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Abstract—In this paper we apply an intuitionistic fuzzy two-
factor ANOVA (2-D IFANOVA), based on the concepts of in-
tuitionistic fuzzy sets (IFSs) and index matrices (IMs), over a
unique dataset of daily COVID-19 cases up to 24 June 2020
to explore how the number of COVID-19 cases depends on the
“density” and “climate zone” factors for the continent of Europe.
In the source data, some information may be missing, unclear
or imprecise. To deal with the uncertainty in the data, we apply
Intuitionistic fuzzy logic. We also present a new software utility,
which performs 2-D IFANOVA by using an implementation of
Index matrices. Finally, a comparative analysis of the results
obtained by the classical ANOVA and IFANOVA is performed.

Keywords—ANOVA; Climate zone; COVID-19; Density; Intu-
itionistic fuzzy sets; Index matrix; Software

I. INTRODUCTION

In 2020, the global coronavirus pandemic, that originated
in China in 2019, spread initially to South Korea and Japan,
and after that to Asia and then the rest of the world. In
particular, countries such as Italy, Spain, France, Germany,
the United Kingdom and the United States have thus far had
some of the latest numbers of confirmed cases and deaths
caused by the coronavirus. Many recent papers have aimed
to predict how many COVID-19 cases there will be in the
future in light of the serious effect this disease has closed on
public life. In [2], the authors outlined an approach for the
prediction of the epidemic spread of the coronavirus, driven
by Chinese New Year-related travel. Analysis of the spatial-
temporal distribution of COVID19 in China and a prediction
method based on the Logistic model were presented in [29].
Predictions of the impact of epidemic outbreaks on the global
supply chains with a simulationbased analysis was presented
in [6]. In [20], a propagation analysis and a prediction of the
real COVID19 time series are described. A forecasting method
for the COVID19 outbreak in China with good results was
presented in [21]. Analysis of the spatial spread relationships
of the coronavirus pandemic using self-organizing maps was
invesigated in [26]. One-way and two-way ANOVA by “age”
and “density” of group was applied to number of corona cases
in India [25]. The data related to COVID-19 that is available
for analysis can be incomplete or unclear. To cope with
uncertainty, Zadeh [22] and Atanassov [13] have introduced
respectively the concepts of fuzzy(FSs) and intuitionistic fuzzy

sets (IFSs). Multiple neural network models with fuzzy ag-
gregation for predicting the COVID19 time series in Mexico
were proposed in [27]. A popular method for data analysis
is ANOVA, originally developed by Fisher [4], which is
concerned with comparing the means of several samples. If
the data are not exactly known, the FSs based approaches are
incorporated into the decision-making method ANOVA [3].
A bootstrap approach to fuzzy FANOVA (FANOVA) was
introduced in [23]. ANOVA using a set of confidence intervals
for variance was considered in [11]. FANOVA has proposed
by [7] using the levels of pessimistic and optimistic of the
triangular fuzzy data. FANOVA has presented in [24], [1]
based on Zadehs extension principle. González-Rodrguez el
al. [10] have developed an one-way ANOVA test for fuzzy
observations in which the fuzzy observations are treated as
functional data of a functional Hilbert space. Two-factor
ANOVA using Trapezoidal Fuzzy Numbers is explored in [30].
Two-way IFANOVA by converting IFSs to fuzzy sets was
proposed in [8]. To analyze vaguer numbers, such as those
discussed here, we have extended the classical ANOVA [4] to
the one-way and the two-way IFANOVA without replication
(see [31], [32], [33]), which can work over Intuitionistic fuzzy
(IF) data, based on Intuitionistic fuzzy sets (IFSs) and Index
matrices (IMs).

We also introduce a command-line utility for the application
of 2-D IFANOVA, which uses a software implementation of
IMs to calculate the results. The utility is then applied to find
the dependencies of the COVID-19 case notification rate per
100 000 people up to 24 June 2020 on the “density” and
“climate zone” factors of the European countries.

The rest of this paper is structured as follows: Section 2
describes some basic definitions of the concepts of IMs and
IF logic. Section 3 discusses the classical two-factor (2-F)
ANOVA and its application over the actual data on COVID-
19 cases. In Section 4, we describe the algorithm of 2-D
IFANOVA [31] and its software realization, then use it to
investigate the effect of the factors “density” and “climate
zone”. The results obtained from IFANOVA are compared
with those from the classical ANOVA. Section 5 gives some
conclusions and outlines aspects for future research.
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II. SHORT REMARKS ON IMS AND INTUITIONISTIC FUZZY
LOGIC

This section provides some remarks on Intuitionistic fuzzy
logic (see [9], [15], [17], [18], [19], [34]) and on IMs (see
[16], [36]).
2.1. Short Notes on Intuitionistic Fuzzy (IF) Logic

An Intuitionistic Fuzzy Pair (IFP) is an object of the form
〈a, b〉 = 〈µ(p), ν(p)〉, where a, b ∈ [0, 1] and a + b ≤ 1,
that is used as an evaluation of a proposition p (see [17],
[18]). µ(p) and ν(p) respectively determine the “truth degree”
(degree of membership) and “falsity degree” (degree of non-
membership).

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉. We will
recall some basic operations:

¬x = 〈b, a〉;
x ∧1 y = 〈min(a, c),max(b, d)〉;
x ∨1 y = 〈max(a, c)),min(b, d)〉;
x ∧2 y = x+ y = 〈a+ c− a.c, b.d〉;
x ∨2 y = x.y = 〈a.c, b+ d− b.d〉;
α.x = 〈1− (1− a)α, bα〉(α ∈ R);

x− y = 〈max(0, a− c),min(1, b+ d, 1− a+ c)〉
x : y = 〈min(1; a/c);

min(max(0; 1− a/c);max(0; (b− d)/(1− d)))

(1)

and relations with IFPs

x ≥ y iff a ≥ c and b ≤ d, x ≤ y iff a ≤ c and b ≥ d,
x ≥2 y iff a ≥ c, x ≤2 y iff a ≤ c,
x ≥� y iff b ≤ d, x ≤� y iff b ≥ d,

x = y iff a = c and b = d,
x ≥R y iff R〈a,b〉 ≤ R〈c,d〉,

(2)
where following [9]

R〈a,b〉 = 0, 5(2− a− b)0, 5(|1− a|+ |b|+ |1− a− b|).

2.2. Definition and Basic Operations over Intuitionistic
Fuzzy Index Matrices

Let I be a fixed set. By two-dimensional Intuitionistic
fuzzy index matrix (2-D IFIM) with index sets K and L
(K,L ⊂ I), we denote the object:

[K,L, {〈µki,lj , νki,lj 〉}]

≡

l1 . . . lj . . . ln
k1 〈µk1,l1 , νk1,l1〉 . . . 〈µk1,lj , νk1,lj 〉 . . . 〈µk1,ln , νk1,ln〉
...

...
. . .

...
. . .

...
km 〈µkm,l1 , νkm,l1〉 . . . 〈µkm,lj , νkm,lj 〉 . . . 〈µkm,ln , νkm,ln〉

,

where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n:
0 ≤ µki,lj , νki,lj , µki,lj + νki,lj ≤ 1.

Following [16], we recall some operations
over two IMs A = [K,L, {〈µki,lj , νki,lj 〉}] and
B = [P,Q, {〈ρpr,qs , σpr,qs〉}].
Negation: ¬A = [K,L, {〈νki,lj , µki,lj 〉}].

Addition-(◦, ∗): A ⊕(◦,∗) B = [K ∪ P,L ∪
Q, {〈φtu,vw , ψtu,vw〉}], where

〈φtu,vw , ψtu,vw〉

=



〈µki,lj , νki,lj 〉, if tu = ki ∈ K and vw = lj ∈ L−Q
or tu = ki ∈ K − P and vw = lj ∈ L;

〈ρpr,qs , σpr,qs〉, if tu = pr ∈ P and vw = qs ∈ Q− L
or tu = pr ∈ P −K
and vw = qs ∈ Q;

〈◦(µki,lj , ρpr,qs), if tu = ki = pr ∈ K ∩ P
∗(νki,lj , σpr,qs)〉, and vw = lj = qs ∈ L ∩Q;
〈0, 1〉, otherwise

and 〈◦, ∗〉 ∈ {〈max,min〉, 〈min,max〉, 〈 average,average〉}.
Termwise subtraction-(max,min):

A−(max,min) B = A⊕(max,min) ¬B.

Termwise multiplication-(min,max) :

A⊗(min,max) B = [K ∩ P,L ∩Q, {〈φtu,vw , ψtu,vw〉}],

where 〈φtu,vw , ψtu,vw〉 =
〈min(µki,lj , ρpr,qs),max(νki,lj , σpr,qs)〉.
Reduction: We use symbol “⊥” for lack of some component
in the separate definitions. The operations (k,⊥)-reduction
of a given IM A is defined by:

A(k,⊥) = [K − {k}, L, {ctu,vw}],

where ctu,vw = aki,lj for tu = ki ∈ K − {k} and vw = lj ∈ L.
Projection: Let M ⊆ K and N ⊆ L. Then,

prM,NA = [M,N, {bki,lj}],

where for each ki ∈M and each lj ∈ N , bki,lj = aki,lj .
Substitution: Let IM A = [K,L, {ak,l}] be given. Local
substitution over the IM is defined for the couples of indices
(p, k) and/or (q, l), respectively, by[p

k
;⊥
]
A = [(K − {k}) ∪ {p}, L, {ak,l}] ,[

⊥; q
l

]
A = [K, (L− {l}) ∪ {q}, {ak,l}] .

Aggregation operations
Let x#@y = 〈average(a, c), average(b, d)〉, where x =
〈a, b〉 and y = 〈c, d〉 are IFPs. Let k0 /∈ K be a fixed index.
The aggregation operation by K is [16], [35]:

αK,#@
(A, k0)

=

l1 . . . ln

k0
m

#@

i=1

〈µki,l1 , νki,l1〉 . . .
m

#@

i=1

〈µki,ln , νki,ln〉
.

(3)
Aggregate global internal operation [36]:
AGIO⊕(max,min)

(A) .
Internal subtraction of IMs’ components [36]:
IO−(max,min)

(〈ki, lj , A〉 , 〈pr, qs, B〉) =
[K,L, {〈γtu,vw , δtu,vw〉}].
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III. APPLICATION OF NONREPLICATED 2-D ANOVA TO
THE COVID-19 CASES IN EUROPE

A. Nonreplicated 2-D ANOVA

Let xki,lj for i = 1, 2, ...,m and j = i1, i2, ...iI(1 ≤ iI ≤
n) denote the data from the ki−th level of factor A and lj−th
level of factor B.

The sum of squared deviations about the mean - SST ,
between rows sum of squares (effect of factor A) - SSA,
between columns sum of squares (effect of factor B) - SSB
and error sum of squares SSE are calculated. The mean sum
of squares MSA (factor A), the mean sums of squares MSB
(factor B) and for error MSE are follow [4]:

MSA =
SSA

m− 1
,MSB =

SSB

n− 1
,MSE =

SSE

(m− 1)(n− 1)
.

Let N∗ = (m− 1)(n− 1). If the test statistics

FA =
MSA

MSE
≥ F(α,m−1,N∗) or

1

FA
≤ 1

F(α,m−1,N∗)
= F(1−α,N∗,m−1)

(4)
and

FB =
MSB

MSE
≥ F(α,n−1,N∗) or

1

FB
≤ 1

F(α,n−1,N∗)
= F(1−α,N∗,n−1),

(5)
where F(α,m−1,N∗) and F(α,n−1,N∗) are α−quantile of
F−distribution then the factors effect on significance level
α (see [4], [28]).

B. 2-D ANOVA over COVID-19 Cases in Europe

Let us apply 2-D ANOVA using Excel on the dataset
containing the COVID-19 case notification rate per 100 000
people of the European countries up to 24 June 2020 (see [37],
[38]). Let xki,lj for i = 1, 2, ..., 5 and j = i1, i2, ...iI(1 ≤ iI ≤
n) denote the data from the ki−th level of factor “density”
(people per km2) and lj−th level of factor “climate zone”.
There are five levels of the “density” factor ([1− 200], [201−
400], [401− 600], [601− 1000] and [1001− 20000]) and four
levels of the “climate zone” factor (subtropical, tempered,
subpolar and mountainous areas) in our data. The following
ANOVA Table I is obtained by 2-D ANOVA with α = 0, 05:

TABLE I
2-D ANOVA TABLE BY THE FACTORS “DENSITY” AND “CLIMATE ZONE”.

Source SS df MS F p-value F crit
Rows 733519 4 183380 0,96 0,47 3,26
Columns 2431052 3 810351 4,22 0,03 3,49
Error 2303694 12 191974

The conclusion of the ANOVA is that only the “climate
zone” factor affects the number of COVID-19 cases. The
COVID-19 case notification rates per 100 000 people are the
highest in the subtropical climate, and they are the lowest in
the subpolar climate. The number of cases is the highest in
the countries in Europe with a density of [401 − 600] and a
subtropical climate. Fig. 1 shows a comparison between the

average COVID-19 case notification rates of the European
countries based on their climate zone and density:

Fig. 1. COVID-19 case notification rate per 100 000 depend on “density”
and “climatic zones”.

A similar approach is applied in [25]. First, one-way
ANOVA is used to analyse data from India and the conclusion
made is that is that the population density of an area alone does
not have a great effect on number of COVID-19 cases. On the
other hand, two-way ANOVA shows that the density and the
age group of the infected taken together have a much bigger
impact on the number of cases.

IV. INTUITIONISTIC FUZZY TWO-WAY ANOVA OVER
COVID-19 CASES IN EUROPE

In [31] a 2-D IFANOVA without replication is proposed,
which uses the concepts of IMs and fuzzy logic. We describe
this analysis shortly using pseudocode.

A. Two-factor IFANOVA

Step 1. The IF IM (IFIM) X[K,L] is created, whose
elements are the measured values according to the different
levels of the studied two factors as follows:

l1 . . . ln . . .
k1 〈µk1,l1 , νk1,l1〉 . . . 〈µk1,ln , νk1,ln〉 . . .
...

...
. . .

...
. . .

km 〈µkm,l1 , νkm,l1〉 . . . 〈µkm,ln , νkm,ln〉 . . .
Sr1 〈µSr1,l1 , νSr1,l1〉 . . . 〈µSr1,ln , νSr1,ln〉 . . .
Sr 〈µSr,l1 , νSr,l1〉 . . . 〈µSr,ln , νSr,ln〉 . . .

. . . Sr2 Sr

. . . 〈µk1,Sr2 , νk1,Sr2〉 〈µk1,Sr, νk1,Sr〉
. . .

...
...

. . . 〈µkm,Sr2 , νkm,Sr2〉 〈µkm,Sr, νkm,Sr〉

. . . 〈µSr1,Sr2 , νSr1,Sr2〉 〈µSr1,Sr, νSr1,Sr〉

. . . 〈µSr,Sr2 , νSr,Sr2〉 〈µSr,Sr, νSr,Sr〉

,

where{k1, k2, . . . , km} are the factor A levels,{l1, l2, . . . , ln}
are the factor B levels and for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
{xki,lj , xki,Sr2 , xki,Sr, xSr1,lj , xSr,lj} are IFPs.
xki,lj (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the value according to

ki-th level of A and lj-th level of B. We use symbol “⊥”
for empty cells of IM X . The other elements of X at the
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beginning of the algorithm are equal to 〈⊥,⊥〉. Let us define
the auxiliary IM S = [K,L, {ski,lj}], such that S = X i.e.
(ski,lj = xki,lj ∀ki ∈ K,∀lj ∈ L).

Then we define these IMs:

S1[K/{Sr1, Sr}, L/{Sr2, Sr}] = prK/{Sr1,Sr},L/{Sr2,Sr}S,

S2[K/{Sr1, Sr}, {Sr2}] = αL,#@
(S1, Sr2),

S∗2 [{Sr1}, L/{Sr2, Sr}] = αK,#@
(S1, Sr1).

A new form of IM S is obtained as follows:

S := S ⊕(max,min) S2 ⊕(max,min) S
∗
2 ,

go to Step 2.
Step 2. We calculate the mean of the sample by the operation
(3)

S3[k0, {Srt}] = αK,#@
(S2, k0)(Srt /∈ L/{Sr2, Sr}).

for i = 1 to m

{S := S ⊕(max,min)

[
ki
k0

;
Sr

Srt

]
S3}.

for j = 1 to n

{S := S ⊕(max,min)

[
Sr

k0
;
lj
Srt

]
S3}.

We define

S4a[K/{Sr1, Sr}, L/{Sr2, Sr}, aki,lj = 〈0, 1〉].

From each element of the matrix S4a, subtract the means of
the data of corresponding row and column, and add the total
mean of the IM S:
for j = 1 to n

for i = 1 to m

{S4a := IO−(max,min)
(〈ki, lj , S4a〉 , 〈Sr, lj , S〉) ;

S4a := IO−(max,min)
(〈ki, lj , S4a〉 , 〈ki, Sr, S〉)}.

We define

S4b[K/{Sr1, Sr}, L/{Sr2, Sr}, aki,lj = 〈0, 1〉].

for j = 1 to n
for i = 1 to m

{S4b := IO−(max,min)
(〈ki, lj , S4b〉 , 〈Sr1, lj , S〉) ;

S4b := IO−(max,min)
(〈ki, lj , S4b〉 , 〈ki, Sr2, S〉)}

S4 := S4a ⊕− S4b.

Go to Step 3.
Step 3. We calculate the mean sums MSA (for factor A)
and MSB (for factor B) by the operations:

S5[K/{Sr1, Sr}, {Sr2}] = prK/{Sr1,Sr},{Sr2}S and

S6[K/{Sr1, Sr}, {Sr}] = prK/{Sr1,Sr},{Sr}S;

Let Dif1 /∈ K ∪ L then

S7[K/{Sr1, Sr}, Dif1] =
[
⊥; Dif1

Sr2

]
S5−(max,min))

[
⊥; Dif1

Sr

]
S6;

MSA =
n

m− 1
AGIO⊕(max,min))

(
S7 ⊗(min,max) S7

)
;

S8[{Sr1}, L/{Sr2, Sr}] = pr{Sr1},L/{Sr2,Sr}S and

S9[{Sr}, L/{Sr2, Sr}] = pr{Sr},L/{Sr2,Sr}S;

Let Dif2 /∈ K ∪ L then

S10[Dif2, L/{Sr2, Sr}] =
[
Dif2
Sr1

;⊥
]
S8−(max,min))

[
Dif2
Sr

;⊥
]
S9;

MSB =
m

n− 1
AGIO⊕(max,min))

(
S10 ⊗(min,max) S10

)
;

Go to Step 4.
Step 4. We calculate:

1

FA
=
MSE

MSA
,
1

FB
=
MSE

MSB
.

The fuzzy estimators of the ANOVA key statistics
FtAfuzzy(1−α,N∗,m−1) and FtBfuzzy(1−α,N∗,n−1) values are
obtained using Pietraszeks approach ([12],2016).

Fig. 2 shows the fuzzy estimators of the bootstrapped F
statistics:

Fig. 2. Fuzzy estimator of the bootstrapped F statistics

If
1

FA
≤ FtAfuzzy(1−α,N∗,m−1) and

1

FB
≤ FtBfuzzy(1−α,N∗,n−1)

in accordance with the relations (2) and (4), then the factors
effect on significance level α.
End of algorithm.
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B. Software utility for 2-D IFANOVA

In order to apply the 2D-IFANOVA algorithm to real data
more quickly, a software utiity was developed. It is written
in C++ and uses the index matrix template class (IndexMa-
trix¡T¿) described in [5], which implements the basic IM
operations, such as addition, multiplication, termwise multipli-
cation, termwise subtraction, projection and substitution, most
of which are briefly detailed in Sect. 2.2. As this class was
originally written to handle IMs of real numbers and integers,
a new class representing intuitionistic fuzzy pairs (IFPair) was
developed, with methods realising the operations on them (see
Sect. 2.1). Several modifications and corrections had to be
made to the IM class so that it could work properly with
IFPs. Additional code was written for the AGIO, internal
subtraction and average IFP aggregation operations, as these
had not been defined at the time of the index matrix class’
original development. Then the main program was written
to calculate the results using IM objects containing IFPs
(IndexMatrix¡IFPair¿), which thus represent IFIMs.
The utility takes its input in the form of a tab-separated text
file, containing the data of a single IFIM. As of now, the
input data must be pre-transformed to IFPs using the methods
described previously, because the utility does not at this point
handle that step. Column headings must be present in the first
row, where the first cell is left empty. Each row after that must
start with the row heading in the first cell, followed by a list
of IFP values, where each IFP is represented by two decimal
values separated by a semicolon (corresponding to the µ and ν
of the IFP, respectively). The number of cells must correspond
to the number of column headings; empty cells are read as
〈0, 1〉 IFPs. The results, which include MSE, MSA, MSB,
1
FA

and 1
FA

, are then printed on the console. Optionally, the
user can use a “verbose” option to see the interim IMs used
to calculate the final values.

Fig. 3. A snippet from an input file and the corresponding results from the
software utility

C. Application of the software utility over COVID-19 cases in
Europe

The effectiveness of the proposed 2-D IFANOVA method
is tested by applying it to detect dependencies between the
COVID-19 case rate per 100 000 people up to 24 June
2020 [37], [38], converted to IFPs, and the factors “density
(people per km2)” and “climate zone”. At the beginning of the
algorithm we transform the data values with COVID-19 cases
into IFPs. Let us have the set of intervals [i1, iI ] for 1 ≤ i ≤ m

and let Amin,i = minxi,j
i1≤j≤iI

< maxxi,j
i1≤j≤iI

= Amax,i. For

the interval [i1, iI ] we construct IFPs [15] as follows:

µi,j =
xi,j −Amin,i

Amax,i −Amin,i
, νi,j =

Amax,i − xi,j
Amax,i −Amin,i

. (6)

The conditions 0 ≤ µi,j , νi,j ≤ 1,≤ 0 ≤ µi,j + νi,j ≤ 1 are
satisfied.

In case there is unclear or missing data about the number of
COVID-19 cases, we can apply the expert approach described
in detail in [15] to convert the data to IFPs.

The IFIM X[K,L] is created, the elements of which are
the values measured according to the different levels of the
two studied factors using (6). The initial form of the IM X
without the last two rows and columns is:

X[K/{Sr2, Sr}, L/{Sr1, Sr}]

Subtropical Tempered . . .
1− 200 〈0.95, 0.048〉 〈0.89, 0.10〉 . . .

201− 400 〈0.80, 0.19〉 〈0.79, 0.20〉 . . .
401− 600 〈0.0004, 0.99〉 〈0.88, 0.11〉 . . .
601− 1000 〈0.27, 0.72〉 〈0.85, 0.14〉 . . .
1000− 2000 〈0.85, 0.14〉 〈1, 0〉 . . .

. . . Subpolar Mountainous areas

. . . 〈0.99, 0.0004〉 〈0.91, 0.08〉

. . . 〈1, 0〉 〈1, 0〉

. . . 〈1, 0〉 〈1, 0〉

. . . 〈1, 0〉 〈1, 0〉

. . . 〈1, 0〉 〈1, 0〉

.

After application of the IFANOVA, presented in Sect. IV
above, we found that:

MSA = 〈0.680394, 0.319606〉,MSB = 〈0.895998, 0.104002〉;

MSE = 〈0.0016532, 0.490587〉.

We then applied Pietraszeks approach ([12],2016), which in
turn gave us the fuzzy estimators of the ANOVA FtA and FtB
values: The classic value FtA(0.95; 12; 4) = 0.31 is tied to
the fuzzy assessment Ffuzzy(0.95;12;4) = 〈0.95, 0〉, while the
value FtB(0.95; 12; 3) = 0.29 is tied to the fuzzy assessment
Ffuzzy(0.95;12;3) = 〈0.96, 0〉.

Therefore
MSE

MSA
=

1

FA
= 〈0.00242977, 0.251297〉

≤ Ffuzzy(0.95;12;4) = 〈0.95, 0〉

and
MSE

MSB
=

1

FB
= 〈0.00184509, 0.431457〉

≤ Ffuzzy(0.95;12;3) = 〈0.96, 0〉

in accordance with the relation (2). From (4) and the above
we can conclude that the “density” and “climate zone” factors
do indeed have an effect on the number of COVID-19 cases.
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A comparison of the results of 2-D IFANOVA with those
obtained by 2-D ANOVA shows that they differ in the influ-
ence of the “density” factor, which could be explained by the
high degree of the hesitancy π = 0.75 of the IFP

〈0.00242977, 0.251297〉 = 1

FA
.

V. CONCLUSION

In this paper, a new software utility for 2-D IFANOVA
without replication, based on the concepts of IMs and IFSs,
was presented. The utility was then used to apply the 2-D
IFANOVA to analyse the impact of the “density” and “climate
zone” factors on COVID-19 cases in the continent of Europe
using real data on cases per 100 000 people up to 24 June
2020. A comparative analysis was done on the results obtained
by the classical ANOVA [4] and the IFANOVA. In the future,
the outlined approach for 2-D IFANOVA and the software
utility can be expanded to 2-D IFANOVA with replication [4].
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