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Brain Functional Networks Based on
Resting-State EEG Data for Major

Depressive Disorder Analysis
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Abstract— If the brain is regarded as a system, it will be
one of the most complex systems in the universe.Traditional
analysis and classification methods of major depressive
disorder (MDD) based on electroencephalography (EEG)
feature-levels often regard electrode as isolated node and
ignore the correlation between them, so it’s difficult to
find alters of abnormal topological architecture in brain.
To solve this problem, we propose a brain functional net-
work framework for MDD of analysis and classification
based on resting state EEG. The phase lag index (PLI) was
calculated based on the 64-channel resting state EEG to
construct the function connection matrix to reduce and
avoid the volume conductor effect. Then binarization of
brain function network based on small world index was
realized. Statistical analyses were performed on different
EEG frequency band and different brain regions. The results
showed that significant alterations of brain synchronization
occurred in frontal, temporal, parietal-occipital regions of
left brain and temporal region of right brain. And average
shortest path length and clustering coefficient in left central
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region of theta band and node betweenness centrality in
right parietal-occipital region were significantly correlated
with PHQ-9 score of MDD, which indicates these three
network metrics may be served as potential biomarkers to
effectively distinguish MDD from controls and the highest
classification accuracy can reach 93.31%. Our findings also
point out that the brain function network of MDD patients
shows a random trend, and small world characteristics
appears to weaken.

Index Terms— Major depressive disorder, electroen-
cephalography, brain functional networks, phase lag index,
abnormal topological architecture.

I. INTRODUCTION

NOWADAYS major depressive disorder (MDD) has qui-
etly become the second largest disease in the world-

wide [1], and its typical symptoms include slow thinking,
persistent low mood, anhedonia, and cognition impairment of
brain function [2]. According to data disclosed by the World
Health Organization (WHO), there are more than 350 million
people suffering from MDD and the growth rate of patients
in the past decade is about 18% [3]. It is estimated that about
850,000 suicides caused by MDD each year [4], accounting
for 53.7% of all suicides [5]. With the high morbidity and
mortality of MDD, it is critical to understand the underlying
neurophysiological and brain function basis of MDD for the
effective prevention and treatment of this mental illness.

Within the past few decades, considerable investigations on
MDD have been continuously explored and advanced from the
perspective of structure and function in brain using morpholog-
ical or neurobiological features. These investigations, based on
various physiological techniques such as functional magnetic
resonance imaging (fMRI), magnetoencephalogram (MEG)
and EEG, have been widely used to assess difference of MDD
compared with controls. Combined with fMRI and morpho-
logical feature volume, Yao et al. [6] found that the atrophy
region of amygdala and hippocampus has a slight tendency of
expanding to other sub-regions with the progression of MDD.
Based on the spontaneous oscillating neuromagnetic activity
of MEG, the study found that the correlation between age and
neurobiological feature Lempel-Ziv complexity disappeared in
MDD patients [7]. Taking physiology and behavior as the
breakthrough point, the study by [4] integrates pervasive EEG
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features and sound features into multi-agent strategy to realize
convenient MDD detection.

However, human brain is a complex system consisting
of about 1011 neurons and about 1015 synapses connecting
these neurons. It is difficult to reveal the pathophysiological
mechanism alterations of MDD hidden in the human brain
only from the perspective of morphological or neurobiological
features. In recent years, with the development of complex
network theory based on graph theory [8], many researchers
have demonstrated that brain networks can be constructed by
fMRI, MEG and EEG data and resultant brain networks show
many important topological properties [9]. Moreover, many
accumulating evidences show that neuropsychiatric disorders
were closely associated with abnormal topological alterations
of brain networks [10]. Yu et al. pointed out that functional
connectivity is an effective method to investigate brain abnor-
malities of Alzheimer’s disease (AD), and provides a potential
tool for identifying neurological diseases from the perspective
of functional networks with EEG signals, especially for the
identification of AD [11]. These studies provide a new avenue
to understand the pathological mechanism of MDD.

From the above, this article intends to study the topological
structure alterations of MDD from the level of brain function
network connection, and then explore its pathophysiological
mechanism and potential biomarkers. It is well known that
fMRI has high spatial resolution, while MEG and EEG have
high temporal resolution [12]. Brain functional connectivity is
defined as mechanism for the coordination of temporal depen-
dence activity between different neural assemblies of spatially
separate [13]. Hence, EEG and MEG provide a satisfactory
resolution to approach the temporal evolution of functional
connectivity process related to brain activity from health
into disease, compared with fMRI. EEG is widely used by
scientists to study brain functions and to diagnose neurological
diseases, abnormal of EEG signal is generally manifested as
alterations in the signal pattern of the subject [14]. Meanwhile,
considering EEG has the advantages of high time resolution,
non-invasive, safe, easy operation and low cost [15]. It is
more suitable for constructing brain function networks, so this
study pays more attention to analysis and classification of
EEG-based brain function for MDD.

Traditional method of the detection MDD or depression
based on EEG feature-level has its inherent advantages. For
example, feature-level fusion technology was used to construct
multimodal model by fusing different EEG data sources for
detection depression patients from normal controls, and the
highest classification accuracy of 86.98% was obtained [2].
Its main advantage of this method is that EEG data obtained
by fusing different audio stimuli to improve the classification
accuracy. Zhang et al. proposed a multi-agent based fusion
strategy of EEG features and voice features to achieve depres-
sion detection, and the classification accuracy 86.64% was
achieved [4]. The main advantage of this method is that it
integrates the universal EEG features and paralinguistic behav-
iors features to improve the classification accuracy. Despite
the traditional method has its advantages and achieves EEG
fusion in the feature-level, it often regard electrode as isolated
node and ignore the correlation between electrodes, so it’s

difficult to find changes of abnormal topology in brain caused
by MDD.

According to previous researches, we found that there are
two critical issues need to be resolved in the construction
process of brain functional network. First, which state of EEG
data is most suitable for the construction of brain function
network? Second, which coupling method is most suitable for
the construction of real cortical brain networks? Both require
further investigation and determination. To avoid interference
from other physiological electrical signals such as EOG and
EMG, etc., during the EEG recording process, it is necessary
for the subjects to maintain a state of quiet, relaxation, awake
and closed eyes in this process. The resting state just meets
these needs. Moreover, many studies have confirmed that
resting state EEG can be effectively used for the construction
of brain function networks. In [16] resting state EEG was used
to investigate the alterations of brain network metrics of the
minimum spanning tree in dyslexia readers. By analyzing the
resting state EEG data of schizophrenia patients, exploring
the alterations in the temporal and spatial of their brain struc-
ture [17]. Research on brain function network based on resting
state EEG, it is found that acupuncture can modulate the activ-
ity of human brain, and different acupuncture operations have
different effects on brain functional network [18]. Siuly et al.
developed a new framework for automatic detection of patients
with mild cognitive impairment (MCI) using resting state EEG
data [19]. Another problem is typical coupling calculation
methods of functional connectivity matrix include correlation
and coherence [20]. However, these methods are susceptible
by the strong influence of volume conduction. To address
this problem, the researchers suggest that functional connec-
tivity should be analyzed according to source space rather
than sensor space. Meanwhile, reducing and avoiding the
influence of volume conduction on the construction of real
cortical brain network [21], [22], the robust volume conduction
method of PLI just meets these needs. Many previous studies
have confirmed the feasibility of this idea. PLI has been
applied to analyze the brain function network of patients with
Alzheimer disease, dyslexics and so on [23]–[25]. In [26]
PLI was also utilized to investigate the influence of acupunc-
ture on the phase synchronization of EEG in different brain
regions. In addition, some previous studies have applied PLI
to depression [27]–[29].

How to effectively analyze the brain function networks
and classification MDD after it is constructed. We have done
a lot of literature investigation. In aspect of brain function
networks analysis, a novel frequency analysis method was
designed and used to reveal imaging marker for adoles-
cent generalized anxiety disorder [30]. Based on the brain
area analysis strategy, relative power and coherence of EEG
series in patients with mild cognitive impairment (MCI)
with diabetes were studied [31]. Yu et al. used graph the-
ory to analyze the brain functional network, and revealed
that brain functional connectivity undergoes obvious alter
under different conditions: pre-acupuncture, acupuncture, and
post-acupuncture [32]. Recently, an article published in
Nature Neuroscience: analyzing several problems of inter-
group conflicts using inter-brain synchronization mechanisms,
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Fig. 1. Flowchart of the proposed method.

revealing the significance of inter-brain synchronization in
group conflicts [33]. In aspect of classification is mainly based
on modern machine learning techniques, the literatures [19]
and [34] adopt various classification techniques to identify
patients with mental illnesses, and compare the advantages
and disadvantages of relevant classification technologies. The
survey results clarify that patients with brain disease usually
have abnormal in differences of EEG frequency bands, con-
nection synchronization, differences of brain regions, etc. And
the current representative classification methods are mostly
based on modern machine learning technology. Based on this,
we launched the subsequent analysis of the brain function
network and classification of MDD patients.

Although some successes have been achieved for the analy-
sis and classification of MDD, the existing research is far
from up-to-date. In particular, the traditional EEG feature-level
based MDD analysis and classification methods tend to pay
more attention to the results of EEG feature selection and
classification accuracy, while ignoring the correlation between
EEG electrodes. To remedy these weaknesses of existing
solutions, this article proposes a framework for MDD analy-
sis and classification based on brain functional networks of
resting-state EEG data. The contributions of this article are
summarized as follows:

(1) This study found that the power spectrum of MDD
patients significantly increases in theta and alpha2 bands,
which supports the enhancement theory of negative brain
activity in specific EEG bands of patients with MDD from
the perspective of energy change.

(2) Synchronization analysis based on the PLI, this study
found that the synchronization of MDD patients group had
significantly higher compared to control group, especially in
left frontal, left central, left temporal, left parietal-occipital,
and right temporal in theta or alpha2 bands. This phenomenon
may indicate that abnormal information processing in the brain
of patients with MDD

(3) Analysis by relationship between network metrics with
PHQ-9 scores, as well as area under receiver operating
characteristic curve (AUC) of these metrics between MDD
group and control group, and classification accuracy based
on these metrics, we found that average shortest path length
and clustering coefficient in left central region of theta band

and node betweenness centrality in right parietal-occipital
region may be served as potential biomarkers to effectively
distinguish MDD from controls.

The remainder of this article is organized as follows.
In Section II, we give the structure diagram of this study,
introduces the experimental material, and a brain functional
network framework is proposed for MDD of analysis and clas-
sification based on resting state EEG. In Section III, detailed
statistics and analysis strategies, and classification algorithm
used in this study are introduced. In Section IV, several
experimental results are obtained. In Section V, relevant exper-
imental results as well as advantages and disadvantages of our
method are discussed. Finally, the limitations, disadvantage,
and conclusion are presented in Sections VI and VII.

II. MATERIALS AND METHODS

To clarify the idea of this article, Fig. 1 shows a flowchart
of the proposed method. Its simplified process is as follows:
(a) Resting state EEG signals were collected on 64 electrodes
for about 5 minutes. (b) EEG data were preprocessed by
eliminating EOG, filtering, and so on. (c) Brain function
network was constructed based on PLI. (d) Design various
methods to analyze the brain function network, and then obtain
potential biomarkers that can effectively distinguish MDD
from control group. (e) Classification of MDD and healthy
controls..

A. Subjects

All subjects involved in the research were screened by
screening tools, which were jointly developed by psychiatrists
and researchers of “973 National Key Research and Devel-
opment Program” according to international general scale.
The international general scale includes: Patient Health Ques-
tionnaire 9-item (PHQ-9) [35], Generalized Anxiety Disorder
7-item (GAD-7) [36], Life Event Scale (LES) [37], Pittsburgh
Sleep Quality Index (PSQI) [38]. Screening tools were used to
investigate other physical and mental illnesses to ensure that
the differences between the subjects were mainly caused by
MDD. Finally, the experiment subjects were determined by
psychiatrists based on screening tools and inclusion criteria.
The inclusion criteria as follows:
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MDD group: the psychiatrist’s diagnosis was MDD and
PHQ-9 score was greater than or equal to 5, and the subject
did not take any psychotropic drugs within 2 weeks.

Control group: the psychiatrist’s diagnosis was healthy, and
all international general scales results were normal.

In addition, all subjects must also meet the following
inclusion criteria: the ages of 18-55 years old, primary school
education or above, normal intellectual activities, and no head
injuries in the past. After meeting the inclusion criteria and
signing informed consent by subjects or their family members,
the subjects can participate in the experiment.

The initial experiment 24 subjects with MDD (male/
female = 13:11, right-handed) were recruited from Lanzhou
University Second Hospital, China, and 29 age-matched
and education-matched healthy control were recruited
(male/female = 20:9, right-handed) from the society [39].
To ensure gender-matched, this study only used data from
24 subjects with MDD (MDD group) and 24 health controls
(Control group), and the sex ratio was 13:11. The mean
and standard deviation of PHQ-9 score in MDD group was
18.33±3.50, and control group was 2.58±1.79 (F = 10.162,
p<0.001), which indicate that the difference in research data
was mainly due to MDD, rather than other factors.

B. Data and Preprocessing

All experimental data were recorded in a special room with
quiet, no strong light, moderate temperature and humidity,
good ventilation, and no electromagnetic interference. Subjects
need to sit on a wooden chair in their own comfortable
way and resting state. Simultaneously, In order to reduce
the noise of electrooculography (EOG) and electromyography
(EMG), subjects need to reduce or even avoid eye and body
movements as much as possible. Then EEG signals were
recorded for approximately five minutes by a 128-channel
HydroCel Geodesic Sensor Net and Net Station software
with Cz reference and 250 Hz sampling rates, which were
positioned according to international standard 10-20 system.
On the basis of ensuring the uniform distribution of electrodes
and the effectiveness of the study, to control and reduce
the amount of calculation, we only selected 64 electrodes
of them and their reference electrode Cz. The selection
and distribution of specific electrodes are shown in Fig. 1
below.

A lot of noise was inevitably being introduced in the process
of EEG recording. To obtain relatively pure and more effective
EEG data, it is necessary to preprocess the raw EEG signal.
Usually depression-related EEG signals mainly exist in 0.5 Hz
to 50 Hz [40]. So a band pass filter with a low cut-off
frequency of 0.5 Hz and a high cut-off frequency of 50 Hz was
adopted to eliminate low frequency drift and high-frequency
noise. Electrooculography (EOG) was the most serious noise
in EOG acquisition process [41]. Even if the subject in the
resting state with eyes closed, the amplitude of EEG produced
by blinking was more than ten times that of EEG. Therefore,
this study uses a model based on adaptive noise cancellation
and discrete wavelet transformation [42], [43] to remove EOG
noise to obtain relatively pure EEG data.

C. Power Spectrum

The power spectrums of all EEG frequency bands were
computed by Fast Fourier Transform (FFT) with a frequency
resolution of 1/4 s = 0.25 Hz. Due to frequency resolution =
fs/N and fs = 250Hz, that is, the number of sampling points
is 1000. In this study, FFT is applied to explore alterations
of power spectrum of MDD patients in different frequency
bands. So as to find the abnormal of brain function connection.
In order to obtain accurate experimental results, the absolute
power values were computed in the following frequency
bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha1 (8-10Hz),
alpha2 (10-13 Hz), beta1 (13-18 Hz), beta2 (18-21 Hz), beta3
(21-30 Hz) and gamma (30-48 Hz).

D. PLI and Construction of Brain Functional Matrices

The network consists of nodes and edges between nodes.
In this study, each EEG electrode is defined as a node, and the
connection strength between nodes is defined as edge. To avoid
the volume conductor effect, PLI was used to calculate the
connection strength between nodes. For any pair of EEG
signals xj(t) and xk(t), the phase difference at time t can be
expressed as:

|�ϕn,m(t)| = |nϕj (t) − mϕk(t)| (1)

where n and m are integers, generally the value of n and m are
both 1 in neuroscience applications. ϕj (t) and ϕk (t) denotes
the instantaneous phase of signals xj(t) and xk(t), which is
calculated as follows:

ϕj (t) = arctan
x̃j(t)

xj(t)
(2)

x̃j(t) is the Hilbert transformation [44] of xj(t), defined as
follows:

x̃j (t) = 1

π
PV

∫ ∞

−∞
xj(ξ)

t − ξ
dξ (3)

Here PV refers to cauchy principal value. Then the PLI
value between the two signals xj(t) andxk(t) can be defined
as:

PLIjk =
∣∣∣∣ 1

L

∑L−1

l=0
sign (�ϕ (tl))

∣∣∣∣ , 0 ≤PLIjk ≤ 1 (4)

L is the number of samples and sign is the signum function.
In this study, adjacency matrix was constructed by calculat-

ing PLI between EEG channels and then to draw the brain
function network. All the functional connectivity matrices
were calculated each 4 seconds with a 2 seconds overlapping
window in different frequency band. Next, we average the
functional connection matrix of MDD group and control group
in each frequency band, and obtain two adjacency matrices Cij
of 64 ∗ 64.

Cij =
⎡
⎢⎣

C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn

⎤
⎥⎦

64∗64

(5)
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E. Binarization of Brain Functional Network

Illustration of complex network theory based on graph the-
ory that small world network can be characterized by smaller
average shortest path length and higher clustering coefficient.
So we calculated the following small world properties to
realize binary brain network.

Average shortest path length: shortest path Lij is the path
with the least edges between any two nodes i and j. Edge
length of weight network is defined as the reciprocal of the
edge weight:

Lij = 1

wij
(6)

where wij is the connection weight between nodes i and j, that
is, Cij of the adjacency matrix. Average shortest path length
of weight network (Lw) can be defined as:

Lw = 1

N(N − 1)

∑N

i=1,i �=j
Lij (7)

N is the number of nodes in the weighted network.
Clustering coefficient: it is the probability that the neighbors

of a node are neighbors of each other, which is an important
parameter to measure the degree of network collectivization.
Clustering coefficient of node i in weight network can be
described as:

Ci =
∑

j,k,j �=k wijwikwjk∑
j,k,j �=k wijwik

(8)

Here wij, wik, wjk are also Cij. Network clustering coefficient
(Cw) is the average of Ci:

Cw = 1

N

∑N

i=1
Ci (9)

Small-world index: with random network act as the bench-
mark, discuss the small-world characteristics of the network
and it can be defined as:

σ = Cw/Crand

Lw/Lrand
(10)

In this study, Crand and Lrand are the mean for average shortest
path and clustering coefficient of 50 random networks with the
same scale as the original network, respectively.

There are a large number of weak connections and pseudo
connections in brain functional networks, and these links
often blur the topology of core connections. So as to solve
this problem binarization method based on threshold may be
one of the best candidates to remove the weak connections.
Considering there is currently no method for uniformly defin-
ing thresholds and starting from specific issue of this study,
we have formulated a threshold binarization method based on
σMDD/σcontrol. This ratio was calculated between the MDD
group and the control group among the 400 thresholds, where
the threshold varies from 0.1 to 0.9 in steps of 0.002, and the
threshold with the most significant difference of ratio acts as
the binary threshold. Finally, it is found that threshold value
is 0.26 (t-test, p<0.001) with the most significant difference
between the two groups by statistics and analysis. Note that
this binary method based on small world index ratio was
supported and verified by previous studies on brain functional
network [45].

III. STATISTICS AND ANALYSIS

A. Analysis of EEG Absolute Power in Different
Frequency Bands

Many studies have shown that many mental disorders were
closely related to low-frequency EEG signal [46]. To quickly
find which frequency bands contain information significantly
related to MDD, the absolute power averaged across all
channels were calculated in each frequency within range of
0.5-48 Hz for two groups respectively.

B. Connection Synchronization Analysis Based on PLI

In order to explore which brain regions of MDD group have
abnormal alterations of brain functional topological architec-
ture compared with control group. We compare and analyze
the differences of connection synchronization between two
groups in binary brain network. When the threshold value
was 0.26, the binary adjacency matrix of MDD group and
control group was calculated based on PLI. Then a difference
matrix was obtained by binary adjacency matrix of MDD
group to subtract binary adjacency matrix of control group.
The difference matrix was used to construct brain functional
network, and then analyze the connection synchronization
difference between different brain regions.

C. Analysis of Brain Functional Network Metrics in
Different Brain Regions

Small world network has relatively high local efficiency and
global efficiency in the process of information transmission
and processing [47].This discovery triggered another study
upsurge of brain network. Many studies have clarified from an
anatomical perspective that brain connectivity is considered to
simultaneously coordinate the opposing requirements of func-
tional integration and segregation. It is generally believed that
such a brain tissue reflects the optimal balance of functional
integration and segregation. Furthermore, brain functional net-
work can be characterized by different metrics. Based on this
consideration, the integration and segregation metrics of brain
function network were calculated and used to analyze the
difference between MDD group and control group for binary
network. A list of these small world based network metrics is
shown in Table I.

Exploring region where brain function topological architec-
ture has alteration, we analyzed the differences between MDD
group and the control group in the above network metric.
Analysis of variance (ANOVA) was used to complete this
task. EEG analysis based on brain region originated from the
research of brain function changes during adolescence [48].
In this study, we averaged the network metrics of each
subject in eight non-overlapping brain regions. Fig. 2 lists the
segmentation of these brain regions.

D. Discrimination Ability of Network Metrics and Potential
Biomarker

To determine whether the network metrics have the ability
to distinguish MDD from controls, and whether they can be
potential biomarkers to identify MDD, the correlation between
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TABLE I
LIST OF NETWORK METRICS BASED ON SMALL WORLD.

Fig. 2. Segmentation of eight non-overlapping brain regions.

the significantly network metrics in significantly different
regions and PHQ-9 scores were analyzed within MDD and
controls. Pearson correlation coefficient was employed in this
analysis.

E. Evaluation and Classification

To further evaluate whether network metrics having signif-
icant correlation with PHQ-9 scores served as potential bio-
marker can effectively classify MDD from controls, we adopt
the following four representative algorithms as classification
tools to verify [49]: random forest (RF, numTrees=20) based
on ensemble learning, support vector machine (SVM, Lin-
ear Kernel) based on statistical learning, K-nearest neighbor
(KNN, K=3) based on distance, artificial neural network

(ANN, activation function is Sigmoid ) based on mathematical
model to simulate neurons. That is, these potential bio-
markers serve as inputs to the four classifiers. To obtain
an unbiased and statistically significant result, the classifier
was executed with 10-fold cross validation. The classification
performance was quantified and evaluated using accuracy,
sensitivity (recall), specificity, precision, F1-score, False alarm
rate and Cohen’s Kappa.

Accuracy

= TP + TN

TP + TN + FP + FN
(11)

Sensitivity

= TP

TP + FN
(12)
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Fig. 3. Average of absolute power between MDD group and control
group.

Specificity

= TN

TN + FP
(13)

Precision

= TP

TP + FP
(14)

F1_score

= 2 ∗ precision ∗ recall

precision + recall
(15)

False_alarm_rate

= FP

FP + TN
(16)

Cohen′s_kappa

= 2∗ TN ∗ TP − FP ∗ FN

(TN + FN) ∗ (FN + TP) + (FP + TP) ∗ (T N + F P)
(17)

where
True Positive (TP): number of MDD classified correctly by

the proposed method as MDD.
False Positive (FP): number of healthy control classified

incorrectly by the proposed method as MDD.
True Negative (TN): number of healthy control classified

correctly by the proposed method as healthy control.
False Negative (FN): number of MDD classified incorrectly

by the proposed method as healthy control.

IV. RESULTS

A. MDD-Related Frequency Band

A line diagram of frequency-power relationship is shown in
Fig. 3. Both MDD group and control group exhibited higher
absolute power in the alpha1 frequency band (8-10 Hz), but
there is no significant difference in the change regularity
between two groups. In the six frequency bands such as
delta, alpha1, beta1, beta2, beta3, gamma frequency bands,
the absolute power change regularity between two groups was
almost the same. However, absolute power of MDD group
is significantly higher than control group in theta frequency
band (4-8 Hz) and alpha2 frequency band (10-13 Hz), and the
change regularity was obviously inconsistent.

B. MDD-Related Brain Regions

Due to the difference yielded from absolute power analysis
was not obvious in delta, alpha1, beta1, beta2, beta3, gamma
bands, our further research focuses paid more on theta and
alpha2 bands. PLI were calculated for each pair of channels
on the scalp, and the corresponding binary adjacency matrices
were generated with 0.26 as the threshold, as shown in
Fig. 4. The adjacency matrices of both groups in theta and
alpha2 bands showed complex but rather simple connection
patters, with various channel regions have different synchro-
nization levels, such as yellow indicates high synchronization
and green indicates low synchronization. Compared with the
control group, MDD patients had more enhanced synchro-
nization between the EEG channels. However, it is not easy
to quickly and clearly find the synchronization difference
between groups from Fig. 4.

To this end, we calculated the difference matrix between the
groups, and plotted a 3D graph of the difference matrix based
on the position of the corresponding electrode in the scalp,
as shown in Fig. 5. The 3D graph of brain function connection
clearly shows the difference between the two groups in theta
and alpha2 bands. In the theta frequency band, except for
a few links in LT and RT regions, most of the links were
distributed in the rest regions of the left hemisphere. In the
alpha2 frequency band, except for a few links in LF and LPO
regions, most of the links were distributed in two temporal
regions. The results of the PLI-based synchronization analysis
and distribution of brain function connection showed that the
MDD group had significantly higher synchronization in the
left hemisphere of the brain, especially in LF, LT, and LPO
regions, and slightly higher in the right hemisphere of the brain
such as RT region, compared with control group in the theta
or alpha2 bands.

C. MDD-Related Binary Network Metrics

Based on the results of the previous subsection, we further
analyzed the differences of network metrics of LF, LC, LT,
LPO, and RT in the theta band, and LF, LT, LPO, and RT in the
alpha2 band. The analysis results were shown in Figs. 6 and 7.
For the theta band (see Fig. 6), we can observe the following
differences, which are: NBC in LT region, CC in LF and
LC regions, and Eloc in LPO region decreased significantly in
MDD group, compared with control group. But MDD group
showed significant increase in Lavg when LC region. For the
alpha2 band (see Fig. 7), compared with control group, Lavg
in LF and RT regions increased significantly in MDD group.
Otherwise MDD group showed significant decrease in NBC
and CC when LPO and LT, respectively. However, there was
no significant difference between two groups in the network
metrics of other brain regions in the theta and alpha2 bands.

D. MDD-Related Potential Biomarker and Effectiveness

According to Figs. 6 and 7, we can conclude that LC-Lavg,
LT-NBC, LF-CC, LC-CC and LPO-Eloc in theta band and
LF-Lavg, LPO-NBC, LT-CC and RT- Lavg in alpha2 band had
significant differences between MDD group and control group.
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Fig. 4. PLI-based binary adjacency matrices with 0.26 as the threshold, in these 64∗64 matrix graph, the cross color points at each horizontal and
vertical axis represent the PLI of two corresponding channels. (a) Binary adjacency matrix of theta band. (b) Binary adjacency matrix of alpha2 band.

Fig. 5. The scalp position distribution of the difference matrix in (a) theta and (b) alpha2 bands. The dark blue nodes represent 64 electrodes, and
the red lines represent the binarization results between the nodes.

On this basis, to achieve the purpose of exploring the potential
biomarkers that can effectively detect MDD. We further evalu-
ated the relationship these network metrics and PHQ-9 scores,
using Pearson correlation analysis. Moreover, we also assessed
the ability of these metrics to distinguish MDD patients from
control group using AUC.

Results are in Figs. 8 and 9. For theta band, Lavg and CC
in the LC region were negatively correlated with the scores of
PHQ-9 (p<0.05), AUC value were 0.839 and 0.788 respec-
tively (see Figs. 8(a) and 8(d)). Besides, other significant net-
work metrics in theta band were either marginally correlation
or no correlation with PHQ-9, or AUC value is less than 0.70,
which as shown in Figs. 8(b) and 8(c), NBC in the LT region
and CC in the LF region showed marginally correlation with
PHQ-9 scores (0.05<p<0.1). Nevertheless, Eloc in the LPO
region showed no correlation with PHQ-9 scores (p > 0.1),
and AUC value was less than 0.70 (AUC = 0.561) as shown
in Fig. 8(f).

For alpha2 band, Figs. 9(b) and 9(c) showed that Lavg and
NBC were correlated to the scores of PHQ-9 (p<0.05) in
the RT and LPO regions respectively, as well as AUC values

were 0.864 and 0.815. Although Lavg in the LF region were
correlated with PHQ-9 scores, AUC value was less than 0.70
(see Fig. 9(a)). There were marginally significant correlations
between CC in the LT region and PHQ-9 scores (p = 0.067,
0.05<p<0.1) as shown in Fig. 9(d).

In order to verify whether these network metrics
(LC-Lavg and LC-CC in theta band, and RT-Lavg and
LPO-NBC in the alpha2 band) that were significantly corre-
lation with PHQ-9 score and have a high AUC value were
effectives as MDD-related potential biomarker, and can be able
to detected MDD from control group. MDD-related potential
biomarkers from inter-subject data were performed 10-fold
cross validation based on RF, SVM, KNN and ANN, that
is, MDD-related potential biomarkers as mixing feature for
the input of above four classifiers. The results of classi-
fication accuracy were shown in Table II, and the highest
classification accuracy is 89.25% of RF. Meanwhile, Fig. 10
lists the synthesis of RF seven indexes such as accuracy,
sensitivity (recall), specificity, precision, F1-score, False alarm
rate and Cohen’s Kappa. LC-Lavg and LC-CC in theta band,
and RT-Lavg and LPO-NBC in the alpha2 band were together
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Fig. 6. Statistical analysis result of five network metrics in different
brain regions of theta band. The center line of the box plot represents
the median value, and the asterisk (∗) represents a significant difference
(p<0.05, one-way ANOVA). Each row represents the difference analysis
result of one metric in five brain regions.

TABLE II
RESULTS OF CLASSIFICATION ACCURACY

BASED ON FOUR CLASSIFIERS.

used as input, the lowest classification accuracy obtained by
10-time cross validation was 85.62%, its sensitivity, speci-
ficity, precision, F1-score, False alarm rate and Cohen’s kappa
were 88.91%, 82.35%, 89.02%, 88.96%, 0.31% and 0.76,
respectively (see Fig. 10: Fold-1), the highest classification
accuracy obtained by 10-time cross validation was 93.16%, its
sensitivity, specificity, precision, F1-score, False alarm rate and
Cohen’s kappa were 95.69%, 90.62%, 95.13%, 95.41%, 0.81%

Fig. 7. Statistical analysis result of five network metrics in different brain
regions of alpha2 band. Each row represents the difference analysis
result of one metric in four brain regions.

TABLE III
AVERAGE PERFORMANCE OF EACH NETWORK

METRIC AS POTENTIAL BIOMARKER.

and 0.90, respectively (see Fig. 10: Flod-4), the average clas-
sification accuracy of 10-time cross validation was 89.25%.
So these four network metrics together as potential biomarkers
can effectively distinguish MDD from controls. In addition,
we also analyzed the effectiveness of each network metric
as potential biomarker and the experimental results were pre-
sented in Table III, which provided the average performance of
different network metrics for detecting MDD. As can be seen
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Fig. 8. The relationship between significant network metrics with PHQ-9 scores, as well as AUC of these metrics between MDD group and control
group in theta frequency band. (a) LC-Lavg, (b) LT-NBC, (c) LF-CC, (d) LC-CC, (f) LPO-Eloc. Note: AUC<0.70 means that poor performance of
diagnostic test.

from the Table III, the ability of the four network metrics as
potential biomarkers to distinguish MDD from control group
was in the order of strong to weak: LC-CC (theta), LC-Lavg
(theta), LPO-NBC (alpha2), RT-Lavg (alpha2).

V. DISCUSSION

This study used power spectrum analysis found that the
absolute power of MDD group was significantly higher than

control group in theta and alpha2 bands, and the change
regularity was inconsistent. The result reveals that the brain
function structure of MDD patients has altered in these two
bands. Several previous studies have reported the same or
similar conclusions: abnormal brain function occurs in some
specific frequency bands of MDD patients. From the perspec-
tive of structural synchrony index, Andrew et al. [50] clarified
that impaired functional connectivity at EEG alpha and theta
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Fig. 9. The relationship between significant network metrics with PHQ-9 scores, as well as AUC of these metrics between MDD group and control
group in alpha2 frequency band. (a) LF-Lavg, (b) RT-Lavg, (c) LPO -NBC, (d) LT-CC.

bands in MDD. The study of [51] explored resting state EEG
in different frequency bands and found that MDD group had
significantly higher coherence as compared to control group
in the theta, alpha and beta bands. Similarly, the study of
EEG by [52] also found that there was an abnormal power
spectrum in theta and alpha bands, and study in [53] pointed
to theta band asymmetry of EEG can be used as a potential
biomarker to identify depression. However, there are overlaps
and slight differences in alpha band between the results of

this study and previous studies, which may be caused by the
number of electrodes and subdivision of band. In addition, why
are the specific EEG bands abnormal in patients with MDD?
Some researchers interpret this phenomenon as strengthen
of negative brain activity in specific EEG bands [54]. Our
findings support this theory of increased brain activity from
the perspective of energy change. Meanwhile, it also further
confirms the vital role of theta and alpha2 bands in the study
of MDD.
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Fig. 10. Performance evaluation of MDD-related potential biomarkers (LC-Lavg and LC-CC in theta band, and RT-Lavg and LPO-NBC in the alpha2
band) based on RF classifier using 10-fold cross validation. Note: Fold-2 means that the second time cross validation, the remaining Fold-1 and
Fold-3 to Fold-10 have the same meaning.

The research on the brain functional network of MDD
patients has been extensively explored, and new research
achievements continue to emerge. However, due to the differ-
ences on experimental methods and data analysis strategies,
different or even opposite conclusions are obtained in MDD
research based on brain function networks. For example,
studies in [55], [56] found that increased brain functional con-
nectivity in MDD patients, while decreased brain functional
connection was reported in the study of [57]. In this article,
we also studied the alteration of brain function connections
of MDD based on PLI and difference matrix, and results
showed that the synchronization of MDD patients group had
significantly higher compared to control group, especially in
the left hemisphere, such as LF, LC, LT, and LPO in theta and
alpha2 bands. Aiming at the phenomenon of increased syn-
chronization of MDD, we speculate that the brain information
processing was abnormal in MDD patients. This conclusion
was basically consistent with the research of Joormann’s
team [58] and Leistedt’s team [59]. The ability of emotion
regulation was obviously absent in MDD patients pointed
out by Joormann’s team, and the information processing
problems of brain functional networks may underlie acutely
depressive disease was reported by Leistedt’s team. The higher
synchronicity was found in the left hemisphere, we believe
was attributed to the hemispheric asymmetry of information
processing in MDD patients. Previous study [60] has con-
firmed that left hemisphere lateralization was a characteristic
of dysfunction in MDD. Although synchronicity has a great
contribution to revealing the inherent characteristics of MDD,
it is necessary to further study the information processing
mechanism of MDD to obtain more accurate conclusions.

Small-world network represents the best organizational
structure in terms of cabling costs, local independence, global
integration, reliability and so on [59]. Research on modeling
and simulation shows that small-world network configuration
facilitates synchronization between brain neurons and efficient
information processing [61]. Contemporary scientific studies
reveals that the brain structure network constructed using
the structure and diffusion magnetic resonance imaging data
and the brain functional network constructed using EEG or
MEG data of healthy population have stable small-world

characteristics, while the brain network constructed by data of
people with mental illnesses usually exhibits the loss of small-
world characteristics as “a randomization process”. For exam-
ple, in sleep brain functional networks, Leistedt et al. [59]
pointed to functional reorganization of patients with depres-
sion lost small-world characteristics. Cammoun et al. [62]
constructed the brain structure network of patients with
schizophrenia and found that their small-world characteristics
showed abnormal randomization of connection pattern. A shift
toward randomization of brain networks in MDD group com-
pared with controls group by reported by [63]. It is worth
noting that this study also reached similar conclusions with
the above-mentioned studies. In network metric with signifi-
cant difference between MDD group and control group, our
research results explain that MDD exhibited increased LC-Lavg
in theta band and LF-Lavg and RT-Lavg in alpha2 band, as well
as MDD exhibited decreased LF-CC and LC-CC in theta band
and LT-CC in alpha2 band, which means that small-world
characteristics of brain function network in MDD patients was
weakened and tends to be randomized.

In addition, we found Lavg and CC of LC in theta band,
and RT-Lavg and LPO-NBC in alpha2 band were significantly
related to the PHQ-9 scores. Similar conclusions have been
found in previous studies. The CC of the left amygdala
was related to the scores of PHQ-9 in the study of [64].
Zhang et al. [65] suggested that NBC in the left hippocampus
and caudate nucleus were significantly related to the severity
of MDD. More importantly, the four network metrics (LC-Lavg
and LC-CC in theta band, and RT-Lavg and LPO-NBC in the
alpha2 band) were used individually or jointly as potential
biomarkers to detect MDD from control group, the lowest and
the highest, and the average accuracy was 83.73%, 93.31% and
89.25%, respectively. This result further confirmed the effec-
tiveness of these potential biomarkers for the discrimination
MDD patients from controls.

Due to the different in methods, datasets, and data usage
strategies, it is difficult to fully reflect the advantages and
disadvantages of various methods only based on classifica-
tion accuracy. However, the advantages and disadvantages
of various methods can be partially or indirectly reflected
by comparing accuracy and other indicators. Based on this
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TABLE IV
COMPREHENSIVE COMPARISON OF EXISTING STATE-OF-THE-ART METHODS WITH THE PROPOSED METHOD.

consideration, Table IV lists a comprehensive comparison for
existing state-of-the-art methods and our proposed method,
including the number of subject, type and number of channel,
research method, the number of potential biomarker or feature,
and classification accuracy. So that readers can have a deeper
understanding of the current status of related research fields.

VI. LIMITATION AND DISADVANTAGE

There are some limitations and disadvantages of the pro-
posed method that need to be addressed in the future. First of
all, the limited data contained in the dataset used in this study
may be a shortcoming of this article. Although some conclu-
sions obtained from this data were consistent with the previous
relevant research, the information provided by the topological
brain network is very limited due to the limited data. There-
fore, it is necessary to continuously expand in future research
the dataset to obtain more sufficient information about the
changes of the brain function network topology in patients
with MDD. Secondly, the conformation of biomarkers is a
rigorous and complex process. However, to impress readers
and make it easier to express in the article, this study found
that LC-Lavg and LC-CC in theta band, RT-Lavg in alpha2 can
effectively distinguish MDD from controls, so we call these
three network metrics "potential biomarkers". In order to avoid
misunderstanding, it is explained here. Besides, although EEG
has high temporal resolution, its low spatial resolution makes
the network topographical structure of these findings difficult
to evaluate different cortical regions of patient with MDD.

VII. CONCLUSION

This study aims to explore the brain abnormal changes
of MDD patients, a series of analysis were performed on
brain function network based on resting state EEG data.
It was found that the power spectrum of the MDD group
significantly increased in the theta and alpha2 bands. On this
basis, we investigated the alterations of brain structure of MDD
patients based on PLI and difference matrix, and we found
that brain synchronization was significantly increased of MDD
group compared with the control group, especially in the left

hemisphere, such as LF, LC, LT, and LPO. This finding sug-
gests that the brain information processing of MDD patients
was abnormal. We also found that MDD increased LC-Lavg in
theta band and LF-Lavg and RT-Lavg in alpha2 band, as well
as MDD decreased LF-CC and LC-CC in theta band and
LT-CC in alpha2 band. The change trend of these network
metrics often indicates that the brain functional network of
MDD patients tend to randomize. In addition, the four network
metrics of LC-Lavg and LC-CC in theta band, and RT-Lavg and
LPO-NBC in the alpha2 band were significantly correlated
with MDD levels, which show that these network metrics can
be used as effective potential biomarkers to distinguish MDD
from controls, and the highest accuracy can reach 93.31%.
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