masked L2 loss showed
to be superior in our case, as can be seen in Table II.

L = 1

n

∑
i, j

(Ii, j − Îi, j )
2 · mi, j , (5)

where i , j denotes pixel coordinates in grid-like image, I real
intensity value, Î predicted intensity value, m binary mask of
returned scan points and n number of successfully returned
rays in grid frame (i.e. the sum of m) to get mean value of
loss function.

IV. EXPERIMENTS

We evaluate the proposed intensity predictor in two ways:
i) intensity prediction accuracy, see Section IV-A which shows
how close are the predicted intensities to the real ones, and
ii) improving segmentation accuracy when using intensity
prediction see Section IV-B which demonstrates that extending
the real training set by simulated point clouds improves
the segmentation accuracy. The intensity prediction model
was trained on 10000 lidar frames and tested on 2792 lidar
frames recorded in the spatially distinct environments from
the SemanticKitti dataset. In the segmentation experiment,
we used a smaller portion of real dataset to study the impact
of highly scalable simulated data.

A. Intensity Prediction Accuracy

We evaluate intensity prediction accuracy on every pixel
from the lidar grid in terms of the mean squared error
(MSE). As a prediction model, we use neural networks with
encoder-decoder structure that contains skip connections in
order to preserve high as well as low-level features. As long as
the model is expressive enough and has a specific number of
inputs (D, DL, D+RGB, D+RGB+L), it is possible to adopt
different model architectures such as [18], [20] and fine-tune
them for high performance.

We compare four different input combinations D, D+L,
D+RGB, D+RGB+L and two different loss functions for
SqueezeSegV2 - Hybrid loss from [9] and L2 loss. See Table I
for details on classification values distribution and architec-
tures. We also experiment with the aformentioned architectures
of Unet neural network [10] with L2 loss and omit the hybrid
loss, since we achieved consistently better performance with
L2 loss in all tested modalities with SqueezeSegV2.
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Fig. 6. Pipeline overview: At first, we collect depth, RGB, and label images in 360◦ view by placing four cameras to the desired sensor position and from
depth information create dense point cloud with RGB and label channels. With ray-casting, we choose points corresponding to lidar parameters and estimate
intensity by the deep convolutional network from depth, RGB and label input grids. For intensity prediction we used Unet architecture [10].

Fig. 7. Comparison of lidar intensities on the cars in the SemanticKitti
dataset - These figures represent our intensity prediction according to used
modalities in the same setting. Without RGB modality (a), (b), there is no high
response from the license plate, see the real intensity in (e) for comparison.
Whereas (c) and (d) successfully predict the high intensity of the received
beam. Substitution grayscale value for intensity failed entirely due to light
conditions, as can be seen in (f).

TABLE I

DISTRIBUTION OF HYBRID LOSS CLASSIFICATION BINS

For the optimization task, we experimented with different
setups and finally used Adam algorithm [31] with a learning
rate 0.003 and weight decay 0.001 with both models. Training
set is divided to 7500 training and 2500 validation frames.

Experiments reveal L2 - loss on the D+RGB+L input
combination achieves the lowest MSE error on the testing
data, see Table II for details. Examples of predicted inten-
sities are provided in Figure 7. The intensities are projected

Fig. 8. Example of GTA scene with simulated lidar intensity - on the camera
RGB image (a) is a car (green mark) and a traffic sign (red) mark. Predicted
intensity from depth (b) and depth + RGB (c) showed different values on
objects of interest, car’s license plate, and traffic sign, where we expect greater
values of intensity. Adding RGB modality helps to recognize licence plate
(c) and more realistic values on the sign. RGB also differentiates lane marking.

Fig. 9. Comparison of real scene intensity - Generating intensity across
different domains keep systematic failures consistent, see Figure 8 for com-
parision. Traffic signs and license plates generate high signal feedback, while
rest of the scene remains uniform. Therefore we can assume preservation of
intensity characteristics.

into the camera frame for better readability. The images
demonstrate that using the RGB information allows predict-
ing stronger responses on license plates and traffic signs
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TABLE II

MSE ERROR ON INTENSITY PREDICTION - COMPARISON OF DIFFERENT VARIATIONS OF MODALITIES AND LOSS FUNCTIONS FOR INTENSITY
PREDICTION, ALL NUMBERS IN PERCENTAGE

Fig. 10. Example of segmentation of distant and covered car - Adding GTA data increase segmentation performance mainly on cars in greater ranges, see
the red markings on (a) and (b). There is a cropped detail on ground truth in (c). As you can see on (d), training only on the part of this dataset is not
sufficient for greater range detection, there are probably not many distant cars in the dataset. However, with more training examples gathered from synthetic
data, which may include similar scenes, we are able to segment it in (h),(i),(j).

while using only the depth modality yields limited results.
Both proposed architectures significantly outperform a simple
method, such as the intensity estimated as grayscale values
(see Figure 7(f)).

We are particularly interested in objects with high reflec-
tivity, namely car license plates and traffic signs as they
consistently show high lidar intensity and are valuable for
scene interpretation and car detection. Intensity prediction on
synthetic data can be seen in Figures 8, where adding RGB
modality to the learning and inference showed to be superior in
distinguishing these objects. With color information in model
prediction, it is also possible to differentiate lane markings
on the street. This can be especially valuable in segmenting
other instances, that can be used for navigation in the scene.
Predicting from D+RGB looks also qualitatively more realistic
and closer to real lidar intensity, see Figure 7.

B. Segmentation Accuracy Improvement

This experiment demonstrates that extending the costly
real training data by easier accessible simulated point clouds
improves the segmentation accuracy. Input to the segmentation
network is a 2D image-like grid with channels containing
depth, lidar intensity, and pixel mask, which serves as an
indicator of a valid return of the ray. Some rays do not return
in real lidar, and some exceed the maximum distance of sensor
measurement in the GTA simulation.

The architecture of the segmentation network is SqueezeSeg
with the CRF module. As a loss function, we used Focal
loss [32] which happened to bring better results in training
as opposed to the standard Cross entropy loss function. Focal

loss is described in Equation (6). The value of parameter γ is
set to 2.

FL(pt) = −(1 − pt)
γ log pt (6)

The output contains pixel-level semantic labels. We compare
several segmentation networks trained with different com-
binations of training datasets. First, we evaluate networks
trained on synthetic data: GTA without intensity, GTA(D)
and GTA(D+RGB+L). Second, we train the prediction model
on 1k real frames from SemanticKitti (K). Last, we add
40k synthetic frames to the real ones, K + GTA(D), K +
GTA(D+RGB+L).

We stick to the standard evaluation metric used in
autonomous driving research [33] – Intersection-over-
Union (7) – and evaluate segmentation performance on the
car category.

IoU = TP

TP + FP + FN
, (7)

where TP denotes true positive points of a certain class, FP
denotes false positives points and FN false negatives points of
the class. The results are shown in Table III.

Adding artificial GTA data with generated lidar intensity
improved the performance of the segmentor, especially for
vehicles in a greater distance. Adding RGB and Label modality
to intensity prediction proved to be superior to the baseline –
using only depth for the intensity prediction. It yields better
performance with both learning from synthetic data only and
adding synthetic together with real data.

An example of a boost in segmentation can be seen
in Figure 10, where the RGB modality improves the
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TABLE III

EVALUATION OF DIFFERENT MODELED INTENSITIES ON SEGMENTATION
ON TESTING SPLIT. ALL NUMBERS IN PERCENTAGE

Fig. 11. Segmentation of a covered van - In this situation, we see a van,
which is parked behind electric panel and its wheels are covered by bush and
carton (a). Detail of ground truth is shown in (b). Segmentation trained solely
on real data failed to detect van in this setup (c), together with GTA intensity,
learned from the depth only (d). On the other hand, the addition of RGB
modality benefits in segmentation of van and also correctly detect distant car.

distinction between a vehicle that is covered by an object and
the object itself. The van in Figure 11 is not segmented if
using depth only. Red marking means improved detection with
enhanced data, yellow means false detection and green shows
positive detection.

There is a large disproportion in IoU performance between
using GTA data only compared to using real date which
implies a significant domain gap between the two worlds. Our
intensity predictor improves the results, however the domain
gap between simulated and real lidar scans still dominates.

V. CONCLUSION

We proposed a new way of modeling lidar intensity from
scene geometry, RGB images and generated labels. It has been
shown that adding proposed synthetic lidar point clouds with
enhanced intensity to learning improves segmentation results
on the real lidar dataset. Predicted intensity based on RGB
and label had an increase in segmentation performance over
depth-based intensity. We have also shown that new modal-
ities and masked L2-loss increase the accuracy of intensity
prediction. All results were evaluated on the real data only.

Simulation interface and the synthetic training set consisting
of panoramic RGB images and lidar point clouds have been
made publicly available. There is still an insufficient domain
adaptation between real-world and GTA simulation, mainly in
geometrical properties and ray dropout.

Future work will focus on showing the results in challenging
weather and visibility conditions such as fog, rain, and shallow
puddles. We will also address problems of color and geometry
domain shift as it will improve our intensity prediction model.
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