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ABSTRACT The semantic analysis of nasal endoscopic video is a challenging task since lots of irrelevant
and insignificant information exists in the untrimmed surgical video, i.e. background, blur, judder or blood-
stained video fragments. It is important to identify the start and end point of the valid surgical fragments
automatically and remove the invalid fragments of endoscopic surgery videos for medical education &
research. However, the performance of deep-learning based methods, which use a fixed time interval
and a sliding window, are severely affected when the interference information appears randomly in the
nasal endoscopic video. Specifically, the surgical video is a continuous process globally, while many
local discontinuity fragments are brought when endoscope enters and exits the cavity frequently. Hence,
we propose a multi-granularity semantic analysis framework that can simultaneously meet the accuracy and
timeliness required for endoscopic surgery video semantic analysis. Our approach is an end-to-end solution.
First, a joint model is created to extract the temporal-spatial features of the surgical video on a coarse-grained
scale. Meanwhile, an attention mechanism is used to automatically select the informative spatial features of
endoscopic video. Second, a hierarchical self-correction module is proposed to correct the boundaries of
the surgical operation iteratively on a fine-grained scale. Finally, we justify the proposed network through
extensive experiments and quantitative comparisons against other state-of-the-art approaches. We achieve a
good performance in terms of accuracy and efficiency.

INDEX TERMS Multi-granular hierarchical, nasal endoscopic surgery, self-correction, video semantic
analysis.

I. INTRODUCTION
Endoscopic surgery has been more and more practiced in
nasal surgery in recent years because of its less trauma and
quick recover [1]–[3], the number of nasal surgery videos was
continuously booming. These videos provided a great basis
for documentation, training of young surgeons [4], medical
research [5] and analytics in healthcare [6].

Usually, a complete endoscopic surgical video is recorded
from the beginning of the operation to the end of the opera-
tion. Not only the surgical operation fragments are preserved,
but also some unrelated surgical operations such as cover-
ing the endoscope lens with blood stains, defocusing the
lens during movement, and cleaning the endoscope lens are
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also retained. However, doctors only need the valid video
clips after the surgery. They have to edit the video to make
it more convenient. It is not only difficult and time con-
suming for Doctors to manually edit the video but also is
very expensive to ask a third-party agency, such as SurgiCast
(https://www.surgicast.io/medical-video-editing), to edit [7].
There is a great opportunity for researcher to develop the
methods to automate the editing of endoscopic surgery
videos. Semantic analysis of endoscopic surgical videos is
one of the most important keys in the automation [8]. As is
shown in Figure1. Semantic analysis methods not only are
able to analyze the start and end point of the surgical oper-
ation, but also can analyze the invalid images in the opera-
tion. Endoscopic surgery video is characterized by continuity
and discontinuity. Continuous surgical operations are inter-
rupted by these invalid shots in the endoscopic surgery video.
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FIGURE 1. An overview of our task. (a) An untrimmed video of an endoscopic surgery. We need to determine the start and end points
of each surgical procedure segment. (b) Analyze the blurred image of the surgical procedure. (c) Analysis of the blurred image of the
endoscope outside the cavity.

Especially, the randomness of discontinuity block the way to
find the start point and end point. Moreover, the operation of
the surgery is a continuous process, but a complete operation
is split into discrete pieces due to various phenomena such as
the need to clean the endoscope lens. And these interruptions
are random, there is no regularity at all.

Most of the researches were focused on the lesion detec-
tion [9], lesion segmentation [10], and lesion diagnosis [11],
all of which were performed on a single frame of image.
On the other hand, there were studies on classification of
gynecological organs, eight kinds of surgical operation recog-
nition customized in abdominal surgery video [12]. However,
there were relatively few studies on semantic analysis of
nasal surgery videos [13]. Popular methods usually used a
fixed time interval [14] or a sliding window [15] to generate
candidate proposals and perform semantic analysis in the
field of natural scene video. But these methods were not very
effective in semantic analysis of endoscopic surgery video
because of the random discontinuity of endoscopic surgery
videos.

In this article, we propose a new framework for semantic
analysis on endoscopic surgery videos via a deep neural net-
work, which is called Multi-granular Hierarchical Network
(MHN) as is shown in Figure2. First, a four classification
was performed on successive n key frames by using an end-
to-end spatial-temporal feature modeling. After obtaining a
preliminary prediction sequence result, a more granular cor-
rection was applied for a hierarchical self-correction module.
Finally, the automatic marking of the surgical operation was

implemented, and the automatic editingwas completed. From
inputting the original video into the network and outputting
the edited effective surgical screen video, the whole process
did not require human participation. It was a fully automatic
processing mode.

In summary, the key contributions of our work include:
• This work provides the first semantic analysis for nasal
endoscopic surgery video using deep learning method.
And we propose a framework that automatically detects
non-surgical operations in endoscopic surgery video.

• Semantic analysis of endoscopic surgery video with
multi-granular spatial-temporal features combined with
modeling scheme.

• The hierarchical structure of the self-correction module
from rough to fine is proposed to improve the accuracy
of surgical video semantic analysis.

• Compared with state-of-art performance [16], [17],
our method further improves the accuracy on our
dataset to 89%.

The rest of this article is organized as follows. In Section 2
some relevant works are reviewed. In Section 3, we describe
the details of our proposed approach. In Section 4, we present
the experiments and results. Finally, we present our conclud-
ing remarks in Section 5.

II. RELATED WORK
A. ENDOSCOPIC IMAGE PROCESSING
Recently, Deep convolutional neural network (CNN)
[18]–[20] has made breakthroughs in various task such as
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FIGURE 2. An overview of the semantic analysis framework. We first extract keyframes from the video and input successive t keyframes
into a CNN that incorporates the attention module. Then, the feature map extracted from the CNN is input into the LSTM module for
sequential learning. Finally, the results of the previous step are entered into a hierarchical self-correction module for more precise
semantic analysis.

image classification [18], image segmentation [19], object
detection [20] and so on. Despite the difference between natu-
ral andmedical images, deep learning has been imported from
endoscopic image processing and presented impressive per-
formance on polyp recognition [21], bleeding detection [22],
and polyp classification [23]. At the same time, deep learn-
ing has also made great progress of solving some specific
problems of the field of medical imaging. For example, deep
learning is used to study deformable registration methods
of medical images [24]. Detection of respiratory diseases
from medical images of heuristic algorithms [25]. Bacterial
recognition model composed of regional covariance of con-
volutional neural network [26]. And Ibtehaz and Rahman [27]
used MultiResUnet network to segment multi-peak medical
images. Further, the semantic analysis of surgical video based
on deep learning technology has gradually gained the atten-
tion of researchers [13]. For example, Twinanda et al. [28]
used CNN to extract image features from laparoscopic chole-
cystectomy video, and migrated the pre-trained Alexnet
model to the medical field, in combination with the hidden
Markov model. Finally, a single frame image recognition rate
of 92.2% was obtained. Petscharnig and Schöffmann [12]
used CNN and support vector machine models to identify
eight surgical operations that were customized in the video
of abdominal surgery. These works are based on the single
frame image of the surgical video. Although CNN effectively
improves the ability to express features, the process of pro-
cessing a video stream into a single frame tends to ignore
hidden features in nasal endoscopic surgery videos, which
makes it difficult to improve the accuracy of nasal endoscopic
surgery video analysis.

B. VIDEO SEMANTIC ANALYSIS
Although few researches on the semantic analysis methods
of medical videos were developed, there were many new
methods in the natural scene video. Action recognition and
temporal action detection are two important branches of video
semantic analysis and has been extensively studied [29]–[32].

Action recognitionmodels can be used to extract summary-
level visual features in untrimmed video. Action recogni-
tion has been extensively studied in the past few years
[29]–[33]. Earlier methods are mostly based on hand-crafted
visual features such as HOF, HOG and MBH [33]. In recent
years, two-stream network [29], [30], [34]and C3D net-
work [31], [32], [35] learns appearance and motion features.
Typically, two-stream network learns appearance and motion
features based on RGB frame and optical flow field sepa-
rately. For example, Lin et al. [30] proposed a Boundary Sen-
sitive Network (BSN), which used two sub-networks (spatial
network and temporal network) for encoding video informa-
tion. Because this kind of method modeled the spatiotem-
poral features of video separately, it was easy to ignore the
relevance. The defects of this method are gradually exposed
in many tasks. C3D network adopt 3D convolutional layers
to capture appearance and motion features directly from the
original frame. For example, Xu et al. [32] introduced a
spatial-temporal feature-preserving filter in a C3D network
to maximize the resolution of the video in the time dimen-
sion, which improved the accuracy of video frame-by-frame
recognition effectively. However, the 3D network has the
higher requirements on data and hardware, and the training
difficulty had to be improved. On the other hand, the method
often performs poorly for the scenes with frequent video
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shot switching. The 3D convolutional network did not
improve the performance of video content parsing tasks sig-
nificantly although it overcame the shortcomings of the above
Two Stream convolutional network.

Temporal action detection task aimed to detect action
instances in untrimmed videos including temporal bound-
aries and action classes, and could be divided into proposal
and classification stages. Earlier works [36] directly used
sliding windows for the proposal generation. Recently some
methods [14], [37] generated the proposals with pre-defined
temporal durations and intervals, and used multiple methods
to evaluate the confidence score of proposals, such as dictio-
nary learning [14] and recurrent neural network [37]. These
two methods had a good semantic analysis effect in natural
videos with continuous features, especially standard prede-
fined actions. However, these methods for semantic analysis
may have some major disadvantages due to the discontinuity
of endoscopic video: (1) usually not temporally precise,and
surgical video requires more precise positioning; (2) Fixed
pre-defined temporal durations and intervals are not suitable
for randomly occurring invalid images.

At the same time, the Visual Question Answering (VQA)
task is also a new field that involves action detection, but
VQA not only needs to focus on action detection, but also
needs to understand the text. And VQA also works on single-
frame images. So its method is not applied to our work.

Compared to these methods, our multi-granularity seman-
tic analysis method is superior to in two aspects: (1) Coarse-
grained analysis overcomes the random discontinuity of
endoscopic surgery video. (2) Fine-grained hierarchical self-
correction more accurately locates the boundaries of surgical
operations.

III. MULTI-GRANULAR SEMANTIC ANALYSIS
The semantic analysis of surgical video has become more
difficult because of the coexistence of video continuity and
discontinuity in endoscopic surgery. We propose a spatial-
temporal combined framework MHN to solve this problem
as is shown in Figure2. Generally speaking, from input to
output, no human intervention is required. After inputting the
original video, through the processing of the model, the out-
put only retains meaningful video clips. Firstly, a coarse-
grained semantic analysis is performed on the combination of
spatial-temporal features. The coarse-grained analysis com-
bines the spatial and temporal characteristics of CNN and
RNN networks, and introduces the attention mechanisms on
the spatial network to enhance the learning of spatial features.
Thereby ensuring the accuracy of the analysis and taking
into account the timeliness of the surgical video analysis.
Secondly, the hierarchical correction of coarse-grained
results provide more precise positioning of surgical action
boundaries based on the timing relationship.

A. DATA DEFINITION
An untrimmed video is a sequence of frames. The Key
frame or I-frame was defined as a single frame of digital

FIGURE 3. Examples of nasal endoscopic images in our dataset. (In) Clear
operation shots inside the nasal cavity. (Out) Clear shots outside the
nasal cavity. (Fuzzy-in) Blurred shots inside the nasal cavity. (Fuzzy-out)
Blurred shots outside the nasal cavity.

content that the compressor examines independent of the
frames that precede and follow it and stores all of the data
needed. The video sequence can be denoted as X = {xn}kn=1
where xn is the nth key frame in X. Key frame. In our
work, we extract a key frame every fifteen original frames
and mark the time points and labels for each key frame.
The nasal endoscopic image was pre-defined as four labels
Y = In, Out, Fuzzy-in, Fuzzy-out} by the medical profes-
sional. As is shown in Figure3, Our data samples have large
internal differences and small differences between categories,
which will make semantic analysis difficult. In particular,
there are big differences not only between the In category and
the Fuzzy-In category but also between the Out category and
the Fuzzy-Out category. In general, after semantic analysis
of the nasal surgery video, only the In category shots are kept
during editing. However, sometimes in order to maintain the
continuity of the surgical video, the Fuzzy-In category shots
are usually retained.

B. CRUDE-GRANULARITY ANALYSIS ON
SPATIAL-TEMPORAL FEATURES
As is shown in Figure4, after extracting the key frames of
the surgical video, CNN was used to learn spatial features.
An attention mechanism was introduced to perform feature
tracking based on the particularity of the endoscopic image.
Further, the time characteristics were learned through the
Recurrent Neural Network (RNN) network, a coarse-grained
sequence was generated as the result.

We applied a deep neural network architecture, ResNet-50
developed by He et al. [38]. as our spatial feature extrac-
tor. ResNet is a deep CNN architecture containing residual
learning blocks to address a problem of degradation during
learning very deep networks. The output of each block of
ResNet-50 has half spatial resolution compared to that of the
previous block. Various settings for the feature extractor have
been tested, including deeper ResNet-101, different designs
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FIGURE 4. An overview of the Crude-granularity framework. The video sequence is decomposed into
key frames and entered into the CNN model with the fully connected layer removed. The Attention
module is introduced into the CNN model. After obtaining the result sequence predicted by the spatial
model, the LSTM module is added to perform the time dimension modeling.

FIGURE 5. Examples of endoscopic images imaged by different
endoscopic devices.

of the convolution neural network, and up sampling to the
image width 512. The results are similar. Therefore, the sim-
pler and computationally efficient setting was chosen.

The endoscopic image has a distinct difference from other
images. Since the shapes of endoscopes with different spec-
ifications are different, the final image area is an irregular
polygon or a circle. As is shown in the Figure5, the shape
of the endoscope lens of different manufacturers is also dif-
ferent. There are many studies on the analysis of irregularly
shaped endoscopic images. For the related work of detection
in the circular area of endoscopic video [39], the MultiRe-
sUNet [27] network is used to solve the problems of different
scales of medical images. In our work, we introduced the
SENet [40] attention module on the spatial network to track
the effective information of the image. SENet can automati-
cally obtain the importance of each feature channel through
learning, and then use this importance to enhance useful
features and suppress features that are not very useful for the
current task. As is shown in the Figure4, through the CNN
network convolution transformation, a two-dimensional fea-
turemapwith a channel number of C and a featuremap size of
H*W was obtained. It is input into the attention module unit

as an input feature. First, in the spatial dimension, through the
global average pooling layer, each two-dimensional feature
channel will be transformed into a real number. This real
number was used to characterize the global receptive field
of the feature map, and the output dimension is consistent
with the input feature channel number. Then, a Bottleneck
structure was formed by two fully connected layers to model
the correlation between channels, and the same number of
weights as the input features were output. First, the feature
dimensionwas reduced to 1/16 of the input, and then activated
by ReLU and then returned to the original dimension through
a Fully Connected layer. Compared with using a Fully Con-
nected layer directly, it had more nonlinearities and could
better fit the complex correlation between channels. It also
greatly reduced the amounts of parameters and calculations.
Then we used a Sigmoid activation function to obtain the
normalized weight between 0 and 1, and finally we used
the scale operation to weight the normalized weight to the
characteristics of each channel. As is shown in Eq 1, s refers
to the weight sequence output by the attention module,σ
refers to the ReLU activation function,δ refers to the sigmoid
activation function,W1 ∈ R

C
r ×C ,W2 ∈ RC×C

r , and z refers to
the real number obtained by the global average pooling layer.

s = σ (W2δ(W1z)). (1)

Compared with some methods for detecting circular areas,
the use of attention mechanism is more universal. And we
avoid the method of dividing the image first and extracting
the effective area before processing.

Since our job is to perform semantic analysis on endo-
scopic video, the key frames extracted from the original
video not only have spatial features, but at the same time,
the temporal characteristics of continuous key frames are
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also what we want to learn. It is known the key frame can
be judged roughly by the preceding and succeeding frames
when the video is continuous. We use RNN to capture global
information and long-term dependencies, which is able to
learn patterns and long-term dependencies from sequential
data. Moreover, LSTM [41] is a type of RNN architecture
that stores information about its predictions in other regions
of the cell state, it can predict the classification of key frames
based on the relationship of consecutive frames. LSTM has
the characteristics of selective memory that can control the
transmission status through the gated state: Remembering
the useful information for a long time and ignoring the
unnecessary information. As is shown in Eq2, zf performs the
forgetting control that keeps the previous memory cells that
should be retained and be forgotten, zi is the selects memory
control that selects important information to record.

ct = zf ·ct−1 + zi·z. (2)

We used the CNN network to do local feature extraction, and
used the LSTM network to model the timing relationship of
consecutive frames. The combination of the two networks
could simultaneously took into account the spatial character-
istics of the key frame image and the temporal characteristics
of consecutive key frames. As is shown in Figure 4, we used
the LSTMmodule to model continuous key frames in order to
obtain more temporal feature information in the endoscopic
video. We added an LSTM module behind the CNN network
based on the attention module. Each training needs to input
n consecutive key frames and output n classification results.
In our work, we first trained the resnet-50 model with the
attention module added. On this basis, we removed the last
layer of the fully connected layer and fine-tune it to obtain the
512-dimensional features of the output and used it as an input
to connect a unidirectional LSTM network. The LSTM net-
work had 512 neurons and 5 times step. Therefore, the input
of the CNN network was a vector unit composed of 5 consec-
utive key frames. After the LSTM module, the predicted key
frame category was output through a fully connected layer.
We set 4 neurons for the fully connected layer to correspond
to the four key frame categories.

C. FINE-GRAINED SEMANTIC ANALYSIS ON
TIME SERIES RELATIONSHIP
In coarse-grained analysis, it is not sufficiently accurate to
use keyframes as sample sequences for surgical operation
boundary localization. In order to make the boundaries of
the cropped effective video clips more precise, we proposed a
fine-grained hierarchical self-correction module to solve this
problem.

In the coarse-grained module, the CNN model is used to
analyze the key frame image sequence and obtain the prelim-
inary result sequence. In addition, in the result sequence, two
adjacent key frames with different types of results are found.
In this way, it can be considered that the previous frame is
the end point of the previous candidate video, and the next
frame is the start point of the next candidate video. At a coarse

FIGURE 6. Schematic diagram of layered self-correction. (a) From the key
frames of adjacent candidate video clips, extract the original frames
between these two key frames to reconfirm the boundary frame results.
(b) Update the key frame sequence by the self-correction result obtained
from the original frame.

FIGURE 7. Hierarchical Self-correction Flowchart. K: All original frames in
the middle of consecutive keyframes. M: sampling interval. yi : Result
label. Max Value: Number of largest categories. N: Update interval
sampling parameters. µ: Threshold.

granularity, in order to consider the timeliness and accuracy
of video analysis, we use key frames to analyze the video.
In order to improve the accuracy of the video clip boundaries,
we performed a hierarchical analysis of the original frames at
the beginning and end of the candidate video. As is shown
in Figure 6 (a), for adjacent P1 and P2, the original frame in
the middle of these two key frames is extracted to reconfirm
the boundary frame result. Figure 6 (b) assumes that after the
original frame discrimination, the judgment results of the start
and end points of the P2 candidate segment have changed.
Update the key frame sequence with the correction result. The
updated original frame sequence will obtain new candidate
fragments. In the fine-grained layered correction, we have
designed a total of 3 layers of correction. The example in the
figure where L0 points to L1 refers to the first layer of correc-
tion. The specific calibration process is shown in Figure 7.
We assume that there are K original frames between the nth
key frame and the n + 1th key frame. Each layer samples
K/M frames at intervals of M frames. For these sampled
original frames, we analyze and calculate the results through
the spatial feature model. If the number of categories in the
sampled original frame is the largest and greater than the
threshold µ, then we regard the category as a valid result, use
this result to update the nth key frame result, and end the ana-
lytic hierarchy process. Otherwise, by updating the interval
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TABLE 1. Data set distribution.

sampling, N is subtracted from M to update to the new M
value, thereby sampling more original frames and continuing
the analysis. Finally, when M is updated to 1, the maximum
number of categories does not exceed the threshold, we end
the fine-grained module and retain the original results.

IV. EXPERIMENT
A. EXPERIMENTAL SETTINGS
1) DATASETS
Our dataset is based on the key frame of 2 hours of clini-
cal nasal endoscopic surgery video extraction from the First
Affiliated Hospital of Xi’an Jiaotong University,China. There
are total 17783 images. These images are marked in the four
shot categories. The number of each categories are displayed
in the Table1. Among them, the training set, verification set
and test set are randomly distributed according to a ratio of
about 7: 2: 1. These surgical videos are from 12 different nasal
surgeries. The model of the endoscope is Olympus ENF-T3
with a resolution of 720 * 576. And the preprocessing is
224 * 224 when inputting the model.

2) IMPLEMENTATION DETAILS
Optimization was performed using synchronous SGD with
momentum 0.9, a learning rate of 0.001 and decay of 0.0001.
The entire experiment was implemented using Python 3.5,
based on the Tensorflow 1.18.0 environment, running on two
12 GBNvidia Tesla K80 GPUmachine with batch size 16 for
100 epochs.

3) EVALUATION METRICS
the performance of the model quantitatively is measured by
using four commonly used metrics where TP, TN, FP and
FN denote the number of true-positive, true-negative, false-
positive and false-negative detection results, respectively.
Recall reflects the classification model’s ability to identify
positive samples. The higher the recall, the stronger the
model’s ability to identify positive samples. Precision reflects
the model’s ability to distinguish negative samples. The
higher precision indicates the model’s ability to distinguish
negative samples. The higher the F1-score is, the more robust
the classification model is.

B. RESULTS ANALYSIS
1) ANALYSIS OF COARSE-GRAINED RESULTS
First, we analyzed the effect of the coarse-grained model.
Figure8 is a Class Activation Map (CAM) comparison chart
between the coarse-grained model and backbone. From the
CAM chart, the heat in the effective area is significantly

FIGURE 8. Through the class activation graph of each category,
the effects of the first convolution layer and each residual block after
adding the attention module are compared. The first column is the
original image of each category.

FIGURE 9. Example of ROC chart comparison between coarse-grained
model and backbone model, orange is coarse-grained model, green is
backbone model.

increased after the attention module is added to the back-
bone. More attention will be given on valid areas. Secondly,
we compared and analyzed the ROC curves of the backbone
and the coarse-grained model. The results shown that the
effect of the coarse-grained model was significantly better
than that of the backbone in Figure9.

In addition, we compared the effect of using only the
backbone and adding the LSTMmodule to the backbone. The
results were shown in Figure 9. After adding the LSTMmod-
ule backbone, the accuracy rate reached 0.82, the weighted
average accuracy, the recall rate and f1score reached 0.82.
Compared with the backbone, the accuracy was improved
by 7%. At the same time, we also compared the evaluation
results of each analogy. Among them, the improvement of
Out category and Fuzzy-In category was more obvious than
the Fuzzy-out category. The analysis of the above results
showed that for time-series tasks, CNN networks performed
semantic analysis by learning spatial features and obtained

VOLUME 8, 2020 158323



X. Pan et al.: Multi-Granular Semantic Analysis Based on Nasal Endoscopic Video

TABLE 2. The results of backbone model, coarse-grained model and MHN are compared under precision, recall and f1 score in macro avg and weighted
avg. Also compares the feature types of accuracy and different models.

TABLE 3. The backbone model, coarse-grained model, and MHN are compared with the precision, recall, and f1score of each category.

TABLE 4. The evaluation time of MHN and some state-of-the-art models
in accuracy, total parameters, and semantic analysis of a surgical video of
about 12 minutes were compared.

good results. On this basis, through the LSTM module to
further learn the timing characteristics, the performance of
classification will be better.

Finally, as is shown in Table 2, compared with the back-
bone, the coarse-grained model has been partially improved.
The accuracy rate reached 0.85, an increase of 10%. As is
shown in Table 3, the results of the Fuzzy-In category show
that the accuracy of the coarse-grained model reaches 0.79,
which is 47% higher than the backbone accuracy, while the
f1score reaches 0.70, which is an increase of 23%. The
results of the Fuzzy-Out category show that the accuracy of
the coarse-grained model reaches 0.94, 44% higher than the
backbone, the recall rate is 10% higher than the backbone,
and the f1score is 17% higher than the backbone. Compared
with the network where the LSTM module is added to the
backbone, the results of the coarse-grained model can prove
the effect of the attention module. Increased accuracy by 3%.
Precision increased by 5%, recall increased by 4%, and
f1score increased by 1%. However, the effect is still not
satisfied by analyzing the two index recall and f1score. Then
we added the fine-grained modules to MHN and shown the
results as follows.

2) FINE-GRAINED RESULTS ANALYSIS
Further, we analyzed the results of the fine-grained model
from Table2, we concluded that the effects of the macro
average and weighted average of our method were better than
the backbone and coarse granularity. Especially, the recall
and f1score are significantly improved, which mean that
our method had better stability. MHN’s weighted average

FIGURE 10. Confusion matrix of Crude-granularity and Ours.

precision, recall, and f1score all reached 0.89. Comparedwith
coarse-grained, precision increased by 2%, recall increased
by 3%, and f1score increased by 6%. Moreover, the perfor-
mance of accuracy is 14% higher than backbone and 4%
higher than the coarse granularity. The comparison results of
each category shown in Table3 suggest that MHN has good
classification accuracy and good stability in each category.
In particular, recall in the Fuzzy-out category are 40% higher
than coarse-grained, and f1score is 35% higher. As is shown
in Figure 10, the left picture is the confusion matrix of the
coarse-grained model, and the right picture is the confusion
matrix of the fine-grained model. It can be clearly found
that the fine-grained model improves the fuzzy-in category
and the out category. In addition, we analyzed the effect of
fine-grained model correction. The success of fine-grained
model correction means that the starting and ending points
of an effective surgical video will be more accurate, and the
video viewing effect after editing will be smoother. Correc-
tion failure refers to a situation where the judgment error of
the coarse-grained model cannot be corrected. According to
the statistics of the test data, a total of 97 corrections were
completed, of which 69 corrections were successful and the
correction success rate was 71%.

Finally, as is shown in Table4, we compared the accu-
racy, total model parameters, and model processing time
with several state-of-the-art indicators. Our model had the
significantly higher accuracy than other models that only
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FIGURE 11. The ROC curves and AUC results of MHN and some
state-of-the-art models are compared.

learned spatial features. The final accuracy rate reached
0.8927, which was an 8% improvement over Xception. The
total parameter amount was not increased remarkably and
the processing speed was also within an acceptable range.
The processing time was shorter than of InceptionV3 and
Xception although our module had more parameters. The
main reason is that more time is cost in image pre-processing
for both InceptionV3 and Xception.

As is shown in Figure11, we also compared the ROC with
these methods. We could find that the ROC chart clearly
reflected the performance advantage of our method for video
analysis of nasal endoscopic surgery.

These results suggest the effectiveness ofMHN.AndMHN
achieves the salient performance since it can generate pro-
posals with (1) the attention module pays more attention
to the effective image area in irregular endoscopic images.
(2) The LSTM models continuous key frames to better cap-
ture the timing information in the endoscope video. (3) The
self-correction module further accurately judges the bound-
aries of the surgical operation.

V. CONCLUSION
In this article, we present a framework for nasal endoscopic
video semantic analysis. Our method can accurately and
efficiently analyze the surgical operation part of the nasal
endoscopic surgery video and remove the blurred frame.
In experiments, we demonstrate that feature learning com-
bined with spatial and temporal is better than spatial learning
alone. Moreover, the hierarchical self-correction from coarse
to fine further improves the accuracy of semantic analysis for
nasal endoscopic video, and this hierarchical structure greatly
improves the efficiency.
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