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ABSTRACT Multiple projects are often managed and run in a decentralized setting. In this paper,
considering the uncertainty in project implementation, we study the distributed multi-project scheduling
problem with uncertain duration. A multi-PR heuristic (MPR-H) is then proposed to dynamically coordinate
the global resource conflicts while minimizing the expected total tardiness cost. Three priority rules based
on current known information are also proposed and incorporated in our approach. We further consider the
opportunistic behaviour of self-interested agents and design a payment negotiation process which is added
to the MPR-H. In this paper, we then evaluate the performance of the MPR-H on the benchmark dataset
MPSPLIB. The computational results confirm thatMPR-H achieves significant improvements in comparison
with several state-of-the-art distributed/centralized algorithms. The proposed algorithm also provides the
senior manager with an efficient method to allocate global resources for large-size and strong conflicting
instances under various activity duration distributions. Besides, we show that multi-projects with relative
slack global resource constraints are more affected by the change of uncertainty. By analyzing the strategic
behaviour of the agents in problems with two projects, we also show that in our MPR-H with payment
negotiation approach, rational agents have to behave truthfully that is the dominant-strategy equilibrium
leading to high-quality results.

INDEX TERMS Heuristic algorithms, multi-project scheduling, priority rule, uncertainty.

I. INTRODUCTION
Business firms often manage multiple projects simultane-
ously to improve their return of investment [1]. Therefore, as a
generalization of the resource-constrained project scheduling
problem (RCPSP) [2], the resource-constrained multi-project
scheduling problem (RCMPSP) is quite pervasive in today’s
project management. Classical multi-project scheduling is
centralized, where information is perfectly shared among the
projects and multiple projects regarded as a super project
are then all scheduled by a sole decision-maker, where many
approaches were proposed in this research area [3]–[5].

With the rapid development of the Internet technology
and globalization, the multi-project environment is becoming
more distributed, where projects might be located at vari-
ous places and each project is managed by an individual
decision-maker (i.e., a project manager) [6]. In such cases,
the project managers independently schedule all activities
within the respective projects. They then compete with each
other for the resources that are shared among the projects
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(i.e., global resources). If the global resources are sufficient,
the whole multi-project is regarded as a series of single
project scheduling problems and solved independently. The
global resources are however often limited and even scarce.
Therefore, this becomes a distributed resource-constrained
multi-project scheduling problem (DRCMPSP) [7].

In practice, several multi-project scheduling problems are
run and managed in a distributed context. Instances include
supply chain management [8]–[10], collaborative engineer-
ing [11], and service maintenance [12], [13]. In DRCMPSP,
the projects share limited global resources and each project
is scheduled by an individual project manager. Project man-
agers pursue completing their projects as quickly as possi-
ble without often having information about other projects.
Therefore, the local decisions taken by the project managers
are required to be coordinated to address global resource
conflicts. Nevertheless, the senior manager who is in charge
of allocating the global resources to maximize social welfare,
does not have detailed information about the local schedules.

We note that an effective resource allocation strategy
is inseparable from the information exchange between the
project managers. The allocation of global resources in
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DRCMPSP is challenged by the asymmetricity and uncer-
tainty of the information. In practice, projects are subject
to considerable uncertainty due to a variety of reasons.
For instance, the project scope may change, resources may
become unavailable, weather conditions may cause delays
to some activities, etc. A direct result of uncertain factors is
the deviation of the activity duration from the expected time,
leading to the infeasibility of the pre-established schedule.
Therefore, an effective coordination strategy based on infor-
mation exchange between the managers is the key to address
the challenges with the DRCMPSP under uncertain duration
(DRCMPSP-UD).

In this paper, we propose a multi-PR (priority rule) based
heuristic (MPR-H) approach which dynamically determines
the global resource allocation at each decision point. Our
proposed approach feedbacks the si mulation results of var-
ious PR-heuristics, and design three new PRs which are
based on current or simulation information. We also test the
approach on the MPSPLIB (Multi-Project Scheduling Prob-
lem LIBraray) datasets. The results show that our approach
leads to significant improvements in comparison to several
competitive distributed/centralized algorithms. The results
also confirm that the proposed approach provides the senior
manager with an efficient method to allocate the global
resources even for large-size and strong conflicting instances
with various distributions of the activity duration.

Furthermore, considering opportunistic project managers
(e.g. who may disclose false information), we design a pay-
ment negotiation procedure combinedwith theMPR-Hwhich
provides a strategy that counteracts on the agents’ untruthful
behaviour for problems with two projects. We analyze man-
agers’ different strategy selections by experiments and give
insights regarding the effectiveness of different behavioural
choices and suggest rational strategies for the project
managers.

The remainder of this paper is organized as follows:
the related works are briefly reviewed in Section 2.
In Section 3 we describe the problem in detail. In Section 4,
we propose themulti-PR based heuristic approach. In Section 5,
we present the computational results and their analysis. The
conclusion of this paper is presented in Section 6 which
also includes discussion on the limitations of this work and
possible future research.

II. LITERATURE REVIEW
Given their distributed nature, multi-agent systems (MAS) is
generally employed in theDRCMPSP. AMAS is a distributed
system including a set of autonomous, independent, and self-
interested agents, who play the roles of project and the senior
managers in the DRCMPSP. To address the issue of global
resource conflicts, the existing studies are focused on design-
ing effective resource coordination mechanisms (e.g., includ-
ing auction-based mechanisms and negotiation mechanisms)
to realize information exchange between agents to achieve
efficient resource allocation plans for DRCMPSP. Most of
the existing works are however focused on deterministic

DRCMPSP, only a few provide solutions for DRCMPSPwith
uncertain duration.

In the auction-based mechanisms, the project agents
(e.g., project managers) act as the bidders for the time slots
of global resources. The coordination agent (i.e., the senior
manager) is the auctioneer determining the winner in each
round of the auction. In the existing research works, consid-
ering the probable strategic behaviour of agents, it is essential
to assume that the project agent submits their true bid price
in the auction process.

Lee et al. [6] proposed a dynamic economy multi-agent
system (MAS) model to maximize the revenue of the
multi-project. Their approach is based on a market-based
mechanism, where the coordinator decides the winner of the
auction according to the bids submitted by the project agents.
Confessore et al. [7] employed a MAS to model DRCMPSP
with the assumption of the one-unit global resource. An iter-
ative combinatorial auction mechanism was then designed
to solve the resource conflicts for small-scale problems.
Araúzo et al. [12] also introduced a MAS to characterize
the combinatorial auction process. They proposed a dynamic
programming procedure to solve the bidding problem and a
sub-gradient optimization algorithm to determine the win-
ner. In this approach, to resolve the resource conflicts,
the project agents adjust the bids to the changing price of
global resources set by the auctioneer.

Adhau et al. [14], [15] proposed a multiunit combina-
torial auction-based negotiation approach based on MAS
(DMAS/ABN) to solve the DMPSP with to minimize the
average project delay (APD). In their approach, the resource
requirements of eligible activities and the bid prices were
submitted to the auctioneer. The auctioneer then employed
a heuristic procedure to determine the winner in each auc-
tion round. They further implemented experiments on large
instances to test their algorithm. Lim et al. [16] proposed an
iterative bidding mechanism to coordinate the resource allo-
cation in multiple manufacturing plants. They then employed
the genetic algorithm to solve the bidding problem.

Song et al. [17] also used the multiunit combinatorial
auction framework to handle DRCMPSP. In their method,
for each auction round, the project agents participated in the
auction procedurewith the required resources and the value of
the bids. A greedy strategy and a branch-and-bound approach
were then employed by the auctioneer to determine the win-
ner. Zhang & Chen [18] studied the multi-mode distributed
multi-project scheduling problem of the wind power plant
construction. A hierarchical decision-making model was then
established based on the MAS, where the auction agent allo-
cated global resources and project agents were responsible for
the local project scheduling. They verified the performance
of their auction mechanism by an experimental study for
the wind power plant construction carried out by Datang
company.

In negotiation mechanisms, agents exchange information
with each other via some interaction protocols different from
the fixed framework in auction-based mechanisms. It is also
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assumed that agents disclose true information during the
negotiation process.

Lau et al. [19], [20] modelled the supply chain network
with a MAS and developed a negotiation-based algorithm,
where agents iteratively proposed and counter-proposed the
start times of the operations until an acceptable agreement
was achieved. Homberger [21] presented a restart evolution
strategy based on MAS to coordinate the global resource
conflicts. Based on [21], a (µ,λ)-coordination mechanism
was also designed to allocate shared resources in [13]. In the
proposed negotiation process, λ candidate contracts, as off-
spring, were generated by each project agent, and µ contracts
were selected based on the local objectives. A mediator agent
then determined the candidate contracts to enforce the project
agents reach an agreement.

Moreover, Zheng et al. [22] proposed a critical chain-based
elimination mechanism, where the project agents provided
the information of activities for the coordination agent so
that the activities in the critical chain were prioritized to get
resource allocation. Wauters et al. [23] described a simple
sequence learning game concerning multiple project agents
and a mediator Preference information of each project agent
was shared amongst the agents and the mediator scheduled
the multi-project centralized based on the corresponding
activity lists determined by the project agents. Li & Xu[24]
developed a sequential game-based mechanism (SGM) in
their two-stage decomposition approach. In the first stage,
the project agents generated an initial local schedule using
a meta-heuristic algorithm. In the second stage, the sequen-
tial game-based negotiation mechanism was employed to
coordinate global resource conflicts.

Furthermore, Homberger & Fink [25] developed a generic
negotiation mechanism with the side payments process to
solve DRCMPSP with two agents. In each round of the nego-
tiation process, a new solution was generated by a random
procedure. The two agents then evaluated the new solution
and voted to decide whether or not the new solution should
substitute the tentative one. The strategic behaviours of the
agents in the negotiation are also discussed and the rea-
sonable strategy choice was analyzed using computational
experiments.

As it is seen in the above research works, various
approaches were proposed for the DRCMPSP without uncer-
tainty. The uncertainty in a single project (or centralized
multi-project) scheduling problem has been also widely stud-
ied. Methods generating robust schemes are classified as
proactive scheduling and proactive scheduling for RCPSP,
see, e.g., [26]–[29]. Reactive scheduling methods reduce the
temporary occurrence in the process of project execution to a
certain extent. They use the repairing or re-optimizing orig-
inal scheduling scheme and reactively schedule the RCPSP,
see, e.g., [30], [31]. For the stochastic RCPSP (SRCPSP), see,
e.g., [32], [33].

Most of the existing methods for uncertainty in RCPSP
do not apply to the DRCMPSP due to its distributed man-
agement environment. Only a few pieces of research dealt

with the uncertainty in the distributed RCMPSP. For instance,
Song et al. [34] assumed that the uncertainty of activity
duration is related to the starting time, and the fault statis-
tics of the instruments. If the number of faulty instruments
reaches a certain limit, the corresponding activity is failed.
To address this issue, a reactive process was then described,
where they employed the minimum Latest Finish Time (LFT)
rule (calculated by CPM) to schedule the activities to gen-
erate an initial schedule. After the disruption, all affected
activities were then postponed to an earliest feasible starting
time. Besides, a proactive algorithm was also developed,
where they generated a set of scenarios and feasible solu-
tions and a consensus voting process for making the final
decisions. In their approach, the agents were fully collab-
orative. This method has been successfully applied on an
instance including five projects with a total of 30 activities.
Tosselli et al. [10] proposed a repeated-negotiation game
approach to (re)scheduling the DMPSP. In their iterative and
auction-based processes, the agents either act as auction-
eers or bidders. Bilateral contracts were also created via a
repeated negotiation game and integrated into the project
plans. Any changes in the availability of resources or in
the activities’ durations were also considered in their case
study, i.e., a pharmaceutical product development problem
with 16 activities.

Our review of the literature shows that only limited
research is available on the DRCMPSP with uncertain dura-
tion, especially for practical applications with reasonably
large size. Our work presented in this paper aims to fill this
gap by developing a multi-PR based heuristic approach for
enabling efficient global resources allocation for medium
and large size problems. Additionally, most of the exist-
ing researches are subject to truthful and consistent strate-
gic agents’ behaviour. In practice, however, the agents may
act opportunistically, hence the above assumptions become
invalid. This may significantly affect the effectiveness of
coordination mechanisms. Such cases however have not been
thoroughly investigated in the existing research works. In this
paper, for a problem including two agents, we design a pay-
ment negotiation procedure combined with the MPR-H to
address the issue of opportunistic behaviour.

III. PROBLEM DESCRIPTION
In the considered DRCMPSP with uncertain duration, multi-
ple projects share limited global resources where the activity
duration of each project is subject to a probability distri-
bution. Individual project agent makes scheduling decisions
independently to minimize the expected project tardiness
cost. The objective of the DRCMPSP with uncertain dura-
tion is to determine a scheduling policy that minimizes the
expected total tardiness cost, while the precedence constraints
among activities and the global resource constraints are all
satisfied. In our formulation we use the following parame-
ters/variables:

• i (i = 1, 2, . . . ,m) is the index number of projects, rel i
indicates the earliest start time of project i [35].
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FIGURE 1. Multi-PR heuristic framework at a decision point.

• aij is the jth (j = 1, 2, . . . , Ji) activity in the project i.
There are Ji non-preemptable and non-dummy activities
in each project i. Activities ai0 and ai(Ji+1) are dummy
activities added to project i illustrating the start and the
end of project i, respectively.

• The duration of activity aij is a random variable dij
that follows a probability distribution. Eij represents the
predecessor activity set of aij, and aij cannot start before
the maximal finish time of the activities in Eij.

• G is the set of global (shared) resources. There are s
types of global resource and global resource g ∈ G is
available with capacityRg. Executing activity aijrequires
rgij units of global resources g, g ∈ G. Dummy activities
require no resources.

• T is the whole planning horizon representing the upper
bound of all project completion times and t(t =
0, 1, 2 . . . ,T ) is the index for the point on the time axis.

• PA = {PA1,PA2, . . . ,PAm} is the set of project agents.
The objective of a project agent, PAi, is to minimize the
expected project tardiness cost (EPTC) for the project i:

min E
((
si(Ji+1)−reli−cpli

)
· ωi

)
, i = 1, 2, . . . ,m,

(1)

where si(Ji+1) denotes the start time of activity ai(Ji+1),
cpl i is the critical path length of project i, ωi is the unit
project tardiness cost, and (S i(Ji+1)−rel i−cpl i) denotes
the project delay. We also assume that the due date of
project i is (rel i + cpl i).

• CA is the coordinator agent responsible for allocating
global resources and maximizing social welfare. The
global objective is minimizing the expected total tardi-
ness cost (ETTC) of the multi-project:

min E

(
m∑
i=1

(si(Ji+1) − reli − cpli) · ωi

)
. (2)

IV. MULTI-PR HEURISTIC APPROACH FOR DRCMPSP-UD
Adecision point is a timewhen an activity is finished or a new
project is released. For deterministic DRCMPSP, the existing
research works often coordinate the global resource conflicts

among the local plans. To solve DRCMPSP with uncertain
duration, here, we aim at devising a resource allocation policy
to dynamically coordinate the global resource conflicts at
each decision point. Priority rule heuristics are extensively
used in the project scheduling problems as they are fast and
intuitive [33]. Based on the characteristics of the proposed
problem, we develop new PRs, and to improve the basic PR
heuristic we design a multi-PR heuristic. Similar to the exist-
ing research works, we start with assuming truthful behaviour
and design a multi-PR based heuristic (MPR-H) approach to
solve DRCMPSP with uncertain duration without limitation
on the problem size. Taking consideration of the opportunistic
behaviour of self-interested agents, we then describe a pay-
ment negotiation procedure which is embedded inMPR-H for
the cases of problems with two agents.

A. THE FRAMEWORK OF MPR-H
Fig. 1 displays the resource allocation process at a certain
decision point by the multi-PR based heuristic. At each
decision point, for each project, the candidate activities are
decided by the respective PA according to the precedence
constraints. Then, the CA calculates the consumed amount rge
of global resource, g, by the candidate and ongoing activities
at the current decision point (denoted as te). If r

g
ij ≤ Rg, te is

not a conflict time and the CA allocates the global resource
g according to PAs’ resource requirements and moves on to
the next decision point, te = te + 1. Otherwise, the current
time is a conflict time and the activities starting at the conflict
time are conflict activities. In such cases, the concerned PAs
disclose some specific information on the conflict activities
to the CA. The CA then generates multiple resource allo-
cation plans according to different PR heuristics. Resource
allocation plans denoted as Sp (p = 1, 2, . . .P), are the sets of
start times of the conflict activities satisfying global resource
constraints. For each plan, Sp, the concerned PAk simulates
the start time of the subsequence activities with the expected
duration and obtains the corresponding project makespan,
and calculates the tardiness cost as:

tcpk =
(
Spk(Jk+1) − relk − cplk

)
· ωi. (3)
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TABLE 1. Priority rules for scheduling conflict activities

The CA also calculates the total tardiness cost (TTC) for each
plan TTCp

=
∑

k tc
p
k , and selects the plan with a minimum

TTCp as the final resource allocation plan at te and moves on
to the next decision point. The entire procedure is terminated
upon scheduling of all activities.

B. THE PROPOSED PR IN MPR-H
Table 1 shows the priority rules that we proposed to schedule
the candidate activities, where sij is the start time of conflict
activity aij, dij is the expected duration, and sl ij represents
the total slack time of aij. As displayed in Table 1, PRs
LFT∗ and LST∗ are similar to the classic PRs LFT (latest
finish time) and LST (latest start time). In the classic PR
(LFT or LST), the total slack time and start time of all
activities are calculated based on the critical path method
(CPM). In our proposed technique, LFT∗ and LST∗, the start
time of conflict activities equals to te (current conflict time)
and sl ij is obtained based on the current known information.
At time te, the start time and actual duration of the activities
in Ce (the set of the completed activities) are known. The
pseudo-code of total slack time based on the current known
information is as presented in the following.

Total Slack Time Based on the Known Information
For each concerned project:
Input: completed activity setCe, unscheduled activity setUe.,

start time and duration of aij ∈ Ce.
Step 1. Schedule aij ∈ Ue by CPM with the expected
duration. Record the start time as the earliest start time est ij .
Step 2. Arrange activities in descending order of completion
time as priority list PL.

Backward schedule activities based on the priority list
PL, where aij ∈ Ce uses the actual duration and aij ∈ Ue uses
the expected duration. Record the start time as the latest start
time lst ij .
Output: sl ij = lst ij − est ij .

SD is a newly proposed priority rule, where S represents
the slack time and D stands for the duration. Assuming that
CAe is the set of conflict activities at current time te:

sumd =
∑

aij∈CAe

dij (4)

sl∼ij =
∑

alk∈CAe,alk 6=aij

−sllk (5)

sumsl =
∑

aij∈CAe

sl∼ij (6)

In the SD rule, dij
/
sumd is the ratio of the activity duration

to the sum of all candidate activity durations. sl∼ij represents
the opposite of the sum of the total slack times of other
activities in the set of candidate activities, and sumsl is the
summation of sl∼ij . Thus, SD is related to the expected dura-
tion and the total slack time of the conflict activities (obtained
based on the current known information), where activities
with a relatively short duration and a relatively small total
slack time might start with a higher priority. The pseudo-
code of our MPR-H with LLS rule (LFT∗ + LST∗ + SD) is
presented in the following.

C. MULTI-PR HEURISTIC WITH PAYMENT NEGOTIATION
FOR TWO AGENTS
Here we also consider opportunistic agents. Since some
scheduling information is required during the coordination
of global resource conflicts, self-interested agents might dis-
close false total slack time for the conflict activities, false
simulation tardiness cost of resource allocation plans, etc.
This enables them to pursue their opportunistic objectives.
For multi-project with two agents, we propose a payment
negotiation procedure embedded in the MPR-H and discuss
the agents’ strategic behaviour.

If the completion time is later than the due date, a fixed cost
ωi is paid for each the delay per unit of time, and the same
cost is saved if the project is finished earlier per unit of time.
We further assume that transferring money is allowed among
the projects. Agents assess the schedules and propose changes
to resource allocation plans in terms of their monetary
values.

Following step 2 in Algorithm 1, the two PAs receive
three allocation plans obtained by LFT∗, LST∗, and SD,
respectively. Each PA ranks the plans according to the tcpk in
ascending order and reports the rank to the CA. The CA then
obtains the Pareto optimal solution (see, Fig. 2). In Fig. 2,
we illustrate an example where the tardiness costs (tc) and
the ranks of the plans obtained by LST∗, LFT∗ and SD are
displayed. LST∗ is dominated by LFT∗ since the tc of LFT∗

is lower than that of LST∗ from the perspective of both
PAs. Moreover, there is no dominant relationship between
the plans obtained by LFT∗ and SD. Therefore, the plans
achieved by LFT∗ and SD are Pareto optimal solutions.
PS is the set of Pareto optimal solutions. If there is only

one solution in PS, the CA allocates resources based on
this plan. Otherwise, the order of the elements in PS is set
per the order of the solution ranked by the PA1. The CA
determines the first solution in PS as the current optimal
solution. Then PA1 and PA2 negotiate and decide whether to
replace the current optimal solution with the next solution in
PS. Due to the order of the solutions, from the first solution
to the second solution in PS, the tardiness cost of PA1is
decreased by tc1 and the delay cost of PA2 is increased by
tc2. PA1 asks for tc1 in compensation to agree with the second
solution. If tc2 > tc1, PA2 pays for the cost and the second
solution becomes the current best solution. Otherwise, they
continue to negotiate the third Pareto solution until all Pareto
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FIGURE 2. An example of Pareto solutions.

Algorithm 1 MPR-H With LLS (LFT∗ + LST∗ + SD)
Initialize: decision point te = 0, unscheduled activity set
UAe. = {all activities}.
Step 1. While UAe. 6= ∅ do

Each PA determines candidate activities.
CA calculates rge .
If rge ≤ Rg
CA allocates resources as required, then
updates te and
UAe.
Continue.

Else
Go to step 2.

End if.
End while.

Step 2. PA calculates the total slack time slij of each conflict
activity.
PA submits dij and slij to CA.
CA determines three resource allocation plans
according to LFT∗, LST∗ and SD.
CA schedules the conflict activities according to
LFT∗/LST∗/SD and PSGS (parallel schedule gener-
ator scheme), resulting in three resource allocation
plans (S1, S2, S3). CA provides the resource alloca-
tion plans for concerned PAs.
Go to step 3.

Step 3. For p = 1:3
For each concerned PAk :
Simulate the start time of subsequence
activities using expected duration based
on a resource allocation plan Sp.
Record spk(Jk+1) and calculate tc

p
k as (3).

End for
CA calculates the score of each plan TTCp

=
∑
k
tcpk .

Final resource allocation plan Sf = min
p=1,2,3

(TTCp).

CA allocates resources as Sf .
Update te and UAe.
Go to step 1.

solutions are discussed. The CA allocates the resources to
PA as the final solution obtained by the above negotiation,
then steps to the next decision point. The pseudo-code of the
MPR-H with payment negotiation for two agents is as the
following.

Algorithm 2 MPR-H With Payment Negotiation for Two
Agents
Initialize: decision point te = 0, unscheduled activity set
UAe. = {all activities}.
Step 1 & Step 2we refer to Algorithm 1.

Go to step 3.
Step 3. For p = 1 : 3

For each concerned PAk :
Simulate the start time of subsequence activities
using expected duration based on a
resource allocation plan Sp.
Record spk(Jk+1) and calculate tcpk as (3).

End for
Each PA ranks the plans according to the tcpk in
ascending order, based on which CA determines the
Pareto set PS.
If |PS| = 1(|PS| is the number of the elements in
PS)

CA allocates resources as the current optimal
solution.

Else
for p = 2 : |PS|
Agents negotiate whether replace the current
optimal solution with the pth element in PS.
PA1 calculates the difference in the tardiness
cost between the two solutions: tcp1.
PA2 calculates the difference in the tardiness
cost between the two solutions: tcp2.
If tcp2 ≥ tc

p
1

replace the current optimal solution with
the pth solution.

Else
Continue.

End if.
End for.
CA allocates resources as the final optimal
solution.

End if.
Update te and UAe.
Go to step 1.

In our MPR-H with payment negotiation for two agents,
an opportunistic agent may behave untruthful, such as sub-
mitting false total slack time, untruthful solution ranks, etc.
The total slack time represents the urgency of activity in
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TABLE 2. Problem instances of RCMPSP

a project. Therefore, a self-interested agent may submit a
false total slack time which is smaller than its real value. For
the solution rank, there is no plausible advantage by deviating
from the truthful behaviour. This is because an agent with
untruthful behaviour may miss an advantageous solution. For
the negotiation of Pareto solutions, an agent with untruthful
behaviour may lose earnings or miss a better solution as
well. In Section 5 we analyze the strategic behaviour of
submitting a false total slack time and provide insights on
the effectiveness of different behavioural choices, and note
that the payments between the agents do not affect the global
objective since the total tardiness cost is the summation of the
tardiness costs of all the projects.

V. COMPUTATIONAL STUDY
The performance of our MPR-H is evaluated via a compre-
hensive computational experiment in this section. All exper-
iments are performed on a PC with 3.4GHz CPU and 8GB
RAM, and the algorithms are coded in Matlab 2013a. In Sub-
section A, we provide the experimental design in details
including the instance sets, parameters, and duration distri-
butions. The performance of different multi-PRs is analyzed
in Subsection B. The effect of problem characteristics on
the objective is reported in Subsection C . In Subsection D
we compare the performance of our MPR-H to competitive
distributed/centralized algorithms. The strategic behavior of
agents is analyzed in Subsection E .

A. EXPERIMENTAL SETUP
We tested our approach on MPSPLIB [13] datasets shown
in Table 2. The MPSPLIB problem library includes 140
instances. All these instances are available on a public
web site http://www.mpsplib.com (last check of address:
12 November, 2020). Each problem subset is named as
‘‘MPJi_m’’ or ‘‘MPJi_mAC’’, where Ji is the number of non-
dummy activities in each project and m is the number of

projects in each instance. Other parameters are illustrated
as follows: NOI is the number of instances in each subset
and the problem size is the total number of non-dummy
activities per instance, |G| is the number of global resources,
AUF is the average of the UF in a certain problem subset,
and UF denotes the maximal tightness of the constraints on
the required shared resources as in (7) [36]. In our exper-
iment, UFg is the ratio of the total amount of required g
to the constant amount capacity of g in each period over
the critical path length of the multi-project (see, [21] for
more details).

UF = max
g∈G

UFg (7)

According to [37], the threshold of UF is 1. If UF < 1,
the instance resource conflict is relatively low, and vice
versa. Here, we focus on the allocation of the scarce shared
resources. Thus for the resource constraints, only global
resource constraints are considered. We then follow [38] and
[39], in line with their probability distribution types and
parameters. For each distribution type, the expected activ-
ity duration is equal to the original activity duration in the
MPSPLIB data sets. Five distributions and their variances are
also shown as follows:

(1) U1: subject to uniform distribution, support[
d∗ij −

√
d∗ij , d

∗
ij +

√
d∗ij
]
, variance d∗ij

/
3;

(2) U2: subject to uniform distribution, support[
0, 2d∗ij

]
, variance d∗2ij

/
3;

(3) EXP: subject to exponential distribution, mean d∗ij ,
variance d∗2ij ;
(4) B1: subject to beta distribution, support[
d∗ij
/
2, 2d∗ij

]
; variance d∗ij

/
3, shape parameter α =

d∗ij
/
2− 1

/
3, β = 2α;

(5) B2: subject to beta distribution, support[
d∗ij
/
2, 2d∗ij

]
; varianced∗2ij

/
3, shape parameter α =

1
/
6, β = 2α.

As it is seen, U1 and B1 have a relatively low variance,
U2 and B2 have medium variance, and EXP has a high
variance. All results in the following parts are the average
of 100 runs. All the distribution sampling functions denoted
as randperm. expinv and betainv in our experiment came from
Matlab 2013a.

B. PERFORMANCE OF DIFFERENT MULTI-PR HEURISTICS
IN MPR-H
The multi-PR mainly determines the performance of our
MPR-H approach. We compare four different multi-PRs,
which are different combinations of the PRs in Table 1 on the
test sets under different distributions. In Table 3, the average
ETTC results for each subset under U1 distribution and the
average running time of each run are presented. The best
results are also marked in bold. The LLS rule outperforms
other multi-PRs on 17 of the 20 problem subsets. For all
other distributions, the above setting remains unchanged.

227786 VOLUME 8, 2020



D. Liu, Z. Xu: MPR-H for Distributed Multi-Project Scheduling With Uncertain Duration

TABLE 3. Comparison of different multi-PR combinations in MPR-H

FIGURE 3. The average ETTC of different multi-PRs under different
distribution.

Besides, for eachmulti-PR, the average running time is within
11 seconds.

Fig. 3 shows the average ETTC of the test sets for each
multi-PR under different distributions. To test the signifi-
cance of the results in Fig. 3, we conduct 2-tailed Wilcoxon
signed-rank test on each pair of multi-PRs (neither the results
of each multi-PR nor the differences between pairs are nor-
mally distributed, so we do not apply Student’s t-test or paired
t-test). Table 4 shows the confidence levels for each pair
of multi-PRs under different activity duration distributions.
Italic entries indicate that there is a significant difference
between the two multi-PRs at the 1%-level of significance.
It is observed from Fig. 3 and Table 4, the LLS rule signif-
icantly outperforms other multi-PRs under all distributions.

TABLE 4. 2-talied Wilcoxon signed-rank results for the multi-PRs

It is also seen that the LLS multi-PR is the most efficient PR
for our MPR-H.

C. THE EFFECT OF PROBLEM CHARACTERISTICS
Fig. 4 displays the average ETTC of the MPR-H with LLS
rule under different variances and AUF values. The results of
low (medium) variance are the average of the results where
the activity duration distributions are U1 and B1 (U2 and B2).
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FIGURE 4. ETTC under different problem parameters.

Furthermore, the high variance results are from the EXP dis-
tribution. The variance represents the degree of uncertainty,
and the AUF value represents the strength of global resource
conflicts. It is also seen in Fig. 4 that the ETTC increases with
the degree of uncertainty. However, only in the case of low
uncertainty, the ETTC increases with the value of AUF. In the
case of medium certainty, the ETTC of different resource
conflicts are similar. For the cases with high uncertainty,
the result is against what it is usually expected.

This is because the multi-projects with low AUF are more
affected by the change of uncertainty. To show this effect,
we illustrate the ratio of high uncertainty results in low
uncertainty results of different AUF in Fig. 5. In Fig. 5(a),
for instance, the MP90_2 data point of ‘‘AC’’ is the ratio
of the ETTC under EXP distribution to the average ETTC
under U1 and B1 distribution for MP90_2AC subset. ‘‘NAC’’
represents the results of MPJi_m subsets.
From Table 2, for the same problem size, the MPJi_mAC

subsets have higher AUF than that of the MPJi_m subsets.
Except for the data points at MP120120_2, all results show
that theETTC is more affected by the uncertainty on lowAUF.
The AUF values of theMP120_2AC subset and theMP120_2
subset are almost the same (1.36 & 1.31), which might be the
reason for the above result.

Moreover, we calculate the ratio of high uncertainty results
in low uncertainty results for the average results of all prob-
lem subsets of AUF< 1 and AUF>1 in Fig. 5(b). The results

in Fig. 5 illustrate that for the problem subset with AUF< 1,
the ETTC result under EXP distribution is 5.06 times higher
than that of the average ETTC under U1 and B1 distributions.
For AUF>1, the ratio is 2.17.

The above analysis suggests that the ETTC is increased
by increasing the uncertainty. The ETTC also increases more
where AUF< 1 and less where AUF>1.

D. A COMPARISON WITH DISTRIBUTED/CENTRALIZED
ALGORITHMS
To be able to evaluate the performance of MPR-H, we com-
pare our approach with two competitive decentralized algo-
rithms for deterministic DRCMPSP [22], [24], and the best
four priority rules (LFT, LST, SLFT, and SLST) for the
stochastic RCPSP (SRCPSP) verified by Chen et al. [33].
We introduce the algorithms briefly as follows:

• DMAS/EM: A distributed method for deterministic
DRCMPSP. In this algorithm, the conflict activities are
scheduled in the order of the ascending scores and the
score of each activity is calculated asM ∗Sli+di, where
M is a large enough constant, Sli represents the slack
time of conflict activity i and di is its duration [22].
We use the expected activity duration to calculate the
above parameters.

• SQM: Sequential game is based on two-stage decompo-
sition algorithm for deterministic DRCMPSP. In SQM,
the global resources are allocated in the project level.
The project orders are then evaluated [24] and the eval-
uation of the order of each project is carried out with the
expected activity duration as defined in this paper.

• LFT and LST: Two centralized methods; efficient prior-
ity rules for SRCPSP; the latest finishing time and the
latest starting time, are respectively calculated by the
expected activity durations [33].

• SLFT and SLST: Two centralized methods; efficient
priority rules for SRCPSP; the simulation-based latest
finishing time and the simulation-based latest starting
time, are respectively calculated by the average of n
times simulations, and in each simulation, the simulated
activity duration is used instead of the expected activity
duration [33].

FIGURE 5. The effect of AUF on the results of different variance.
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TABLE 5. Comparison between MPR-H and other algorithms

FIGURE 6. Percentage improvement with respect to different problem parameters.

Five of the above six algorithms are time-oriented,
designed to minimize the average project delay or expected
project makespan. The SQM, which aims at minimizing the
total tardiness cost can solve the deterministic DRCMPSP
with any unit tardiness cost. Therefore, in this subsection,
the unit tardiness cost of each project is set as 1. The ETTC is
consistent with the expected total project delay (ETPD) which
is calculated as:

ETPDi = E

(
m∑
i=1

(si(Ji+1) − reli − cpli)

)
(8)

The average results of ETPD under U1 distribution are
shown in Table 5. The optimal results are marked in bold.

As it is seen in Table 5, our MPR-H with LLS rule outper-
forms other algorithms in 17 of the 20 problem subsets. For
the B1 and EXP distributions, the above conclusion remains
unchanged, and for the U2 and B2 distributions, our approach
outperforms other algorithms in 19 of the 20 problem subsets.
Fig. 6 shows the average percentage improvement of our
MPR-H compared to other algorithms under different values
of the variances and AUF. It is can be observed that our
MPR-H achieves significant improvements for all situations.

E. ANALYSIS OF THE STRATEGIC BEHAVIOR
In this subsection, we analyze whether or not lying is advan-
tageous in the process of information exchange for the two
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TABLE 6. Objective value for different strategic behavior

TABLE 7. Expected EPTC under different behavior for U1 distribution

agents and the strategy is chosen by a self-interested agent?
As it was discussed in Section 4, an opportunistic agent might
provide a false total slack time which is smaller than the
actual one. Each of the PAs might select to behave truth-
fully or untruthfully.We study this strategy selection question
in detail for the problem subsets with two projects (MP30_2,
MP90_2, MP120_2, MP90_2AC, and MP120_2AC) under
five activity duration distributions.

The average results of the five subsets are shown in Table 6.
An agent with truthful behaviour provides the true total slack
time to the CA, and a lying agent tampers the total slack time
and changes it to 0 with a probability of 0.5. The rows of PA1
and PA2 are the average results of the tardiness cost for the
two projects, respectively, and the row of CA is the average
results of ETTC for the multi-project.
To demonstrate the results of different strategy selections,

we display the situation of U1 distribution in Table 7. It is can
be seen in Table 7 that from the perspective of a rational PA2,
the best strategy is to behave truthfully. This is because PA2
achieves the better individual result (i.e., lower ETTC) in both
cases irrespective of the strategy of PA1 (150.52 vs. 168.83,
178.90 vs. 192.99). Therefore, the dominant strategy for PA2
is to behave truthfully. For PA1, when PA2 behaves truth-
fully, PA1 gets better individual result by truthful behaviour
(101.34 vs. 119.29). All differences are statistically signif-
icant (Wilcoxon signed-rank test, p < 0.01). Individually
rational behaviour leads to a dominant-strategy equilibrium
(101.34, 150.52) which obtains a lower ETTC than that of
the untruthful behaviour. Similar effects are seen for other
distributions.

According to the above analysis, in our MPR-H with
the payment negotiation process, untruthful behaviour com-
monly leads to a higher tardiness cost for the untruthful agent,
whereas the agents behaving truthfully achieve high-quality
solutions.

VI. CONCLUSION AND FUTURE WORK
This paper is devoted to solving the distributed multi-project
scheduling problem under uncertain durations, where the
activity durations are subject to a known probability distri-
bution. We propose a multi-PR heuristic (MPR-H) approach
to dynamically allocate the global resources. Three priority
rules based on the current known information are proposed
and embedded in the proposed heuristic algorithm.We further
consider opportunistic agent and propose MPR-H with pay-
ment negotiation to counter the agents’ strategic behaviour
in cases with two projects. A comprehensive computational
experiment on the MPSPLIB benchmark is also performed
to examine the performance of our proposed algorithm and
analyze the agents’ strategic behaviour.

According to the computational results, the LLS rule
(which is the combination of LFT∗, LST∗, and SD) signifi-
cantly outperforms other multi-PRs for the MPR-H. Satisfac-
tory solutions for large size and strong conflict instances can
be obtained within only 11 seconds by our MPR-H with LLS.
The senior manager will face complex decision situations and
more ETTCmight incur for strong uncertainty. By increasing
the level of uncertainty, multi-project with relatively slack
global resource constraints also leads to a higher increase
in ETTC than the multi-project with relatively tight global
resource constraints. The performance of our MPR-H is also
compared with six competitive distributed/centralized algo-
rithms. Experimental results reveal that the proposed MPR-H
with LLS approach can significantly improve the solution in
terms of ETPD under various distributions. For the problem
with two agents, by analyzing the strategic behaviour of
the agents, the results illustrate that the rational agents will
behave truthfully, which is the dominant strategy equilibrium,
and with the truthful strategies, the multi-project obtains
high-quality results.

Although our work solves the two-agent problems with-
out implying a strong assumption on the truthful behaviour,
solving problems with more opportunistic agents require fur-
ther effort. Furthermore, in some cases, the local resources
(resource required in a single project) can be limited in the
multi-project which has not been considered in the current
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work. Other promising priority rules might be incorporated
in our MPR-H. Future research may cover the above short-
comings and incorporate our multi-PR heuristic and the new
PRs in meta-heuristics (or neighbourhood search techniques)
to address other scheduling problems.
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