
Research Report:
ICARUS: Understanding De Facto Formats By Way of Feathers and Wax

Sam Cowger, Yerim Lee, Nichole Schimanski,
Mark Tullsen, Walter Woods, Richard Jones,

EW Davis, William Harris
Galois, Inc.

{sam,ylee,nls,tullsen,waltw,
richard,wrharris}@galois.com

Trent Brunson, Carson Harmon,
Bradford Larsen, Evan Sultanik

Trail of Bits

evan.sultanik@trailofbits.com

Abstract—When a data format achieves a significant level
of adoption, the presence of multiple format implementations
expands the original specification in often-unforeseen ways. This
results in an implicitly defined, de facto format, which can create
vulnerabilities in programs handling the associated data files. In
this paper we present our initial work on ICARUS: a toolchain
for dealing with the problem of understanding and hardening de
facto file formats. We show the results of our work in progress in
the following areas: labeling and categorizing a corpora of data
format samples to understand accepted variations of a format;
the detection of sublanguages within the de facto format using
both entropy- and taint-tracking-based methods, as a means of
breaking down the larger problem of learning how the grammar
has evolved; grammar inference via reinforcement learning, as
a means of tying together the learned sublanguages; and the
defining of both safe subsets of the de facto grammar, as well as
translations from unsafe regions of the de facto grammar into
safe regions. Real-world data formats evolve as they find use in
real-world applications, and a comprehensive ICARUS toolchain
for understanding and hardening the resulting de facto formats
can identify and address security risks arising from this evolution.

I. INTRODUCTION

Understanding the security properties of a data format poses

unique challenges due to the necessity of understanding the

consequences of a data format on the three states of data:

data at rest, data in use, and data in transit. While the

security properties of data at rest rely only on the format

itself, security properties for data in use or data in transit also

rely on factors outside of each format’s definition. A parser

implemented in C, for instance, might be subject to Return-
oriented programming (ROP) attacks. Another parser might be

safe in the context of its own control stack, but vulnerable to

attacks such as zip bombs [10], [5]. Data in transit presents

orthogonal risks, such as mechanisms for exfiltrating sensitive

or protected information. Further complicating the story is the

emergence of de facto standards: “dominant implementations

of these formats extend the [published] standards by deliber-

ately accepting non-compliant inputs without any indication

to the users that the document contains malformations silently

presumed benign”1: what now is the de facto standard? And

how benign is it?

A. The ICARUS project

Our project, ICARUS, has three major goals: (1) develop

methodologies and tools to discover, as well as describe, de

1SafeDocs Broad Agency Announcement.

facto data formats, (2) develop methodologies and tools to

identify safe, unambiguous subsets of a de facto format, and

(3) develop tools to translate from a de facto format to a safe

subset thereof. We have been focusing on accomplishing these

goals for the PDF format, although with a view toward general

applicability of our methods.

B. Summary

In Section II we discuss some of the approaches we are

taking to understanding and learning de facto formats:

• Labeling and categorizing data sets used for grammar

inference using extant parsers. Corpora of samples of

a given data format tend to include both positive and

negative examples of the format. These examples often do

not come with labels indicating how strictly they adhere

to the target language. By leveraging extant parsers, we

generate sets of labels for each example in a corpora to

build a feature space allowing this classification to be

performed.

• Detection of sublanguages within formats. Many formats

make use of sublanguages to improve their expressive

power; this power naturally comes at the cost of increased

complexity of the format at large. In solving the problem

of inferring the structure of an entire format, it is worth-

while to detect, isolate, and possibly operate on strings

in these sublanguages.

• Grammar inference via reinforcement learning. Modern

grammar inference tools are predominately focused on

identifying structures in natural languages [8], [18], [7],

[4] or on data formats more simple than PDF [22], [12],

[11]. We consider a novel algorithm for inferring data

structures in Visibly Pushdown Languages (VPLs) [2] by

combining reinforcement learning with bottom-up merge

parsing.

In Section III we discuss our approach to defining safe

subsets of de facto formats as well as creating tools to trans-

form data into safe subsets, without sacrificing file validity and

semantic equivalence.

ICARUS will tie the above methods together, providing

a framework which can be used to understand and identify

security concerns for a format. The framework takes advantage

of having both a corpus of files in the de facto format as well as
having a set of preexisting (de facto) parser implementations.

In other words, we study the format from the supply side (the

327

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Eric W. Davis. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00067

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

corpus) as well as the demand side (the preexisting parsers).

Even the most robust data specification grammar often is

extended for usability (e.g., JSON, or less-originally-safe,

PDF), and these extensions open new facets for exploiting the

data streams using the format. Applying the aforementioned

tools to both examples of an extended data format grammar

and to the parsers designed for handling those extensions, we

hope to illuminate common issues in format design which lead

to exploitable parsers, and to provide tools for safely subsetting

data files to enhance file safety, even in untested parsers.

II. LEARNING DE FACTO FORMATS

Learning a de facto format is an inexact endeavor. For

example, the PDF ecosystem consists of many parsers which

do not agree as to what constitutes a valid file. Here we discuss

some of the techniques we have been exploring for learning

de facto formats, and comment on their effectiveness.

A. Cleaning grammar inference datasets via existing parsers

To understand a de facto format, there must be a clear

separation between good and bad examples of the format. A

large corpus of example files, such as GovDocs [14], tends to

be assembled indiscriminately, making it difficult to effectively

understand the format and learn a grammar. A tool which helps

classify members of an indiscriminate corpus either as valid

members of the de facto format, or as files to be ignored, is

necessary to tackle this problem.

When one or more parsers exist for a data format, each

parser contains information regarding the format’s valid doc-

uments. One method of leveraging this empirical knowledge

of the de facto format is to run existing parsers on a corpus

of data, and then to have a format expert annotate the parser

outputs to determine which outputs denote a file that is not

in the format. Using these annotations as a guide, files which

may be bad examples of a data format may be filtered out from

training, or included as negative examples. This step improves

the quality of the corpus used for grammar inference.

Initial results
We have built a proof-of-concept file processing pipeline,

temporarily called the “PDF Observatory,” which consists of

several phases:

1) Run all available parsers on each file in the corpus.

2) For each parser and file, iterate over lines output to

stdout and stderr when running the parser on

the file. For each output line, the tool strips informa-

tion which looks instance-specific—such as memory

addresses or numbers—and aggregates that information

into a count of the number of times each message was

seen.

3) For each parser, we then aggregate all error mes-

sages across all files. A similarity metric (Python’s

difftool.SequenceMatcher) is used to further

group together messages with similar semantic content.

The output of this pipeline is a list of grouped error

messages, and the files to which they pertain. These groups of

Fig. 1. Screenshot of PDF Observatory UI. Using the tool, a format expert
might decide that e.g. pdftocairo produces a couple error messages which
might apply to in-format files. By adjusting the filters, the user can observe
population-level changes in the example corpus of the de facto format.

messages are then annotated by a format expert as indicating

a file is in- or out-of-language, and then files containing an

out-of-language error message in the parse are excluded from

subsequent grammar inference. On Govdocs [14], this results

in including only 58% of the corpus as in-language examples

for subsequent PDF grammar inference.

The UI is demonstrated in Fig. 1. To investigate the effects

of classifying certain error message groups as in-format, such

as “Illegal character <> in hex string,” a format expert might

select those messages as allowed and then re-process all

file decisions. The UI reported that, after allowing non-name

dictionary keys and illegal characters in hex strings, eight

additional files would have been classified as in-language.

B. Identifying Sublanguage Segments

Grammar inference algorithms are flexible but slow because

they must consider many permutations of possible features.

The search for a suitable grammar might therefore be con-

siderably sped up through pre-processing steps to identify

sublanguages within the composite data format grammar.

Recent successes for dealing with composite languages in the

parser space further motivates this approach [6].

1) Entropy-based methods: Among the sublanguages that

one may wish to identify, even if only to exclude from future

learning tasks, is compressed data. Such data may easily

derail a more sophisticated learner, especially if it represents

a relatively large portion of the corpus being learned from.

E.g., in PDF, the predominant format for textual and/or visual

content is a so-called stream, a data structure often filled

328

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Measured entropy at different byte offsets within a single PDF file.
Dashed lines denote the actual start of a compressed region, while the dotted
lines denote the end. (The figure shows three compressed regions - the ending
bytes of one, a second in its entirety, and the beginning of third.)

with compressed bytes. With this in mind, and with a goal

of furthering our ability to infer and reason about internal

uncompressed PDF structures, we set out to tag compressed

portions as such.

Calculation of entropy within streams is not a new concept,

appearing in [20], although it has only been treated as a

curiosity. For a first pass at leveraging entropy (or a proxy

thereof), we relied on principles of compression and ASCII

character encodings. Human-readable characters all take on

values less than 128 when interpreted as bytes; compressed

data have no such restriction, and indeed ought to use as

many bits as are available. We sought to see if the average

difference (within a sliding window) between encodings of

adjacent characters, i.e. the characters’ byte values, would

function as a proxy measure for entropy of text, and therefore

a suitable classifier for compressed data. Formally, for each

n-gram S composed of bytes {Si|i ∈ [0, n)} in a file, we

calculated
n−2∑

i=0

|Si − Si+1|
n− 1

to efficiently approximate the entropy of that region. We call

this measure the encoding entropy.

Initial results
Though somewhat rudimentary, this prospect yielded

promising results. The average encoding entropy between

any two adjacent characters in a large plain-text file and

a similarly-sized JPEG image differ significantly (31.3 for

the plain-text file, 97.2 for the image). When applying this

measure to a sliding window in a PDF file, uncompressed

segments presented themselves as significant visual dips in a

plot of this entropy figure as a function of byte offset. This

can be seen in Fig. 2. When properly smoothed, these entropy

measures become a highly usable indicator of compression.

With well-chosen parameters, running the tool on several

samples of PDF files yield true positive rates (bytes classified

as compressed that are in fact compressed) of around 75-98%,

and false positive rates of ∼1% or less, respectively.

We are then able to take several bytes of context surrounding

the newly-found offsets in the original file and synthesize

patterns common to several of these windows. We provide

a user of the tool with a selection of the most common

patterns, presuming that the end of human-readable text would

be delimited by a human-readable sentinel string. In practice,

the tool is able to provide the user with possible patterns that

include the correct delimiters with as little as one PDF file.

Should a user determine another metric they wish to apply

to a particular window of text to determine its language

or sublanguage, this approach could easily be extended

to accommodate it. For example, other metrics of data

randomness could be used to yield a base64-encoded segment

detector, or an n-gram-frequency model could be employed

to determine different human languages under this framework.

2) Taint tracking: Another way to identify sublanguages

is to directly leverage the internal structures used by existing

parsers. A parser’s internal data structures give insight into

a de facto grammar by drawing clear associations between

related symbols. Symbols which are found to be semantically

close might then be considered as forming a sublanguage.

For example, the PDF specification provides a format for

streams, sequences of arbitrary data whose lengths are stored

in dictionaries preceding each stream’s content. By looking at

an existing parser, the length value in the dictionary preceding

the stream data might be associated with the stream data that

follows, as they both will be used by the same parser function.

One way to gather this relational information from existing

parsers is by applying taint tracking.

We automatically instrument parsers to track the input byte

offsets that influence (or “taint”) the operands to each instruc-

tion via an open-source tool called PolyTracker [21]. Each byte

is assigned a unique identifier known as a taint label. As these

tainted bytes are processed, new labels are created that denote

the combination of two preexisting labels in a hierarchical

structure. This hierarchical structure represents the provenance

of the bytes and, more abstractly, can be thought of as a forest

of unions between dependent types. This structure provides the

capability to reason about how different combinations of bytes

influence each other throughout a program’s execution, and

should theoretically embed a notion of the grammar accepted

by the parser.

When ground truth is available for an input file (i.e., a syntax

tree or semantic labeling of the bytes), then the taint forest

produced by PolyTracker can be mapped back to the ground

truth to associate actual type dependencies. This ground truth

can either be generated by hand or through an instrumented

parser that maintains lexical information throughout the parse

(e.g., Kaitai Struct [1] or PolyFile [21]). For example, if

a function in the parser is observed to only operate on

bytes tainted from a certain syntactic structure in the ground

truth, then we can reasonably conclude that that function is

329

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

specialized to operate on that semantic type.

This naı̈ve function labeling is predicated on the assumption

that there is a bijection between semantic types and func-

tions in the parser. This will not be the case in general:

sometimes there will be multiple functions responsible for

processing a single type, and in other cases a single, monolithic

function will be responsible for processing multiple types.

We have developed a novel tool and associated algorithm,

PolyMerge [16], that handles these cases, producing a robust

semantic labeling of functions. PolyMerge can merge the

ground truth with taint information to identify the functions

most specialized in operating on each type in the input file.

The mapping algorithm works by using an Interval Tree to ef-

ficiently map ground truth types to functions, and then prunes

the mapping based upon Shannon entropy (i.e., associating

functions with types on which they are maximally specialized)

and the dominator forests of both the runtime control-flow

graph of the parser, as well as that of the ground truth syntax

tree [Ibid.].
This work is the first step in combining a data-flow analysis

(e.g., the AUTOGRAM grammar extraction algorithm [17])

with control-flow analysis (e.g., the Mimid grammar extraction

algorithm [15]), and extending the state of the art by incor-

porating compositional type information from labeled ground

truth input. Existing approaches are limited to extracting

context-free grammars from formats that have little or no

dependent types. The PolyMerge algorithm helps advance the

state-of-the-art toward automated grammar extraction from

arbitrary, non-context-free parsers.

Types can also be partially inferred based upon the way in

which tainted data are operated on by known functions in the

parser (e.g., in standard libraries, runtimes, or system calls).

For example, if a byte sequence in the input file is observed

to be passed as the second argument to strcpy, we can infer

that it is a null-delimited string. If another byte sequence is

observed to be passed as the third argument to strncpy,

we can infer that it is an integer length associated with a

dependently typed string. The bytes which specifically affect

control-flow are also observed.

Taint analysis also provides insight into which bytes in the

input file have semantic meaning. For example, if an input

byte is never observed to have been operated on by the parser,

we can infer that either the byte has no semantic value in

the input file format (e.g., it is a comment or optional buffer,

which could be indicative of the potential for steganographic

embedding), or that region of the input file might be an

optional feature of the file format not implemented by the

specific parser implementation.

This method naturally lends itself to differential analysis.

Multiple input files of the same format can be submitted

to the same, instrumented parser. Likewise, the same PDF

can be submitted to multiple implementations of the same

file format to automatically identify differences. A single

file can be submitted to two incremental versions of the

same implementation to identify new features and behavioral

changes.

C. Grammar Inference via Reinforcement Learning

Once sublanguage segments have been identified and

learned, a robust grammar inference algorithm is necessary

to tie together these identified sublanguage segments. The de

facto format under investigation was presumably designed with

a specific set of semantics in mind, to which the grammar

inference engine has no access. The matter is further com-

plicated because any data format may be described by more

than one grammar. Therefore, the goal of grammar inference

in the context of de facto data formats is to recover as many

semantics as possible in a terse, high-fidelity representation.

The ICARUS efforts have focused on building a grammar

inference algorithm from the ground up, leveraging mod-

ern Reinforcement Learning (RL) advances and designing

primitives which explicitly support common data grammar

constructs such as the Kleene star and nested data structures.

We chose to focus on the production of grammars in Chomsky
Normal Form (CNF) [3], where every nonterminal symbol in

the grammar might produce at most two other nonterminal

symbols, or a single terminal symbol. In choosing to infer a

CNF grammar, the parse may be done via repeatedly merging

neighboring terminal or nonterminal symbols, a process we

call Merge Parsing. To our knowledge, this is the first usage

of the term “merge parsing” to describe this type of parsing,

though this style of parser has appeared in the literature

without a descriptive name [7]. Merge parsing is therefore

a bottom-up approach, and reduces the problem of learning

a parse to the problem of determining the correct order of

merges, bounding the number of parsing steps on a sentence

of length N to N − 1 merges.

The proposed RL approach to grammar inference is illus-

trated in Fig. 3. In an RL framework, merge parses may be

modeled as an actor with a variable number of actions, with

each unique action defined by the position in the sentence

and the merge action to be taken. For the example from

Fig. 3, in the first step, an actor might merge any two adjacent

characters of the input symbols [A,B,A,B,A,B]. The second

step requires a merge of any adjacent characters from the

new terminal symbols, [A,B,A,BA,B]. An actor executes

at most N − 1 steps, observing a reward for each action. At

the end of the parse, all rewards are rolled back through time

using a discount factor and are compared with the computed

critic values to update the actor’s policy. As RL benefits from

dense reward signals, we use a function on the frequency

of the token resulting from a merge as the reward function.

That is, when merging “A” and “B”, the result is “AB”,

whose frequency in the data samples would determine the

reward. Subsequently, the “AB” symbol would be available for

merging with its neighbors. This replacement operation would

be written merge(A,B) =⇒ AB. Each sub-tree parsed is

evaluated based on its own prevalence in the data format.

Thus far, the described algorithm would have difficulties

tackling the problem of parsing a Kleene star. Consider the

list-like grammar described by the regular expression ap ∗ le.

The algorithm thus described would represent “ap”, “app”,

330

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

Learning to parse (AB)* via RL, example string ABABAB

A B A B A BTop nodes

P(Merge) .2 .2 .2 .2 .21. Sample next merge
from policy.

2. Continue computing
top-level merges
based on the current
policy.

A B A B A BTop nodes

P(Merge) .25 .25 .25 .25

B A

3. Estimate frequency of
each resulting token
across entire corpus,
and reward merges based
on sum of frequencies of
their own resulting tokens
and subsequent merges.

B A BAA B

A

A B

A B B A B

B A

B A BAA B

Reward

A B A B A BTop nodes

P(Merge) .3 .05 .3 .05 .34. Subsequent parses
will favor merges
resulting in common
structures.

Fig. 3. Overview of the RL-based grammar inference approach. Beginning
with a random merge policy, rewards based on the resulting parse tree are
observed and the policy is adjusted to maximize the expected reward. This
process eventually results in an approximation of an optimal policy.

and “appp” as different tokens, with no relation to one

another. One benefit of RL is that it provides a flexible

framework which accommodates the addition of new action

types. Leaning on some of the assumptions of VPLs [2],

we observe that an anchoring action might be added to the

actor’s action set, which merges two tokens but retains only

one, e.g., anchor(A,B) =⇒ A as opposed to the prior

merge(A,B) =⇒ AB. With an anchoring action, each p
following an a may be merged into a token which look like the

a on its own, handling the Kleene star and keeping the relevant

VPL pushdown token visible. As one of the primary goals of

ICARUS is not only understanding, but also the manipulation

of de facto data formats, retaining tokens from the original

input string in this manner helps keep the inferred grammar

interpretable, avoiding unnecessary nonterminals or difficult-

to-interpret embeddings.

The result is an O(N logN), bottom-up parsing algorithm,

trained via any RL algorithm, which integrates a flexible action

set that can be leveraged in future work for more complicated

behavior. We note that high-level concepts could easily be

integrated into this action-reward framework, such as “integer”

for a sequence of numbers, or the handling of PDF streams

which must read and decompress a specified number of bytes.

These actions might be further informed by taint tracking,

as described in Section II-B2. The tricky part is designing

a meaningful reward function. We emphasize that each ad hoc

data format was originally designed with unique semantics

not visible to the grammar inference process, and as such, it is

Fig. 4. Example parse of S → ’{’(a|b|c|S+)’}’, input string on bottom. Blue
border indicates a standard merge (merge(A,B) =⇒ AB), Half-Yellow
border with Half-Gray border indicates an anchor with (anchor(A,B) =⇒
A) behavior, and Half-Yellow border with Half-Light Blue border indicates a
subgrammar substitution with subgrammar(A,B) =⇒ A{G} behavior,
where {G} is a special catch-all token. The RL-based algorithm correctly
learned the structure nesting of the format, the Kleene star behavior, and the
OR clause regarding which letter is used as terminal data.

possible that there is no single reward function which performs

best on all data formats. If there were one reward function or

metric which captured the semantics of all data formats, then

there would be no need for multiple data formats, as every use

case would share a single, optimal encoding. The ICARUS

grammar inference tool might, therefore, end up offering a

suite of suitable reward functions, integrating concepts such

as Minimum Description Length.

Initial results
The above grammar inference algorithm was tested on a

simple, JSON-like grammar, S → ’{’(a|b|c|S+)’}’. This

grammar contains three aspects which are often present in data

formats: (1) nested data structures, (2) a union of different data

types inside the data structures, and (3) Kleene star behavior.

A parser was trained using the Advantage Actor Critic
(A2C) algorithm [19], based on 128 samples of the grammar.

In addition to the aforementioned anchoring actions, a special

OR-oriented action subgrammar(A,B) =⇒ A{G} was

added. Here, {G} is a special stand-in token which indicates

that content was merged without being specific about which

content was merged. The result may be seen in Fig. 4. The

ICARUS grammar inference algorithm correctly learned that

’{’(a|b|c)’}’ is the base building block of this data format,

and merged those structures first. Further, it correctly learned

that the content between the ’{’ and ’}’ was unspecific, and

substituted a {G} token instead of propagating the original

content. It also handled the Kleene star of the grammar

correctly, and learned to parse nested structures consistently

(see e.g. the parsing of the ’{{b}{b}}’ nested structure in the

most-bottom-right part of the figure).

While inferring this simple grammar is a long way from

inferring full, functional parts of the PDF specification, we

view it as an encouraging step with a flexible base algorithm

which may be up to the task.

331

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

Related work
Few existing grammar inference algorithms are designed for

ad hoc data formats. One such system is PADS / LearnPADS

[22], [12], [11], which focuses on the automatic generation of

tools for human-readable formats such as web server logs. The

grammar inference aspect, LearnPADS, relied on Minimum

Description Length to recover data types and an overall struc-

ture from data format examples [11]. The LearnPADS project

found that some semantics may not be safely recovered, if the

example data’s coverage of the format is insufficient. For ex-

ample, they found that inferring the ranges of integer variables

always led to overfitting [12]. It appears that LearnPADS was

never focused on recovering full semantics for data formats as

complicated as PDF.

Outside of PADS, most state-of-the-art grammar inference

algorithms focus on natural languages [8], [18], [7], [4], and

are not necessarily a good fit for uncovering data format gram-

mars. For example, the readily available JDageem package [4]

learns to build dependency tree representations of input strings,

nesting each word in the string under other words to develop

an understanding of the “root” words in different contexts.

When a word is being considered as nested under some other,

root word, there are no restrictions about the proximity of the

two words. This flexibility may be desired for some queries on

natural languages (“she ran to her house,” where “her” would

refer to “she”), but makes the algorithm significantly more

resource intensive in the context of data formats.

For comparison with the ICARUS grammar inference algo-

rithm, the JDageem package [4] was run on the same training

data that produced the parser demonstrated in Fig. 4. The

resulting parser was unable to discern the nested structure

of the data, instead associating most brackets under a single

instance of ‘a’ in the string.

More recent work by Drozdov et al. also utilized merge

parsing, and demonstrated impressive results [7]. Instead of

using RL, their algorithm learns the parse order based on an

autoencoder-style loss function. In future work, we aim for a

more comprehensive comparison with their algorithm.

III. SAFE SUBSETS OF DE FACTO FORMATS

Once the suite of tools has identified a common grammar

shared by most example files, it is important to consider

which aspects of the de facto format are ambiguous or utilize

unsafe features. Furthermore, the tool suite might consider

repairing files with these undesired features. If a semantically-

equivalent, safer subset of the de facto grammar may be identi-

fied, then questionable files might be hardened by transforming

them into the safer subset.

A. Safer, smaller formats

The motivations for defining a small, safe, unambiguous

subset of PDF, or any data format, are many: 1) Unsafe

constructs are opportunities for exploits of various forms (zip

bombs, ex-filtration, general hacks). 2) Ambiguity—arising

from a long-evolving specification and from dozens of diverse

implementations—adds nothing to the usability of PDF. There

are ambiguities at both the syntax level (how is a string in-

tended to be parsed) as well as the semantic level (how should

a construct be interpreted). We want to detect and/or remove

these ambiguities because they are a source of errors, as

well as contributors to parser complexity. 3) Over-complexity

and redundancy in data formats increase the cost to write

and maintain parsers; the increase in code size increases the

attack surface of the parser. Clearly, if we can eliminate over-

designed and redundant constructs, we would like to do so. In

addition, we assume many PDF renderers have internal code

that normalizes or simplifies the document before rendering;

it would be useful to remove this burden from the renderer.

B. Transforming documents to subsets

One of the objectives of ICARUS is to develop tools and

methodologies that will aid in transforming an unsafe data

format to a safe subset. Using these, we will be writing a

safe subsetting tool for PDF. This will also involve defining
a safe PDF subset. Preliminary work has demonstrated that

it is feasible to develop provably safe and correct parsers

for relatively simple and well-understood subsets of practical

formats, including PDF [9]. A subsetting tool will be essential

in ensuring that such tools can be applied to parse PDF’s as

they exist in the wild.

Developing a PDF safe subsetting tool will be challenging

on many fronts:

• First of all, if it is to be adopted, it should accept the large

number of PDF extensions and malformations that are

used in the wild, i.e., in the numerous renderers, browsers,

and tools existing for PDF.

• It must be able to remove unsafe constructs and ambigu-

ities whenever possible, but at the same time, it should

reject PDFs that are too far out of spec and provide clear

justifications to the user for rejection.

• PDF is large and complex, and has multiple constructs

that require maintaining non-local invariants, such as

length fields, cross-references, and fields that represent

byte-offsets in the PDF file. These involve transforming

PDF at a deep semantic level.

• The tool must be correct; changing the ”semantic content”

of PDF should only be done when explicitly requested

(e.g., when required for preserving safety, such as re-

moving javascript).

C. Implementing safe subsetting

To mitigate the above challenges and to provide greater

assurance of the correctness of our PDF safe-subsetting tool,

we will be using the conceptual notion of lenses [13]. Using

lenses we can define our safe-subsetting tool as a composition

of lens combinators and primitive lenses, each of which can

be developed and validated separately.

Figure 5 demonstrates two different approaches to safe

subsetting. Figure 5a shows the structure of a simple safe

subsetting tool. Using the bidirectional nature of lenses, we can

describe the safe subsetting tool using two lenses as shown in

Fig. 5b. From the composition of these two lenses, we generate

332

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

(a) Subsetting: standard approach.

(b) Subsetting: using bidirectional programming.

Fig. 5. Different approaches to subsetting.

the safe-subsetter function by following the path from Doc:

parse, subset, reflect, then unparse. Note that, given a lens,

we can always extract a subsetter when we do this “round

trip from the left.” The “round trip from the right” will be the

identity function. (E.g., parse · unparse = id.)

Initial results
The parse/unparse pair is itself a lens, the resulting subsetter

it induces is useful for syntactic transformation: it will remove

all extraneous white-space as well as transform the PDF syntax

into a normalized form.

We have been using lenses to explore subsetting of PDF

dictionary objects (an associative table defined by key value

pairs). Even this apparently simple construct gives rise to some

ambiguities. PDF as specified (1) does not allow for duplicate

keys in a dictionary object, however PDF (2) does allow for

null objects in the dictionary which should be equivalent to an

absent entry. So, in the absence of any indication of which of

these two rules has precedence we have an ambiguity in the

specification.

For instance, here is a PDF dictionary with two keys Size

and Version, which should be accepted in any implementa-

tion of PDF:

<< /Size 14 /Version 5 >>

According to the specification, dictionaries with duplicate keys

should rejected. E.g., the following is rejected:

<< /Size 14 /Version 5 /Version 6 >>

PDF contains a null object and, per the specification, null

dictionary entries shall be treated as absent, thus this dictionary

<< /Size null /Version 5 >>

is valid and is equivalent to

<< /Version 5 >>

However, the specification is unclear as to whether the follow-

ing dictionary should be accepted:

<< /Size 14 /Version 5 /Version null >>

If we remove nulls before checking for duplicate keys, it would

be accepted; if we check for duplicate keys first, it would

be rejected. Lenses allow us to formalize these two different

interpretations of PDF. To demonstrate this, we encode each

rule as a lens, and we observe different semantics based on

the order of composition:

removeNullEntries · rejectDictionaryDups

rejectDictionaryDups · removeNullEntries

If a PDF implementation is more lax, allowing for duplicate

keys (as some implementations do allow), the number of

possible interpretations increases further. Thus, the seemingly

innocuous act of “allowing for user error” in the PDF gives

rise to ambiguity. In this case, we would now have the possi-

bility of a ‘schizophrenic’ PDF document, one with different

interpretations depending upon the PDF implementation.

It is a moot point whether the PDF standard is currently

ambiguous or could be made to be unambiguous. We do

not expect various de facto PDF implementations to become

perfectly compliant with the current standard. Our objective

in ICARUS is to create tools that allow us to understand the

implementations as well as to mitigate the problem of multiple

implementations with varying interpretations.

IV. CONCLUSIONS

While the ICARUS project is still a work in progress,

its early results have demonstrated how a toolchain might

be assembled for understanding and securing de facto data

formats. De facto formats often include features that are poorly

defined or expose new security vulnerabilities. Identifying the

ways in which a format has been modified is an important

first step in securing the resulting format. Relying on existing

parsers to discard out-of-language files helps to ensure that

time is most efficiently spent understanding the de facto

format. Detecting sublanguages via entropy-based methods

can help isolate meaningful sections of grammar from file

contents within the scope of individual files. Taint tracking

can help leverage empirical knowledge, in the form of existing

parsers, to uncover structure and data types within the de

facto format. Taint tracking also provides additional features to

feed into learning algorithms. A grammar inference algorithm

based on merge parsing and reinforcement learning has shown

promise for uncovering structures in data when an existing

parser was unavailable. Subsetting has been discussed as a

means for understanding aspects of data formats which lead to

exploitable properties, and potentially repairing those exploits

through the identification of an in-language, safer subset of

the full de facto format. The efforts of the ICARUS project

have resulted in prototypes of some of these tools using

PDF as a case study, utilizing techniques that we believe

will generalize and apply to other de facto formats. As data

formats attract users, the formats naturally mutate in ways

which can compromise the security of programs using them,

making toolchains like ICARUS important for understanding

and identifying real-world risks in data formats.

333

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

This research was supported by the SafeDocs program under

HR0011-19-C-0073.

REFERENCES

[1] Kaitai Struct: a new way to develop parsers for binary structures. https:
//kaitai.io/. Accessed: January 12, 2020.

[2] Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown lan-
guages. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 202–211, 2004.

[3] Noam Chomsky. On certain formal properties of grammars. Information
and Control, 2(2):137 – 167, 1959.

[4] S. B. Cohen and N. A. Smith. Covariance in unsupervised learning
of probabilistic grammars. Journal of Machine Learning Research,
11:3017–3051, 2010.

[5] Russ Cox. Zip files all the way down, March 2010.
[6] Joel Denny. Pslr (1): pseudo-scannerless minimal lr (1) for the deter-

ministic parsing of composite languages. 2010.
[7] Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit Iyyer, and Andrew

McCallum. Unsupervised latent tree induction with deep inside-outside
recursive auto-encoders. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 1129–1141, 2019.

[8] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith.
Recurrent neural network grammars. In Proceedings of NAACL-HLT,
pages 199–209, 2016.

[9] Guillaume Endignoux, Olivier Levillain, and Jean-Yves Migeon.
Caradoc: a pragmatic approach to pdf parsing and validation. In 2016
IEEE Security and Privacy Workshops (SPW), pages 126–139. Ieee,
2016.

[10] David Fifield. A better zip bomb. In 13th {USENIX} Workshop on
Offensive Technologies ({WOOT} 19), 2019.

[11] Kathleen Fisher and David Walker. The pads project: an overview. In
Proceedings of the 14th International Conference on Database Theory,
pages 11–17, 2011.

[12] Kathleen Fisher, David Walker, Kenny Q Zhu, and Peter White. From
dirt to shovels: fully automatic tool generation from ad hoc data. ACM
SIGPLAN Notices, 43(1):421–434, 2008.

[13] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst., 29(3):17–es, May 2007.

[14] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt.
Bringing science to digital forensics with standardized forensic corpora.
digital investigation, 6:S2–S11, 2009.

[15] Rahul Gopinath, Björn Mathis, and Andreas Zeller. Inferring input
grammars from dynamic control flow. arXiv preprint, December 2019.
arXiv:1912.05937v1 [cs.SE].

[16] Carson Harmon, Bradford Larsen, and Evan Sultanik. Toward automated
grammar extraction via semantic labeling of parser implementations. In
Proceedings of the LangSec Workshop, IEEE Security & Privacy, May
2020.

[17] Matthias Höschele and Andreas Zeller. Mining input grammars from
dynamic taints. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages 720–
725, New York, NY, USA, 2016. Association for Computing Machinery.

[18] Yoon Kim, Chris Dyer, and Alexander M Rush. Compound probabilistic
context-free grammars for grammar induction. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pages 2369–2385, 2019.

[19] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937,
2016.

[20] Didier Stevens. pdfid.py. https://github.com/DidierStevens/
DidierStevensSuite/blob/master/pdfid.py, November 2019.

[21] Evan Sultanik, Brad Larsen, and Carson Harmon. Two new tools
that tame the treachery of files. https://blog.trailofbits.com/2019/11/
01/two-new-tools-that-tame-the-treachery-of-files/, November 1, 2019.
Accessed: January 12, 2020.

[22] Kenny Q Zhu, Kathleen Fisher, and David Walker. Incremental learning
of system log formats. ACM SIGOPS Operating Systems Review,
44(1):85–90, 2010.

334

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 19,2024 at 03:18:17 UTC from IEEE Xplore. Restrictions apply.

