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Abstract—COVID-19, an infectious disease caused by the
SARS-CoV-2 virus, was declared a pandemic by the World
Health Organisation (WHO) in March 2020. By mid-August
2020, more than 21 million people have tested positive worldwide.
Infections have been growing rapidly and tremendous efforts
are being made to fight the disease. In this paper, we attempt to
systematise the various COVID-19 research activities leveraging
data science, where we define data science broadly to encompass
the various methods and tools—including those from artificial
intelligence (AI), machine learning (ML), statistics, modeling,
simulation, and data visualization—that can be used to store,
process, and extract insights from data. In addition to reviewing
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the rapidly growing body of recent research, we survey public
datasets and repositories that can be used for further work to
track COVID-19 spread and mitigation strategies. As part of
this, we present a bibliometric analysis of the papers produced
in this short span of time. Finally, building on these insights,
we highlight common challenges and pitfalls observed across
the surveyed works. We also created a live resource repository
at https://github.com/Data-Science-and-COVID-19/Leveraging-
Data-Science-To-Combat-COVID-19-A-Comprehensive-Review
that we intend to keep updated with the latest resources including
new papers and datasets.

Impact Statement—Data science, defined broadly, will play a
central role in the global response to the COVID-19 pandemic.
This paper facilitates the rapid engagement of data science and
AI researchers with the breadth of the ongoing research work. In
particular, we identify the major challenges involved, promising
directions for further work, and important community resources.
Given the interdisciplinary nature of the challenge, this review
will help data scientists form collaborations across disciplines.
We also elaborate the benefits of data science to strategists and
policymakers and guide them in coming to grips with the chal-
lenges, opportunities, and pitfalls involved in using data science to
combat the COVID-19 pandemic.

Index Terms—Bibliometric analysis, COVID-19, data science,
machine learning, medical image analysis, SARS-CoV-2, speech
analysis, text mining.

I. INTRODUCTION

THE SARS-CoV-2 virus and the associated disease (designated
as COVID-19) was first identified in Wuhan city (China) in

December 2019 [1]–[3], and was declared a pandemic by the World
Health Organisation (WHO) on 11 March 2020.1 At the time of
writing,2 the Centre for Systems Science and Engineering at Johns
Hopkins University reported 21,903,341 confirmed cases, 774,379
deaths, and 13,903,145 recovered.

Since December 2019, over 24,000 research papers from peer-
reviewed journals and preprint sources are available [4]. Under-
standing this rapidly moving research landscape is particularly chal-
lenging since much of this literature has not been vetted through a
peer-review process yet. This paper tries to overcome this challenge
by presenting a detailed overview and survey of data science re-
search related to COVID-19. It is intended as a community resource
to facilitate accessibility to the large volume of data and papers
published in recent months. We use the term “data science” as an
umbrella term that encompasses all techniques and tools including

1[Online]. Available: https://tinyurl.com/WHOPandemicAnnouncement
210:30 am Saturday, 18 August 2020 Coordinated Universal Time (UTC).
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TABLE I
ORGANISATION OF PAPER AND SUMMARY OF DIFFERENT SECTIONS

artificial intelligence (AI), machine learning (ML), natural language
processing (NLP), statistics, algorithms, modelling, simulation, and
any other scientific methods that learn from structured and unstruc-
tured data. We recognise the importance of associated perspectives
from the social sciences, ethics, history, and other humanities, but
those areas are beyond the focus of this work.

In examining this growing landscape of data science research
regarding COVID-19, we make the following five contributions.
First, we present pressing research problems related to COVID-19,
for which data scientists may be able to contribute. Second, we
summarise publicly available COVID-19 datasets that are being
used to drive research, and list how they could be utilised to address
some of the aforementioned problems. Third, we survey some of the
ongoing research in the area, highlighting the main topics covered.
As our primary audience is computer scientists and engineers, we
theme our discussion around the types of data analysis. Fourth, we
broaden our analysis and present a bibliometric study. Fifth, bring-
ing together our observations, we highlight some of the common
challenges in this fast-moving space. We intentionally cast a wide
net, covering research from several technical areas surrounding data
science.

This paper builds upon recent reviews and perspective papers
[5], [6] to help systematise existing resources and support the
research community in building solutions to the COVID-19
pandemic. We have attempted to be comprehensive, however, in
a rapidly-evolving field such as this, it is not possible to aim for
exhaustiveness. Nonetheless, we hope that our work will provide a
useful introduction to the field for researchers interested in this area.

The rest of this paper is organised as follows. In Section II, we
present the details of available datasets and resources. In Section III,
we present possible use cases where data science can help address
COVID-19 challenges. In Section IV, we review contributions made
by data scientists. In Section V we present a bibliometric analysis of
the COVID-19 related papers. Next, we discuss common challenges
facing this research in Section VI. Finally, Section VII concludes
the paper. The organisation of the paper can be seen in Table I.

II. DATASETS AND RESOURCES

To enable research by the community, it is vital that datasets
are made available. We start by surveying public datasets, some of
which we summarise in Table II.

A. COVID-19 Case Data

The number of COVID-19 cases along with their geo-locations
can help to track the growth of the pandemic and the geographical
distribution of patients. Many countries are collecting and sharing
infection information. One of the most used datasets is collated
by John Hopkins University, which contains the daily number of
positive cases, the number of cured patients and the mortality rates
at a country and state/province level [20]. A further source of
daily COVID-19 case data is available at Kaggle [25]. This dataset
is annotated with other attributes such as patient demographics,
case reporting date and location. Another epidemiological dataset,
nCOV2019 [24], contains national and municipal health reports
of COVID-19 patients. The key attributes are geo-location, date
of confirmation, symptoms, and travel history. Similarly, the New
York Times is compiling a state-wise dataset consisting of the
number of positive cases and death count [26]. Whereas the above
datasets are mostly based on statistics compiled by governmental
administrations, other datasets are being collated using community
surveys, requesting people to report infection rates among their
social networks [30]. Common applications used with such data in
the literature include data visualisation and predictive analytics [31].

A key limitation in these datasets is the divergence of testing
regimes, which makes it challenging to compare results across
countries [32]. It is estimated in one study3 that the average detection
rate of SARS-CoV-2 infections is just 6% worldwide. Similarly,
variations in interventions, population densities and demographics
have a major impact, as can be seen when contrasting, for example,

3[Online]. Available: https://tinyurl.com/cov6percent
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TABLE II
A LIST OF PROMINENT COVID-19 DATASETS

Japan vs. USA.4 As such, regional prediction tasks are non-trivial,
and we posit that temporal models such as Auto Regressive In-
tegrated Moving Average (ARIMA) [33] and Long Short Term
Memory (LSTM) [34] neural networks may be effective here.

B. COVID-19 Textual Data

The availability of rich textual data from various online sources
can be used to understand the growth, nature and spread of
COVID-19.

One prominent source is social media, for which datasets are
already available covering COVID-19 discussions. There are open
Twitter datasets covering Tweet IDs [27] and tweet text data [15].
These were gathered using Twitter’s Streaming API to record tweets
containing a series of related keywords, including “Coronavirus,”
“COVID-19,” “N95,” “Pandemic,” etc. Another dataset of 2.2
millions tweets, alongside the code to collect more data is avail-
able [35]. This data could be used to monitor the spread of COVID-
19, as well as people’s reactions (e.g., to social distancing measures)
using existing natural language processing techniques [36]–[38].
Sharma et al. [39] also built a public dashboard5 summarising data
across more than 5 million real-time tweets. There are also social
media datasets that include image content: Zarei et al. [40] provide
5.3K Instagram posts related to COVID-19, including 18.5K text
comments.

The wealth of academic publications in recent months is also
creating a deluge of textual information. Information extraction

4[Online]. Available: http://nrg.cs.ucl.ac.uk/mjh/covid19/index.html
5[Online]. Available: https://usc-melady.github.io/COVID-19-Tweet-

Analysis/

from clinical studies is already being performed [41] using language
processing models such as [42]. These bibliometric datasets can
easily be collected from pre-print services such as arXiv, medRxiv,
and biorXiv [43]–[45]. The White House has also released an
open research articles dataset [13]. This dataset contains nearly
45,000 articles related to COVID-19, SAR-CoV-2 and other coro-
naviruses. These activities are mirrored across other organisations.
For instance, in the US, The National Center for Biotechnology
Information (NCBI) is providing up-to-date COVID-19 scientific
literature [22], and WHO is compiling a database of recent re-
search publications [18]. Closely related is the wealth of activity
on Wikipedia, a community-driven encyclopedia, which already
contains substantial information about COVID-19. The entirety of
Wikipedia can be downloaded for offline analysis [46], and there are
already pre-processed Wikipedia datasets focussing on COVID-19
available.6

C. COVID-19 Biomedical Data

Biomedical data can be used to support diagnosis, prognosis
and treatment. A major source of data are physical medical reports
(such as X-rays) or clinical pathology reports (genomic sequenc-
ing). As the current diagnosis and prognosis of COVID-19 often
requires human interpretations, there is potential for applications
of computer vision research, e.g., automated diagnosis from chest
X-rays. Currently, there are some open-source COVID-19 X-ray
scans such as the COVIDx dataset [47]. These can be used for
training COVID-19 infection assessment and diagnosis models
(exploiting known computer vision techniques [48]). Other X-ray

6[Online]. Available: http://covid-data.wmflabs.org/
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datasets for research are [8], [49], [50]. The latter contains date,
patient, demographics, findings, location and survival information.
However, there are some intrinsic challenges related to these X-ray
datasets, such as the requirement of radiologists or clinicians for
data labelling and annotation (before training models). As such,
the datasets are still small, limiting the application of methods like
convolutional neural networks.

Lung Computed Tomography (CT) scans can also be used for
COVID-19 diagnosis and prognosis. Currently, there are datasets of
lungs CT scans available. One of the datasets [9] covers 60 patients
and comprises three class labels: ground glass, consolidation, and
pleural effusion. The dataset is collected from 6, March to 13 March,
2020. A larger dataset of 288 CT scans is collected from 19 January
to 25 March, 2020 [51]. The dataset has 275 CT scans of COVID-19
patients, which to the best of our knowledge, is the largest publicly
available. Morozov et al. also provided COVID-19 lung CT scans
from Russia containing binary pixel masks of CT-scans, depicting
the regions of interest, collected between 1st March and 25th of
April, 2020 [52]. The dataset is hosted at [10]. The National centre
of UK is providing COVID-19 chest imaging dataset consisting
of chest X-ray, CT and MR images of patients with suspected
COVID-19 [53]. COVID-19 patient symptoms data are being col-
lected by different healthcare organisations such as ELLIS Alicante
Foundation [54], Leeds University Institute [55] and UK NHSx
[56].

Besides the above physical scans, there are important genomic
sequencing datasets available. The study of drug impact, protein-
protein interactions and RNA structure in genomic data is an es-
sential part of diagnosis test evaluations. Available datasets related
to epidemiological and clinical data include RCSBdata [28] and
GHDDI [57]. However, as COVID-19 has emerged very recently,
these datasets are mostly incomplete or too small. For example,
the biomedical datasets (see [51]) range from just a few up to 300
patients.

D. COVID-19 Datasets From Developing Countries

The impact and spread of COVID-19 in the developing world
has become a matter of great concern. Several datasets have been
gathered to study the nature of COVID-19 spread in developing
countries such as Algeria, Nigeria, India, Pakistan, Kenya, Egypt,
South Africa, and Latin America. Zhao et al. [58] studied COVID-
19 spread, implications, prevention strategies, and control mech-
anism for African countries including Algeria, Nigeria, Senegal
and Kenya, and South Africa. The dataset consists of confirmed,
recovered, and death cases, taken from John Hopkins University.7

COVID-19 cases data from India [25] and Pakistan [59] is hosted
at Kaggle. These datasets provides city and state-wise COVID-19
cases, case reporting date, deaths, recoveries, patient demographics,
and location.

E. COVID-19 Competition Datasets

To promote research in this area, there are several recent open
data science competitions established on Kaggle (summarised in
Table III). These are mostly based on the previously discussed
data. For instance, the White House in coalition with some leading
research groups (e.g., Kaggle and SGS Digicomply) has opened
a new challenge using the earlier mentioned dataset of 45,000

7[Online]. Available: https://coronavirus.jhu.edu/

TABLE III
COVID-19 RELATED KAGGLE COMPETITIONS

research articles [13]. For this, there a few questions posed; for
example, “What do we know about virus genetics, origin, and
evolution?” For each task, there is an associated prize of $1000.

The Roche Data Science Coalition (RDSC) also established the
challenge “UNCOVER COVID-19” [60]. RDSC has rolled-out a
multi-modal dataset collected from 20 sources and has posed ques-
tions prepared by front-line healthcare experts, medical staff, WHO
and governmental policymakers. This dataset is mainly collected
from John Hopkins, the WHO, New York Times and the World
Bank. It includes local and national COVID-19 cases, geo-spatial
data and social distancing polices. Participants are required to
design solutions to address questions like “which populations are
at risk of contracting COVID-19?” and “which populations have
contracted COVID-19 and require ventilators?” Finally, the White
House Office of Science and Technology Policy (OSTP) has opened
a weekly challenge to predict the number of COVID-19 cases and
fatalities at particular locations around the world [61]. Competitors
are also required to unveil the factors associated with COVID-19
transmission rate and are asked to forecast the number of COVID-19
cases and deaths.

For those wishing to engage in these competitions, there are
several helpful tools and guideline blogs available. These resources
provide support for data pre-processing, visualisations, and the im-
plementation of different frameworks. We provide a list in Table IV.

F. Other Supportive Datasets

As part of monitoring secondary factors related to
COVID-19 and the surrounding interventions, there are several
other relevant datasets. For example, air quality index statistics
can be used as an indirect measure of social distancing polices,
i.e., if movements are restricted there will be fewer vehicles (and
pollution). For example, a recent study showed that the air quality
of six populous world cities has improved between February and
March 2020 due to the measures to combat COVID-19 [63]. The
data is publicly available [64] as well as the related COVID-19
case data [20]. Mobility trace data [65] can also serve a similar
purpose—a collection of such logs is available here [66]. Note
that mobility datasets have already been re-purposed: Google has
released community mobility reports for public health officials
in 131 countries [11]. These reports are compiled using Google
Maps and describe how busy places such as grocery stores, transit
stations, and workplaces are. In a recent not-yet-peer-reviewed
study [67], an indirect COVID-19 spread correlation is reported
with wastewater samples. The wastewater sample data consists of
23 raw and 8 treated samples which is collected from three major
wastewater treatment plants in France during 5, March to 7, April,
2020. It was found that all raw samples, and 6 out of 8 treated
samples, tested positive for SARS − CoV 2.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 27,2024 at 16:51:51 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE IV
PROMINENT COVID-19 COMMUNITY RESOURCES

III. DATA SCIENCE APPLICATIONS FOR COVID-19

Data science is a broad term covering topics such as Machine
Learning (ML), statistical learning and time-series modelling. In
this section, we summarise some of the key research use cases to
which data scientists may be able to contribute. Figure 1 summarises
the applications for COVID-19.

A. Risk Assessment and Patient Prioritisation

Healthcare systems around the world are facing unprecedented
pressures on their resources (e.g., availability of intensive care beds,
respirators). This creates the need to rapidly assess and manage
patient risk, while allocating resources appropriately. In periods
of peak load, this must be done rapidly and accurately, creating a
substantial challenge for healthcare professionals who may not even
have access to historical patient data. Various studies have already
proposed algorithmic risk assessments of diseases such as cancer
[68], diabetes [69], and cardiac-related diseases [70] with Artificial
Neural Networks (ANNs). Due to diverse symptoms and disease
trajectories, researching technologies for data-driven risk assess-
ment and management in individual COVID-19 patients would be
useful. For instance, traits like age, gender, or health state can be
utilised to provide an estimate of mortality risk. This is particularly
important when resources are limited, e.g., for patient prioritisation
when Intensive Care Unit (ICU) resources are insufficient.

B. Screening and Diagnosis

A major issue facing countries with growing COVID-19
infection rates is the lack of proper screening and diagnosis
facilities. This further complicates capacity management as well

Fig. 1. Summary of data science applications and subsection structure.

as social distancing measures, since those with mild symptoms are
often unaware they carry the disease. A key use case is to develop
remote computational diagnosis tools. Some already exist, which
could be expanded, e.g., Babylon is a mobile app that provides
medical advice via questioning. Other solutions could rely on
valuable data from wearable or other monitoring devices. For
instance, COVID-19 Sounds is a mobile app collecting audio of
breathing symptoms to help perform diagnosis.8 Oura wearable
rings are tracking heart rate, and body temperature while you
are sleeping or performing physical activity to track early viral
symptoms.9 We posit that such research will be particularly useful
in developing countries that have a shortage of healthcare facilities
[71]. Automated tools can further be developed to facilitate
screening in larger groups of people (e.g., at airports), e.g., using
computer vision based thermal imaging to detect fever [72].

C. Simulation and Modelling

Currie et al. [73] provide a detailed review of how models and
simulations can help reduce the impact of COVID-19. For example,
accurate epidemiological models are indispensable for planning and
decision making. Here we discuss some of the potential modelling
and simulation use cases.

1) Epidemic Models: Epidemic models are used to predict the
macroscopic behaviour of an infectious disease. A key use case
is developing and parameterising such models. For example, in
epidemiology, compartmental models are widely used [74]. In these
models, populations are divided into compartments and the flow of
people among compartments is modelled using (ordinary) differen-
tial equations. For example, COVID-19’s spread has recently been
modelled using the SEIR model [75], [76], which models the flow
of people between four states (or compartments): susceptible (S),
exposed (E), infected (I), and recovered (R).

Generative models represent another broad class of models which
proceed by generating consequences from causes (using hidden
states and parameters). An example generative model is based
upon ensemble or population dynamics that generate outcomes
(new cases of COVID-19 over time) [76]. Such approaches can
capture the effects of interventions (e.g., social distancing) and
differences among populations (e.g., herd immunity) to predict what

8[Online]. Available: http://www.covid-19-sounds.org/
9[Online]. Available: https://ouraring.com
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might happen in different circumstances in a single region [77].
Using (Bayesian) hierarchical modelling, one can combine several
of these (epidemic) models to create a (pandemic) model of viral
spread among regions [78]. For interested readers, websites offer-
ing COVID-19 forecasting have emerged,10 each using a different
model (although they should be treated with caution due to the
uncertainty of such predictions [79] [80]).

Parameterising the above models requires up-to-date information
on the virus spread. Thus, an important use case is finding ways
to better capture such data. For instance, this could be done by
processing social media information to identify people who are
likely to have been infected, or even analysing ambulance call out
data [81]. Another beneficial use case would be to develop ways
to more accurately evaluate “what-if” scenarios with these models
[79]. As an example, the initial policy of the UK government (of
adopting almost no social isolation measures) was later changed
based on results from an extended SEIR model from Imperial Col-
lege London [82]. This model projected that without interventions
there would be up to half a million fatalities, highlighting the impor-
tance of accurate predictions. A comprehensive review focused on
modelling infectious disease dynamics in the complex landscape
of global health can be seen at [83]. It is also worth mentioning
that there are several national level modelling efforts underway. For
instance, in the UK, The Royal Society has established the Rapid
Assistance in Modelling the Pandemic (RAMP)11 initiative with a
focus on mechanistic modelling of disease spread and outcomes.
They have also established the Data Evaluation and Learning for
Viral Epidemic (DELVE)12 which focuses on data-driven and in-
ferential modelling of COVID-19.

2) Simulation Models: Simulation models have broad appli-
cability and can be used in a variety of settings [73], including
decisions that affect disease transmission—e.g., decisions related
to quarantine and social distancing strategies; decisions regard-
ing resource management—e.g., decisions related to capacity of
in-patient hospital beds, critical care units, staffing, and resource
allocation within and across regions; and decisions about care—
e.g., deciding thresholds for admission and discharge of patients
and minimising the impact on other patients. In particular, pan-
demics generate a large number of questions all of which cannot
be answered by epidemiological models alone. A key use case is
integrating a diversity of models into simulations that can be used
to answer diverse questions. This might range from understanding
disease spread to predicting the consumption of medical supplies for
hospital management. By considering the range of model outputs,
an additional benefit is that an estimate of uncertainty can be
produced, which may help policy makers gauge expected benefits
against risks. For interested readers, [73] provides an overview of
the use of various simulation models, including those based on sys-
tem dynamics [84], agent based models, discrete event simulations,
and hybrid simulations.

D. Contact Tracing

Most countries reacted to the early stages of COVID-19 with
containment measures. This typically involves rapidly identifying

10For example: (1) COVID-19 worldwide peak forecasting method ([Online].
Available: https://www.people.vcu.edu/∼tndinh/covid19/en/) and (2) COVID-
19 forecasting ([Online]. Available: http://epidemicforecasting.org/)

11[Online]. Available: https://royalsociety.org/topics-policy/health-and-
wellbeing/ramp/

12[Online]. Available: https://tinyurl.com/y99c33dc

infected individuals, followed by quarantine and contact tracing.
Countries, such as South Korea, conducted rigorous testing cam-
paigns, which allowed other potentially infected contacts to be
quickly quarantined. This approach has been seemingly successful
in containing the outbreak [85]. A valuable use case can therefore be
facilitating more rapid and comprehensive contact tracing at scale
[86]. Smartphone contact sensing, online surveys and automated
diagnosis have all been proposed to rapidly identify exposure [87].
For example, there are ongoing efforts to survey general populations
via social media to learn of symptoms within individuals’ social net-
works [30]. Even prior to COVID-19, FluPhone [88] used Bluetooth
communications to identify contacts between people, and BlueDot
monitored outbreaks of infectious diseases to alert governments,
hospitals, and businesses [89].

If data from contact tracing is augmented with personal infor-
mation such as geolocation, health characteristics and test results,
there is the potential to continually update probabilistic estimates
of the inferred states of individuals. This can also be used to test
the sensitivity of different types of test, the patterns of disease
progress for individuals and populations, as well as understanding
how immunity declines over time. While this information could be
very helpful, the benefits will have to be weighed against concerns
about loss of individual privacy (see Section VI-C). As such, there
has been extensive debate surrounding the design of contact tracing
apps, primarily related to user privacy [90], [91]. For example, some
apps have followed a centralised model whereby contacts are com-
puted on the server. In contrast, others are decentralised, performing
computation on the end device and therefore preventing a central
point from recording contacts. See Section IV-D for further details.

E. Understanding Social Interventions

Governments have taken steps to manage social interactions as
part of their response to COVID-19. We highlight two main use
cases of relevance.

1) Monitoring of Social Distancing: Many governments have
implemented social distancing strategies to mitigate the spread of
COVID-19. This is a non-pharmaceutical intervention that reduces
human contact within the population [92] and therefore constrains
the spread of COVID-19 [93]. Data science can support contact
tracing for the monitoring of social distancing, for instance by ex-
tracting social media data and using language processing techniques
[94], [95]. These analyses could also help in keeping record of inter-
actions to be used as individuals develop symptoms. Furthermore,
these could be used for general population tracking to understand
compliance with social distancing. This could then be comple-
mented with other datasets (e.g., cellular trace data or air pollution
monitoring [63]) to better understand human mobility patterns in
the context of social distancing. Similar to the previous case, these
solutions present complex trade offs with regards to privacy (see
Section VI-C).

2) Controlling Misinformation & Online Harms: The spread
of misinformation can undermine public health strategies [96] and
has potentially dangerous consequences [97], [98]. For example,
online rumours accusing 5G deployments of causing COVID-19
led to mobile phone masts being attacked in the UK [99]. Wikipedia
maintains an up-to-date list of misinformation surrounding COVID-
19 [100]. This confirms the spread of a number of dangerous forms
of misinformation, e.g., that vinegar is more effective than hand
sanitiser against COVID-19. Naturally, users who believe such
misinformation could proceed to undermine public health. One
important use case would therefore be to develop classifiers and
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techniques to stem this flow. For example, Pennycook et al. [101] are
testing simple interventions to reduce the spread of COVID-19 mis-
information. An infodemic observatory analysing digital responses
in online social media to COVID-19 has been created by CoMuNe
lab at Fondazione Bruno Kessler (FBK) institute in Italy, and is
available online.13 The observatory uses Twitter data to quantify
collective sentiment, social bot pollution, and news reliability and
displays this visually.

F. Logistical Planning and Economic Interventions

COVID-19 has created serious challenges for healthcare supply
chains and provisioning. This includes personal protective equip-
ment such as masks and gowns, alongside intensive care equipment
like test kits, beds, and ventilators. There is a history of applying ma-
chine learning to logistical planning, e.g., by Amazon Fulfilment.14

A simple use case would be to apply data science techniques to help
supply chain management for healthcare provisioning. This can
also be used to preemptively allocate resources, e.g., researchers
from the University of Cambridge are using depersonalised data
(like lab results and hospitalisation details) to predict the need
for ventilation equipment.15 This use case is critical for ensuring
appropriate equipment is available on time.

Social distancing measures are also having a major impact on the
global economy [102], [103]. As organisations emerge from eco-
nomic hibernation they will be challenged to return to normal levels
of service and operation given disruptions to their supply chains
and workforce. Data scientists might be able to assist in identifying
problems limiting recovery. For instance, governments can use data
science to identify optimal economic interventions at a high level
of granularity. Companies can use data science to detect unusual
patterns of behaviour in the market or in their own customer base.

G. Automated Patient Care

The pandemic has triggered a shortage of healthcare workers.
To alleviate this, automated primary care tools, such as remote
chatbots and expert systems, could be developed. Such systems can
help people in providing information about the outbreak, symptoms,
precautionary measures, etc. For instance, an interactive chatbot by
the WHO and Rakuten Viber aims to provide accurate information
about COVID-19 to people in multiple languages [104]. Automated
healthcare methods could also be utilised to help monitor the
conditions of COVID-19 patients in emergency care [105].

Another use case would be to gather and collate observational
data to monitor the efficacy of treatments for certain patient types,
enabling decision support for better personalised patient treatment.
For example, the DeCOVID project at the Alan Turing Institute
is attempting to use clinical data to identify factors and generate
insights that can lead to more effective clinical strategies. Similarly,
physical and psychological (self) recordings could be used to aug-
ment personal plans. Due to the need to rapidly discharge patients
from hospitals, further monitoring could continue remotely with the
help of various existing remote care devices. For instance, AliveCor
[106] Kardia Mobile 6L device can assist healthcare professionals
in remotely managing COVID-19 patients by measuring QTc (heart
rate corrected interval) through a six-lead personal ECG [107].

13COVID19 Infodemics Observatory. [Online]. Available: https:
//covid19obs.fbk.eu/

14[Online]. Available: https://services.amazon.co.uk/services/fulfilment-by-
amazon/features-benefits.html

15[Online]. Available: https://tinyurl.com/CambridgeCenterAIMedicineCOVID

CLEW’s TeleICU solution is another remote care solution that can
help identify respiratory deterioration [108]. FreeStyle Libre [109]
is an app that connects people with their doctor remotely. Home
pulse oximetry [110] can also help decrease COVID-related mortal-
ity by performing detection remotely. Researchers at Northwestern
University and Shirley Ryan AbilityLab in Chicago have developed
a wearable device and are creating a set of algorithms tailored to
catch early signs and symptoms associated with COVID-19.16 Data
scientists could contribute to these remote care solutions. The USA
Department of Health and Human Services (HHS) has recently
announced an expansion of the coverage of Medicare for tele-health
visits in a bid to better manage the COVID-19 outbreak by [111].
Similarly, the COVID-19 Telehealth Program in the USA [112]
announced a $200 million funding in response to COVID-19 for
provision of virtual health services by healthcare practitioners to
patients at their homes or remote locations [113].

H. Supporting Vaccine Discovery and New Treatments

The international effort to discover or re-purpose drug treatments
and vaccines can also benefit from extensive data science work
predating COVID-19 [114]. For example, computational methods
can reduce the time spent on examining data, predicting protein
structures and genomes [115], [116]. It can also assist in iden-
tifying eligible patients for clinical trials [117], which is often a
time-consuming and costly part of drug development. There is also
substantial scope for applying advanced methods to managing trials,
such as applying Bayesian clinical trials to adapt treatments based
on information that accrues during the trial [118]. This may be
critical in expediting the delivery of drug treatments, and we argue
this is another area where data scientists can contribute. The field
of network medicine, which applies techniques and insights from
network science to medicine, is also being actively pursued for the
purpose of developing and validating computational tools that can
help identify drug repurposing opportunities [119].

I. Applications in Developing Countries

The above applications have primarily targeted developed coun-
tries. However, there are some unique challenges in developing
countries where data science could help. For instance, healthcare
systems in developing countries is struggling to provide health
services to their populations. This naturally becomes more critical
during a pandemic situation, as there is a shortfall of healthcare
professionals in developing countries. To tackle the current situa-
tion, developing countries need to strengthen their capacity in terms
of screening COVID-19 cases and health facilities and physicians
need to be equipped for management of identified cases. In all these
cases, data can be utilised for streamlining procedures. For instance,
mass screening can be performed by utilising mobile devices,
automated and remote care can be provided to the people living
in rural areas, country-wide (targeted) public awareness campaigns
using text messages can be carried out on personal hygiene and
social distancing, and contact tracing of positive cases and hot spot
identification can be performed to control and spread minimisation.

IV. SURVEY OF ONGOING DATA SCIENCE RELATED

COVID-19 RESEARCH

The above provides an overview of public datasets. Next, we
detail some of the ongoing research in this space. We theme this

16[Online]. Available: https://tinyurl.com/WearableCOVID19MonitoringDev
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section around the above datasets and summarise key studies in
Table V.

A. Image Data Analysis

Various studies [120]–[122] have used computer vision algo-
rithms to speed up the process of disease detection across several
imaging modalities with some studies demonstrating that image
analysis techniques have the potential to outperform expert radiol-
ogists [123], [124]. To diagnose COVID-19, two medical imaging
modalities (CT and X-ray) have been experimented with [125],
which we discuss below.

1) Computed Tomography (CT) Scans: Recent studies have
found that radiologists can diagnose COVID-19 using Chest CT
scans with lower false positive rates [126], [127] than other imaging
modalities such as X-ray and Ultrasound scans. Thus, many deep
learning (DL) techniques related to CT scans have been proposed to
expedite the diagnosis process. Wang et al. [128] utilise DL methods
to detect radiographical changes in COVID-19 patients. They eval-
uate the proposed model on the CT scans of pathogen-confirmed
COVID-19 cases and show that DL can extract radiological features
suitable for COVID-19 diagnosis. Xiaowei et al. [129] present a
method for the automatic screening of COVID-19 in pulmonary CT
scans using a 3D DL model with location-attention. They achieve
promising accuracy to identify COVID-19 infected patients scans
from other well-known infections. Chen et al. [130] exploit the
UNet++ architecture [131] to detect suspicious lesions on CT scans.
They trained their model on 289 scans and test on 600 scans. They
achieve 100% accuracy in identifying the suspicious areas in CT
scans of COVID-19 patients. Ophir et al. [132] employ 2D and
3D convolutional neural networks (CNNs) to calculate the Corona
score (which represents the evolution of the disease in the lungs).
They estimate the presence of the virus in each slice of CT scan
with a 2D CNN and detect other lung diseases (i.e., lung nodule) by
using a 3D CNN. Similarly in [133], a neural network (COVNet), is
developed to extract visual features from volumetric chest CT exams
for the detection of COVID-19. The study suggests that DL-based
models can accurately detect COVID-19 and differentiate it from
community acquired pneumonia and other lung diseases.

2) X-ray Scans: There has also been work on processing X-rays
scans. Although less sensitive than CT scans, they are less invasive,
have a lower ionising radiation dose, and are more portable. Fol-
lowing the IR(ME)R 17 guidelines, ionising radiation dose should
be kept As Low As Reasonably Achievable (ALARA) whilst still
producing an image of diagnostic quality. [134]. Ezz et al. [135]
propose a DL-based framework (COVIDX-Net) to automatically
diagnose COVID-19 in X-ray images. COVIDX-Net includes seven
different CNN models, such as VGG19 [136] and Google Mo-
bileNet [137]. The models can classify the patient status as either
COVID-19 negative or positive. However, due to a lack of data,
the technique is validated on only 50 X-ray images, among which
25 were of confirmed corona patients. Linda et al. [47] introduce
another DL-based solution tailored for the detection of COVID-19
cases from chest X-ray images. They also develop a dataset named
COVIDx and leverage it to train a deep CNN. In [138], three differ-
ent CNN-based models (i.e., ResNet-50, Inception and Inception-
ResNet) are employed to detect COVID-19 in X-rays of pneumonia
infected patients. The results show that the pre-trained ResNet-50
model [139] performs well, achieving 98% accuracy. Similarly,
Farooq et al. [140] provide the steps to fine-tune a pre-trained

ResNet-50 [139] architecture to improve model performance for de-
tecting COVID-19 related abnormalities (called COVID-ResNet).
Prabira et al. [141] use DL to extract meaningful features from
chest X-rays, and then trained a support vector machine to detect
infected patients. We also briefly note that several companies have
released commercial solutions, some of which are freely available,
e.g., Lunit [142] CXR solution for COVID-19 and VUNO Med
[143] solution for chest CT and X-ray scans. Such solutions help to
expedite the initial screening of COVID-19.

B. Textual Data Analysis

Researchers are currently utilising text mining to explore differ-
ent aspects of COVID-19, mainly from social media and biblio-
metric data. To assist in this, Kazemi et al. [144] have developed a
toolbox for processing textual COVID-19 data. This toolbox com-
prises English dictionaries related to the disease, virus, symptoms
and protein/gene terms.

In terms of social media research, Lopez et al. [145] explore
the discourse around the COVID-19 pandemic and government
policies. They use Twitter data from different countries in multiple
languages and identify the popular responses to the pandemic using
text mining. Similarly, Saire and Navarro [146] use text mining on
Twitter data to show the epidemiological impact of COVID-19 on
press publications in Bogota, Colombia. Intuitively, they find that
the number of tweets is positively correlated with the number of
infected people in the city. Schild et al. [147] inspect Twitter and
4Chan to measure sinophobic behaviour driven by the pandemic.
Cinelli et al. [148] analyse Twitter, Instagram, YouTube, Reddit
and Gab data on COVID-19. They find different volumes of mis-
information on each platform. Singh et al. [149] also monitor the
(mis)information flow across 2.7M tweets, and correlate it with
infection rates to find that misinformation and myths are discussed,
but at lower volume than other conversations. For those seeking
easy access to this information, the FBK institute is collecting
COVID-19 related tweets to visualise the presence of bots and
misinformation.17

In terms of bibliometric analysis, Li et al. [150] analyse research
publications on other coronaviruses (e.g, SARS, MERS). This
is used to build a network-based drug re-purposing platform to
identify drugs for the treatment of COVID-2019. Using module
detection and drug prioritisation algorithms, authors identify 24
disease-related human pathways, five modules and suggest 78 drugs
to re-purpose. The rapid growth in COVID-19 literature further led
Hossain et al. [151] to perform a bibliometric analysis of COVID-19
studies. They review relationships, citations and keywords.

Finally, there is work processing text data from patient records.
Roquette et al. [152] train a deep neural network to forecast patient
admission rates using unstructured text data available for triage.
There are also other studies that utilise text data mining techniques
to explore the important aspect of current situation.

C. Voice Sound Data Analysis

The most common symptoms of COVID-19 are linked to pneu-
monia, with the main mortality risk being cardiovascular and
chronic respiratory diseases. Hence, audio analysis is a potential
means for lightweight diagnosis. There is work performing diagno-
sis with respiratory and lung sound analysis [153], using low-cost

17[Online]. Available: https://covid19obs.fbk.eu/
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smartphones [154]. High mortality risk groups can also be continu-
ously monitored using speech analysis [155]. The patterns of coughs
[156], [157], sneezing [156], throat clearing and swallowing [158]
can all be analysed using speech processing. At present, COVID-19
speech data has limited availability, although the potential benefits
are highlighted in [153]. Thus, mobile apps like COVID-19 Sounds
attempt to collect large audio datasets. [159] presents an app called
AI4COVID-19 for the diagnosis of COVID-19. It requires a 2
second cough sample and provides the preliminary diagnosis within
a minute. This work confirms the feasibility of COVID-19 detection
using cough samples with promising results.

D. Embedded Sensor Data Analysis

Embedded sensor data is being used for remote patient care
and diagnosis [160]. This can include mobility data, physiological
vital signs, blood glucose, body temperature, and various other
movement-related signals. In [161], the authors develop a system
utilising real-time information, including demographic data, mobil-
ity data, disease-related data, and user-generated information from
social media. The proposed system, called α-Satellite, can provide
hierarchical community-level risk assessment that can inform the
development of strategies against the COVID-19 pandemic. Google
has also been using location data from smartphones to show people’s
movement during the pandemic [162]. Another study [163] presents
the design of a low-cost framework for the detection of COVID-19
using smartphone sensors. They propose the use of the mobile
phones of radiologists for virus detection. They highlight that the
proposed framework is more reliable as it uses multi-readings from
different sensing devices that can capture symptoms related to the
disease.

Another recent study [86] concluded that COVID-19’s “spread
is too fast to be contained by manual contact tracing”. To address
this, disease tracking apps [88] use contact/location sensor data.
The simplest ones aim to understand the spread of the disease,
particularly mild cases that are not routinely lab tested. For example,
the COVID Symptom Tracker app18 and COVID Near You19 ser-
vice. Others, like Hong Kong’s StayHomeSafe and Poland’s Home
Quarantine app [164], try to monitor if people obey quarantine rules
(via geofencing). More advanced solutions can notify users if they
have come into contact with somebody infected. Examples include
China’s Close Contact Detector app [165], China’s complementary
QR health code system [166]), Singapore’s TraceTogether [167]
app, and Israel’s HaMagen [168] app.

We note that one critical challenge in the above apps is protecting
user privacy [169], [170]. For instance, uploading contact data for
server-side computation could create a nation-wide database of
social relationships, particularly in countries where usage is manda-
tory. To address this, Decentralised Privacy-Preserving Proximity
Tracing (DP-3T) [171] was proposed. This is a mobile app that
offers privacy-preserving alerts for people who may have recently
been in contact with an infected person. TraceSecure [172] supports
similar features based on homomorphic encryption, whereas [173]
offers privacy guarantees via private set intersection. Apple and
Google have announced a partnership to develop their own privacy-
preserving contact tracing specifications based on Bluetooth.20

18[Online]. Available: https://covid.joinzoe.com/
19[Online]. Available: https://www.covidnearyou.org/
20[Online]. Available: https://www.apple.com/covid19/contacttracing/

E. Pharmaceutical Research

There is work to support the search for COVID-19 pharmaceu-
ticals. This has received substantial attention in recent months in
an attempt to build models to explore the 3D structure of SARS-
CoV-2. In [174], the authors use the AlphaFold model to predict
the structures of six proteins related to SARS-CoV-2. AlphaFold
[175] is a DL model based on a dilated ResNet architecture [139],
which predicts the distance and the distribution of angles between
amino acid residing on protein structure. In [176], the authors use
a DNN-based model for de novo design of new small molecules
capable of inhibiting the chymotrypsin-like (3CL) protease—the
protein targets for corona-viruses. Based on the results they were
able to identify 31 potential compounds as candidates for testing
against SARS-CoV-2. Studies also attempt to improve the RT-PCR
test by utilising ML and novel genome technologies. Metsky et al.
[177] employ CRISPR to develop assay designs for the detection
of 67 respiratory viruses.

As well as the above, studies have utilised ML models to speed up
drug development. Hu et al. [178] exploit a multi-task DNN for the
prediction of potential inhibitors against SARS-CoV-2. They aim to
identify existing drugs that can be re-purposed. Zhang et al. [179]
perform DL-based drug screening against 4 chemical compound
databases and tripeptides for SARS-CoV-2. They provide a list of
potential inhibitors that can help facilitate drug development for
COVID-19. Tang et al. [180] propose the use of reinforcement
learning (RL) models to predict potential lead compounds targeting
SARS-CoV-2. Similarly, in [181] the authors propose an antiviral
discovery approach using deep RL.

Finally, pharmaceutical interventions must go through clini-
cal trials before deployment. Accelerated clearance pathways for
COVID-19 studies have been established by several regulators
[211]. As of March 24, 2020, 536 relevant clinical trials were
registered. A major barrier though is recruiting suitable patients.
Data-driven solutions are available to rapidly identify eligible par-
ticipants [117], [212] and data collection platforms already exist to
monitor symptoms remotely [213].

V. BIBLIOMETRIC ANALYSIS OF COVID-19 RESEARCH

COVID-19 has been accompanied by a surge in the number of
related academic publications. We next explore how the academic
community has reacted to this urgency by conducting a bibliometric
analysis of the academic publications related to COVID-19.

A. Bibliometric Data Collection

There are many data repositories which contain COVID-19 re-
search articles, both peer-reviewed [22], [214], [215] and non-peer
reviewed [43]–[45]. We gather data from pre-print archives and
from the Scopus database. Each entry includes title, authors, journal,
publication date, etc. Our dataset covers papers on COVID-19
from all of the mentioned sources till June 19, 2020. We extracted
these papers from the corpus of papers using keyword matching on
titles and abstract of the paper. We use “COVID-19”, “COVID”,
“CoronaVirus”, “Corona Virus”, “Pandemic”, “Epidemic”, and
“SARS-CoV-2” as candidate keywords. Finally we did a manual
check to confirm that extracted papers do not include any unrelated
papers. In total, the dataset covers 11590 publications, of which
6461 are pre-prints and 5129 are from peer reviewed journals.
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Fig. 2. Cumulative distribution of publications per month on COVID-19 (data
gathered till June 19, 2020).

B. Peer-Reviewed vs. Non-Peer-Reviewed Publications

The pandemic has resulted in the rapid production of academic
material, much of which is yet to go through the peer review process
due to the urgency of dissemination.

Figure 2 presents the cumulative number of COVID-19 re-
lated papers published since December, 2019 including non-peer-
reviewed COVID-19 literature. We see that the number of papers
has increased dramatically since the beginning of January. To
date, non-peer-reviewed articles are the most numerous (bioRxiv,
medRxiv and arXiv combined), whereas peer reviewed articles
are also increasing. By far the most active outlet is medRxiv,
which has published 67% of all non-peer reviewed papers in our
dataset. Figure 3 complements the above analysis by presenting the
geo-distribution of both groups of publications. A major part of
COVID-19 research has been contributed by USA. China holds the
second position in terms of research contributions.

C. Research Topics

We next use topic modelling to identify core sub-topics within
the publications. For this, we use Latent Dirichlet Allocation (LDA)
[216]. This algorithm extracts and clusters abstract topics that exist
within the papers. We have tagged these papers manually based
on their title and abstract. Note that we split the results into peer
reviewed vs. pre-print publications.

Table VI, shows the list of topics observed in data science related
COVID-19 papers. These topics show that data science research
on COVID-19 is being carried out using various techniques and
algorithms. Noteworthy algorithms and techniques include multidi-
mensional kernel estimation, Bayesian learning, and deep learning
based epidemic forecasting with synthetic information (TDFESI).
We hope that these results will be useful to the community in
identifying key topics receiving coverage.

D. COVID-19 vs. Earlier Epidemics

We conclude our bibliometric analysis by briefly comparing the
rate of publication for COVID-19 research vs. prior epidemics. For
this, we select Ebola and SARS-CoV-1. Figure 4 presents a time
series for the first 3 years of peer reviewed publications. Note that the
X-range differs and, naturally, we only have data since December
2019 for COVID-19.

Fig. 3. Publication count of different countries on COVID-19 (data gathered
till June 19, 2020).

Fig. 4. Cumulative publication rates for peer-reviewed publications in
COVID-19, SARS-CoV-1, Ebola (data gathered till June 19, 2020). Note the
different X-ranges.
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TABLE VI
TOP TOPICS DISCUSSED IN COVID-19 DATA SCIENCE BASED

RESEARCH PAPERS

We see that COVID-19 literature is growing faster than any
prior epidemic. There have been more peer-reviewed publications
(∼5.1K) in around 6 months for COVID-19 than there were in
3 years for SARS-COV-1 and Ebola. Furthermore, as noted ear-
lier, there are even more pre-prints being released which means
that COVID-19 has rapidly overtaken other epidemics in terms of
academic attention. Of course, this is driven in-part by the wider
geographic coverage of COVID-19, impacting numerous highly
research active countries (e.g., China, USA, UK, Germany).

VI. CHALLENGES IN DATA SCIENCE RELATED

COVID-19 RESEARCH

In this section, we highlight some of the most important data sci-
ence challenges. We specifically focus on cross-cutting challenges
that impact all previously discussed use cases.

A. Data Limitations

Data science systems typically learn and improve as more data is
gathered over time. Ideally, the data should be of high fidelity and
voluminous. For many of the above use cases, extensive labelled
datasets are not yet available, e.g., for speech analysis. Although
there are a few publicly available datasets for medical images
and textual analysis, these datasets are small compared to the
requirements of deep learning models. For example, in the case
of biomedical data, sample sizes range from a few up to 60 patients

(see [9]). The scarcity of measured data is frequently due to the
distributed nature of many data sources. For example, electronic
healthcare records are often segregated on a national, regional, or
even per-hospital level. A key challenge is therefore federating
these sources, and overcoming practical differences across each
source, e.g., in terms of schemas. Thus, better and more automated
approaches to data munging, data wrangling etc. may be critical
in attaining fast, reliable and robust outcomes. Common standards
and international collaboration will help.

Beyond these challenges regarding data availability, there are
also major challenges within the data itself. The time-critical nature
of this research is causing hurdles in developing certain types of
high-quality dataset. For instance, by the time social media data is
collected, curated and annotated it can become obsolete. Due to this,
COVID-19 datasets and their causal interpretations often contain
poorly quantified biases [32]. For example, daily infection rates in
Japan exhibit few similarities to those in the Italy. Training models
on unrepresentative datasets will lead to poor (and even dangerous)
outcomes. Whereas techniques such as transfer learning could
allow models to be specialised with regional characteristics, the
fast-moving nature of the problem can make it difficult to perform
informed model selection and parameterisation. A key challenge
is devising analytical approaches that can work with these data
limitations.

B. Correctness of Results vs. Urgency

There is a clear need for rapid results, yet the methods surveyed
in this paper are largely based on statistical learning using (rapidly
produced) datasets. In a recent systematic review of prediction
models for diagnosis and prognosis of COVID-19, Wynants et al.
[217] report that all 31 reviewed prediction models have a high
risk of bias (due to non-representative selection of control patients
and model overfitting). The reported models are therefore error
susceptible. This is an inherent risk in all scientific work but,
given the fast-moving nature of the situation, errors can have
severe consequences. It should further be remembered that the
outcomes of research may impact healthcare policy. For example,
predictions may be used by governments to decide the extent of
social distancing. Yet political actors are often less well placed to
understand the nuance of scientific studies. We therefore posit that a
key challenge is balancing exigency vs. the need for well-evidenced
and reproducible results that can inform policy.

Due to the above, another clear challenge is finding ways to
capture and represent the uncertainty of conclusions produced
within the flurry of research. Bayesian methods can be used to
capture uncertainty, although we have seen limited quantification
of uncertainty in studies so far [218]. To ensure the correctness
of data analysis, researchers must also describe their goals and
process, and facilitate reproducible conclusions, e.g., sharing code,
data and documentation. This, again, can create challenges as such
requirements are balanced against the need for urgency. Another
potential avenue is ‘Explainable AI’ [219], which can be used
to provide context to results. That said, it is not clear if this will
protect against problems such as unintentional bias [220] or even
adversarial scenarios [221].

C. Security, Privacy, and Ethics

Most of the works that we discussed imply the sharing and/or use
of potentially sensitive data. Devising solutions that exhibit good
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results but also protect privacy and adhere to high ethical standards
is a key challenge. We argue that this could be vital for encouraging
uptake among populations, particularly as infrastructure setup may
persist beyond the pandemic [222]. There are already substantial
efforts to build privacy-preserving medical analytics. For exam-
ple, MedCo [223] uses homomorphic encryption to allow sites to
federate datasets with privacy guarantees. Drynx [224] supports
privacy-conscious statistical analysis on distributed datasets. This
links closely into the availability of data (see §VI-A), as often data
can only be shared when robust privacy guarantees are in place.

Broadly speaking, there is some consensus as outlined in Floridi
et al. [225] on the five main “AI ethics principles”: (1) beneficence,
(2) non-maleficence, (3) autonomy, (4) justice, and (5) explicabil-
ity. However, in the situation imposed by COVID-19, decisions
may need to choose a trade-off between these AI ethics virtues
[226], [227]. For example, to what extent does the current situation
warrant the prioritisation of “public health” and “beneficence” over
“individual privacy” and “autonomy”. And even if this is warranted
in the short-term, how can we ensure that these compromises do not
become permanent and it is possible to roll back these trade-offs
in the future as the situation changes. Other difficult questions
include the issue of allocation of scarce resources and the trade-offs
involved therein. As highlighted in the Call for Action presented
in March 2020 by a coalition of experts on data governance [228],
there is also a need for data sharing between the public and private
sectors to ensure that data is used for “beneficence”. In effect, the
failure to share data in such contexts may be considered maleficence
since withholding critical data may block an opportunity to bring
potential benefit. That said, good governance mechanisms with
suitable regulations should be in place to oversee ethical use of
data as much as possible.

Privacy may also become particularly challenging when consid-
ering the roll-out of interventions (e.g., targeted social distancing
measures), as the intervention itself may expose sensitive informa-
tion [229]. This, for example, may apply to contact tracing apps,
which strive to notify users when they have been in contact with
an infected person. Although privacy-preserving implementations
exist (e.g., DP-3T, TraceSecure), notifications may still allow users
to guess who the infected person is (see [230] for a discussion of
security issues in tracing apps).

To move ahead, simple measures can be adopted to help ensure
ethical data science research. For example, data collected should be
transparent (the users should be informed about what data is being
collected) and stewarded with a limited purpose (even when it is
anonymised) and governed with ethical oversight and appropriate
safeguards (e.g., with time limits and sunset provisions). Interested
readers are referred to several comprehensive data ethics resources
[225], [231]–[235], to a recent report from the TUM Institute for
Ethics in Artificial Intelligence [226], and the IEEE Global Initiative
on Ethics of Autonomous and Intelligent Systems [227] on the
ethical challenges involved in using AI for managing the COVID-19
outbreak.

D. The Need for Multidisciplinary Collaborations

Our understanding of COVID-19’s long-term impact is prelim-
inary. Contributing serious insights will require a mix of domain
expertise from multiple fields, and there is already a push for better
international collaboration and tracking of COVID-19 [236]. For
example, the use of black-box models might yield a superficially
practical solution, but could be useless without the involvement of

(international) medical and biotechnology expert interpretations.
This will further have implications for licensing technologies and
engendering uptake (as healthcare professionals are unlikely to
engage with technologies developed without medical expertise).
Rapidly bringing together cohorts of complementary expertise is
therefore important. This also brings many further challenges, e.g.,
ensuring a team’s interpretation of things like ethics, benefits and
risks are coherent.

E. New Data Modalities

The data science community has limited exposure to certain
modalities of data that may prove critical in combating COVID-19.
A natural challenge is rapidly adapting existing techniques to re-
flect these new data types. For example, whereas the community
has substantial expertise in computer vision tasks, there is less
experience in processing ultrasound scans. Yet these have shown
good results that are similar to chest CT scans and superior to
standard chest radiography for the evaluation of pneumonia and/or
acute respiratory distress syndrome (ARDS) in corona patients
[237], [238]. They also have the benefit of greater ease of use,
absence of radiation, and low cost. Despite these advantages, to the
best of our knowledge, no study has yet explored the potential of
automatically detecting COVID-19 infections via ultrasound scans.
Similarly, magnetic resonance imaging (MRI) is considered the
safest imaging modality as it is a non-invasive and non-ionising
technique, which provides a high resolution image and excellent
soft tissue contrast [121]. Some studies like [239] have described
the significance of MRI in fighting against COVID-19 infections.
Yet the modality remained under-explored by the computer vision
community due to a lack of sufficient training data. Thus, a challenge
is to rapidly develop a well-annotated dataset of such medical
imaging modalities.

F. Solutions for the Developing World

The COVID-19 pandemic poses unique challenges to popula-
tions that have limited access to healthcare (e.g. in developing
countries), particularly as such people are disproportionately af-
fected by limited access to information [240]. A key challenge is
developing technologies that are designed so that they are globally
inclusive. This requires considering how such technologies will
impact different communities, and exploring how they could be
deployed in both rural and economically deprived regions [241]–
[243], as well as how they might be misused in certain contexts. This
subsumes several practical challenges that naturally vary based on
the specific use case. For example, if building a mobile app for
contact tracing, it should be low cost and require limited resources;
it should be designed with limited network connectivity in-mind; it
should also support multiple languages and be accessible to illiterate
users or those with disabilities. We emphasise that ensuring wide
accessibility of technological solutions is critical for addressing this
global pandemic.

VII. CONCLUSION

Data scientists have been active in addressing the emerging
challenges related to COVID-19. This paper has been written to
make available a summary of ongoing work for the wider commu-
nity. We have attempted to make five broad contributions. We first
summarised publicly available datasets for use by researchers. This
is intended as a community resource to shorten the time taken to
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discover relevant data. We then presented relevant use cases of data
science, which have the potential to help in the pandemic. This is by
no means a comprehensive list and we expect the set to expand in the
coming months. Following this, we surveyed some of the ongoing
research in this area. As the paper is mainly intended for a computer
science and engineering audience, we themed our analysis around
the different types of datasets available. Following this, we broad-
ened our analysis and presented a bibliometric study of thousands of
publications in recent months. Finally, we highlighted some of the
common challenges we observed as part of our systematic review,
e.g., availability of data and privacy concerns. We also note that
many of the systems discussed in this paper are not operational
yet. In view of this, we intend to keep updating our live resource
repository with new information.
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