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Abstract—We propose a framework for the analysis of elec-
tronic voting schemes in the presence of malicious bulletin
boards. We identify a spectrum of notions where the adversary
is allowed to tamper with the bulletin board in ways that reflect
practical deployment and usage considerations. To clarify
the security guarantees provided by the different notions we
establish a relation with simulation-based security with respect
to a family of ideal functionalities. The ideal functionalities
make clear the set of authorised attacker capabilities which
makes it easier to understand and compare the associated
levels of security. As an application, we study three protocols
of the literature (Helios, Belenios, and Civitas) and identify the
different levels of privacy they offer.

1. Introduction

Electronic voting aims to achieve the same properties
as traditional paper based voting. Even when voters vote
from their home, they should be given the same guarantees,
without having to trust the election authorities, the voting
infrastructure, and/or the Internet network. A key property
is vote privacy, also called ballot privacy: no one should
know how I voted. Many schemes have been designed to
achieve vote privacy under various trust assumptions (e.g.
Helios [1], Civitas [2], Selene [3], sElect [4], or Alethea [5]
to cite a few). The typical strategy is to encrypt the votes
under a key for which the corresponding decryption key is
split among several authorities – at least a certain number of
authorities are required to decrypt and tally. The motivation
for this design is that in this setting the voting server which,
among other functions, maintains the public bulletin board,
does not need to be trusted.

It has recently been observed e.g. in [6], [7], [8] that this
trust assumption is not appropriately captured by existing
security definitions. In brief, existing definitions (e.g. [9],
[10], [11]) consider a game where the adversary controls the
votes cast by honest parties but cannot control the resulting
ballots: these get placed on the bulletin board before it is
tallied and cannot ever be modified or removed. In other
words, current notions allow to prove security of schemes
only under the (unrealistic) assumption that the bulletin board
contains all of the submitted honest votes, in the order in
which they were submitted; no honest ballot is dropped or
modified. This is actually a much stronger assumption than

simply requiring a public, append-only bulletin board, as
often mentioned as an (informal) assumption in many papers.

This gap between security goals and security definitions
has recently been confirmed by Roenne [12] in the case of
Helios [1], a popular voting scheme. Roenne’s attack shows
that an attacker can break privacy as soon as he can tamper
with the communications between the voters and the bulletin
board. In short, the attacker blocks and learns Alice’s first
encrypted ballot, then Alice votes again (from her point of
view, something went wrong, so she simply starts again) and
then the attacker casts Alice’s first ballot in his own name.
Then looking at the result, the attacker learns information
about Alice’s vote. For example, in the extreme case of only
two voters, the attacker learns her vote, even if Alice and
Bob voted differently. This attack works even in the presence
of a public, append-only bulletin board. Moreover, it seems
impossible to prevent the attack even if voters and external
auditors carry out additional checks (e.g. forbidding duplicate
ballots). Even detecting the attack would require unrealistic
countermeasures where every voter carefully records all of
her ballots, even the ones that failed to reach the ballot box.

To fill this gap, one line of work [13], [6], [11], [14]
studies how to implement a bulletin board that is strong
enough to prevent the adversary from tampering with the
ballots. However, whether or not such implementations are
sufficient to meet the (very strong) assumptions of existing
privacy proofs has not yet been formally studied. Moreover,
some implementations require a heavy infrastructure, not
necessarily aligned with the designers’ goals.

In this work, we pursue an alternative approach where
our goal is to define vote privacy under the sole assumption
that all participants can see the same board; the content of
the board is under the complete control of the adversary.
While this consistent view assumption is not necessarily easy
to achieve in practice, it is significantly less onerous than
assuming that absolutely all honest ballots reach the ballot
box, before the adversary even gets to see them, as assumed
so far in privacy definitions.

To contextualise some of our design choices, it is useful
to discuss the security of Helios against an adversary who
can control the bulletin board. Recall that in Helios voters
encrypt their votes and send their encrypted ballots to a
bulletin board, that displays them. The tally is done through
mixnets or using the homomorphic property of the encryption.
Importantly, voters can and should check that their ballot
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appears on the bulletin board.
How much security does Helios provide when the board

which collects the votes behaves maliciously? The answer
to this question strongly depends on the behaviour of the
users involved in the election.

1. The strongest guarantees are offered when all of the
honest voters vote and check that their vote appears on the
bulletin board. In this case the result of the election contains
all of the honest votes plus at most as many votes as the
number of voters controlled by the adversary.

2. Assume now that not all honest voters vote, but those
who vote, also check that their ballot appears on the board.
Over the previous scenario, the security of Helios decreases.
Indeed a malicious board may use absentee voters to place
ballots of her choice. So the privacy of the election is as
good as what an attacker can learn from a result formed
from honest voters who did vote and any choice of votes
from the remaining voters (dishonest or not).

3. Finally, the most common scenario is that not all
honest voters vote and only a fraction of them actually
conduct the suggested verification steps. In this case the
security of Helios decreases even further. A malicious board
may now selectively remove ballots that have been cast by
voters who do not check. Hence a malicious board has now
even more control on the result which, in turn, may leak
more information about the honest votes since the board
may contain fewer votes (and more of which are selected
by the adversary).

The examples above make it clear that it is difficult
to settle on a unique definition of privacy: each scenario
is, at least in theory, possible and each corresponds to a
different level of guarantees. The strongest privacy level for
a voter’s ballot is obtained when her ballot is always tallied
together with all of the other honest votes. For Helios, such
a level of security corresponds to the first case above but
can only be provided under the unrealistic assumption that
all voters verify that their vote has been cast. Alternatively,
we could consider a weaker variant, where the adversary can
remove some (prespecified) number of ballots. This attacker
corresponds to case 3 where only some voters check that
their ballot has been recorded correctly. A benefit of this
relaxation is that it would allow to study the security of
more schemes: while the attacker may remove votes, we
would like to understand how harmful these actions are with
respect to the privacy of the remaining votes.

However, if we settled only on the weak variant, we
would not be able to express that security guarantees vary
considerably between different usage scenarios of the same
scheme, as our three examples above show. Moreover, while
in the above examples we only identified three relevant levels
of privacy for Helios, we note that other schemes may require
even more different levels.

A spectrum of privacy definitions is also useful to
compare different schemes. A “black or white” definition
would declare a set of voting schemes secure while the rest
would be deemed insecure. Instead, it is clearly more useful
to spell out conditions under which some scheme is “more
secure” than another one. For example, in Civitas [2], due to

the use of credentials, a malicious server may drop ballots
from honest voters who do not check but cannot replace
them with arbitrary ballots, like in Helios. In that respect,
Civitas is more secure since the adversary can infer less from
the result. This is a more precise analysis than declaring
Civitas private and Helios insecure.

1.1. Our contributions

We make four contributions which address the chal-
lenges outlined above. Throughout, unlike most existing
privacy definitions, we assume a malicious voting server.
Furthermore, we assume that the adversary (an arbitrary
probabilistic polynomial time algorithm) fully controls the
network, and a set of dishonest voters, in addition of course
to the voting server. We highlight however that our privacy
definition still assumes a trusted setup and a trusted tally.
While verifiability notions have already been studied and
formally defined against a dishonest talliers for example, this
remains unexplored regarding privacy. We also leave it for
future work (one issue at a time!).

Game based security. Our first contribution is a family
of rigorous game-based definitions for ballot privacy against
malicious bulletin boards. The general idea behind existing
game-based definitions is that the adversary has to distinguish
between two situations. The first considers the case where
honest voters submit ballots containing votes selected by the
adversary. This is the “real world”. In the second scenario
the adversary does not see the real ballots. Instead, honest
voters submit “fake” ballots corresponding to other votes,
also chosen by the adversary. If no adversary can tell the two
worlds apart, even given the result of the election, then no
information is leaked about the underlying votes. However,
such a definition would immediately break if we freely tally
the board seen by the adversary: the result immediately
reveals whether he is in the real or the fake world. To tackle
this issue, two main approaches have been proposed. One
approach rooted in the seminal work of Benaloh [9] is to
only compute the tally if the multiset of honest votes in the
real world coincides with the multiset of honest votes in the
fake world. This restricts the applicability of the definition
only to elections where the result of the election is the
multiset of votes. A recent approach which allows for the
study of arbitrary counting functions (e.g. STV or Condorcet)
builds upon the security notion BPRIV introduced in [15].
Here, the tally is always computed on the real board, even
when the adversary gets to see the fake ballots. Additional
properties identified in [10] then guarantee that the tally does
not leak extra information by enforcing that the tally always
corresponds to the content of the board.

The assumption that the bulletin board itself is dishonest
adds significant complications which probably also explains
why most existing vote privacy definitions assume an honest
voting server. Both definitional approaches outlined above
break immediately when considering a dishonest server and
need to be “patched”. To be able to apply the restriction
in Benaloh’s approach, we need to determine which honest
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ballots have indeed reached the ballot box, which is made
difficult by the fact that the adversary could have altered
them. Similarly, in the BPRIV approach, we need to return
to the adversary the tally of the honest votes even when he
sees fake ballots. However, an adversary who fully controls
the ballot box may tamper or drop all ballots submitted by
the honest parties. Moreover, as discussed above, we need to
distinguish between the case where removing honest ballots
is an actual attack or corresponds to some actions which are
in fact allowed by the scheme.

Since building on top of the Benaloh style definition
is not necessarily simpler and limits the class of schemes
one can analyse, we work with the more general BPRIV
framework. Our solution to the technical problems outlined
above is to define the security only for schemes where we
can somehow detect how an adversary tampers with the
bulletin board. To this end, we demand the existence of a
recovery algorithm which, given the set of honest ballots
and the board to be tallied, can detect how the adversary
has modified the ballots issued by the honest users. The
output of the recovery algorithm can be thought of as a
small tampering program, written in a small programming
language with commands that act on the bulletin board (e.g.
delete honest votes, modify votes, re-order votes, etc.). This
recovery algorithm is a parameter of the security definition
and can be used to determine which honest votes to tally
for the adversary. Of course, the more actions the recovery
algorithm allows, the less security guarantees we get. We
emphasise that this detection procedure is an artefact of our
modelling approach, and not a procedure which could, for
example, be run during the execution of the protocol to
detect tampering.

Relation with simulation-based security. Next, we val-
idate our game-based definitions of security by relating
them with simulation-based notions. In this latter definitional
approach, security is defined with respect to some ideal
functionality that captures a small set of possible behaviours,
corresponding to a very abstract model of the system.
Functionalities capture security somewhat more directly,
which facilitates understanding of some of their associated
security guarantees.

We remark that our goal explicitly being to establish
the relation with such a simulation-based definition, is an
additional reason why we build on top of the BPRIV
framework rather than using Benaloh’s approach. Very
roughly, Benaloh’s definition does not seem to allow to
construct a simulator which can simulate on the fly a
fake board towards an adversary: the global consistency
requirement between the subtally of the real votes seems to
preclude an on-line simulator which can fake a board, since
the simulator would learn at a later point only the result
which corresponds to the cast votes.

The typical definition for simulation based vote privacy
involves a functionality which collects the list of votes of
all parties (honest and corrupt) and simply returns the result
of the election determined by the list. To capture the setting
where an adversary can to some extent tamper with the

bulletin board (and therefore the list of votes that is tallied)
we modify the ideal functionality to reflect this adversarial
ability. We now give a high level (and imprecise) sketch of
how we proceed. Similarly to how our game-based notion is
parametrised by the recovery algorithm, the functionality is
parametrised by a small tampering “programming” language
P – think about P as containing commands that tamper
with the board (e.g. delete ballot(i), insert ballot(b)). After
it collects the votes, but before it returns the result, the
functionality allows the adversary to tamper with the votes
list via an arbitrary program f which uses the commands in
P (e.g. delete ballot(1); delete ballot(4); delete ballot(5))
before returning the tally1.

We can then establish a link between security w.r.t.
mb-BPRIV parametrised by recovery algorithm f and
idealised security with respect to an ideal functionality
parametrised by tampering language P . Provided that f and
P are compatible (roughly: they allow the same commands
on the list of ballots/votes), then any scheme which is
mb-BPRIV secure and strongly consistent is secure with
respect to the ideal functionality. Strong consistency, a
notion introduced in [10], demands that the tally reveals only
the desired result function on the votes (and no additional
information).

Relation with verifiability. Our definitions exhibit a
subtle interplay between verifiability and privacy which is
worth discussing. Our ideal functionalities reflect different
adversarial capabilities and restrictions to modify honest
votes. Is this a privacy or a verifiability property? Intuitively,
ballot privacy says that the adversary should not learn more
information about the votes than the result itself. Hence,
whether or not the adversary can remove or alter honest
votes, or add more votes (all of which are actions which
verifiability could/should prevent), gives more control to
the adversary over the result and therefore with the level of
privacy offered by the voting scheme. Similarly to [8], we can
show that ballot privacy entails some form of verifiability, for
a spectrum of verifiability notions that echoes our spectrum
of privacy levels.

Case studies. As applications of our definitional contri-
butions we study the security of three standard protocols
when the adversary can control the bulletin board: Helios [8],
Belenios [16], and Civitas [2]. For each protocol in turn we
identify which ideal functionalities they achieve and under
which trust assumptions. In particular, we highlight that
Civitas is the only scheme among the three that guarantees
that ballots cannot be reordered, even by a malicious board.

1.2. Related work

The first game-based definition which considers a mali-
cious board has been proposed by Bernhard and Smyth [7].
Their definition extends Benaloh’s approach [9]. The ad-
versary submits a board and the tally is performed only
if the ballots on the board that come from honest voters

1. Actually, we capture validity of tampering functions via predicates
which do more than only syntactic checks.
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are such that the subtally does not differ in the “left” and
“right” worlds. This somehow corresponds to one possible
instance of our recovery algorithm in mb-BPRIV, where the
attacker may remove any honest vote and add an arbitrary
number of votes, independently of whether honest voters
do check their ballot and independently of the number of
dishonest voters. Note that [7] requires that ballots cannot
be modified at all (e.g. they cannot contain a tag such as
the date). Perhaps the most important technical difference
from our approach is that Benaloh’s definitional approach
does not seem to allow a formal link with a simulation-based
notion of security. Furthermore, this approach assumes that
the counting function admits partial tally, which discards
many modern counting functions such as Condorcet or STV.
The shortcomings that stem from the use of Benaloh’s
approach are also shared by [8]. This definition can be
again seen as an extension of Benaloh’s definition but which
assumes that all honest voters check that their ballot appears
on the bulletin board.
Recently, Bursuc, Dragan and Kremer [17] have studied
the security of encryption schemes where ballots can be
partially modified, for example by a malicious device. They
propose a variant of BPRIV that accounts for such behaviours.
The case of a malicious board corresponds to the case
where ballots can be fully modified. Then for malicious
boards, vote privacy as defined in [17] can be seen as an
instance of mb-BPRIV where the recovery algorithm lets the
adversary tamper arbitrarily with the honest ballots. However,
in such a case, all schemes would be declared insecure. So
the model of [17] does not seem suitable to reason about
malicious boards in general. Instead, it addresses a class
of schemes where security is due to the part of the ballot
that is securely transmitted to the (honest) board, despite the
adversary tampering with the other parts of the ballot.

The approach we take in this paper is to understand
the level of security offered by schemes when faced with
an adversary who is allowed to tamper with the bulletin
board. A different approach adopted by a series of recent
works [13], [6], [11] aims to ensure that such tampering
is not possible. This line of work nicely complements our
approach – in particular, our mb-BPRIV definition assumes
that voters all see the same board. On the other hand, [13],
[6], [11] propose systems that use a distributed algorithm
to provide a consistent view of the board among the voters
and the auditors. [14] formalises generic conditions on such
algorithms that are sufficient to guarantee this consistency,
and shows how to implement a bulletin board that achieves
their conditions. In particular, their board guarantees that
honest ballots are not removed nor reordered. In other words,
they provide sufficient conditions to realise one (strong)
security level of the boards we consider, at the price of
multiple independent servers. In contrast, we provide a ballot
privacy definition that can cope with various bulletin boards,
including weaker ones where the attacker could tamper with
the ballot box (e.g. removing some honest ballots, reordering
the ballots). We do not study how to realise these different
boards.

2. Background

In this section we recall some terminology from existing
literature, and fix some assumptions which we will use
throughout the paper. We consider a finite set I = H ∪D of
voter identities, partitioned into the sets H and D of honest
and dishonest voters. H is further partitioned into sets Hcheck

and Hcheck, meant to contain the identities of voters who
verify their vote (resp. do not verify).

We study schemes for which the adversary can legally
tamper with the bulletin board (NB: throughout the paper
we use bulletin board and ballot box interchangeably.) For
concreteness, we make a mild assumption regarding the
format the bulletin board takes.

Definition 1 (Bulletin board). A bulletin board BB is a list of
ballots of the form (p, b) where p is called a public credential
and b is a ciphertext. BB[j] denotes the jth element of BB.

We will also call extended bulletin board a board where
elements are associated to an identity, i.e. a list of elements
of the form (id , (p, b)).

Definition 2 (Voting scheme). A voting scheme consists of
seven algorithms:

V = (Setup,Register,Pub,Vote,Valid,Tally,Verify).

• Setup(1λ) computes a pair of election keys (pk, sk)
given a security parameter λ.

• Register(1λ, id) generates a private credential c for
voter id and stores the correspondence (id , c) in a list
U, used for modelling purposes.

• Pub(c) returns the public credential associated with a
credential c.

• Vote(pk, id , c, v) constructs a ballot (p, b) for user id
with private credential c, containing vote v, using the
public election key pk. It also returns a state to the
voter, that models what a voter should record, e.g. her
ballot. One can think about this state as any information
a voter would need to record, e.g. to verify if the ballot
has been cast.

• Valid(BB, pk) checks that the board BB is valid.
• Tally(BB, sk) uses the board BB and the secret election
key sk to compute the result r of the election, and
potentially proofs Π of good tallying.

• Verify(id , s,BB) represents the checks a voter id , with
local state s, should perform on a board BB to ensure
her vote is counted.

Counting functions are the functions which calculate the
result of an election. For example, the result of an election
can be the sum of the votes for each candidate, or the multiset
of votes, or the result of more complex voting methods such
as Condorcet or Single Transferable Vote.

Definition 3 (Counting function). A counting function ρ is
a mapping that takes a sequence S of pairs (id , v), where
id ∈ I and v is a vote, and returns the result of tallying the
votes in S. It may use the ids to apply a revote policy.

We assume a special value ⊥ that represents the case of
an invalid vote (e.g. obtained by decrypting a ballot that was
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incorrectly generated). We require that counting functions
ignore this value, i.e. that for all l, l′, ρ(l||⊥||l′) = ρ(l||l′).

3. Game-based Security

In this section we present our game-based notion for
vote privacy. Namely, ballot privacy ensures that ballots do
not reveal information about the underlying votes. We will
show that ballot privacy implies simulation-based security,
provided that the scheme is additionally strongly consistent,
that is that the tally function behaves as counting the votes
extracted from the ballots.

3.1. mb-BPRIV

Ballot privacy has been proposed by Bernhard et al [10].
It captures the idea that ballots themselves do not reveal
information about the underlying votes (even after tallying).
That notion models an honest ballot box whereas we consider
a malicious one. To distinguish between the two notions we
refer to the existing one as hb-BPRIV security and to the
notion we introduce here as mb-BPRIV. We start with a high
level discussion of the notion which we introduce, provide
a formal definition and then discuss its salient features over
those of hb-BPRIV.

We consider a game which pits an adversary against a
voting scheme. The adversary has partial information about
honest users’ votes: for each such user the adversary selects
a left-or-right challenge consisting of two votes v0 and v1.
The game computes the ballots corresponding to the votes
but returns to the adversary the ballot which corresponds
to vβ , for some hidden bit β which the adversary needs to
determine. However, the game keeps track of two bulletin
boards BB0 and BB1 (the ordered list of ballots calculated
in response to the adversary’s queries) – the adversary sees,
essentially, BBβ . The adversary then creates a public bulletin
board BB, by using the honest votes and arbitrary other votes
it creates.

The key aspect of the definition is how the game
computes the tally it returns to the adversary. When the
adversary is in the world where he sees BB0, the game
simply tallies BB, the board which the adversary returned.

When the adversary is in the world where he sees BB1

(so where BB is calculated using BB1) we need to determine
how the adversary manipulated the votes on BB1 to produce
the board he returned to be tallied. To define security we
demand that it should be possible to (efficiently) determine
which of the honest ballots have been cast, on which position
on the bulletin board, and which ones have been removed.
Once this transformation is determined, the game applies it
to BB0, tallies the resulting board and returns the result to
the adversary. We explain a bit later in the paper how an
insecure scheme would allow a distinguishing attack in the
game we outlined above.

Technically, we represent the transformation which de-
scribes how the adversary constructs BB from BB1 as a
selection function, and we formalise the process of recovering
this transformation as a recovery algorithm.

Definition 4 (Selection function). For m,n ≥ 1, a selection
function for m, n is any mapping

π : �1, n� −→ �1,m� ∪ ({0, 1}∗ × {0, 1}∗)
Intuitively, π represents the process used by an adversary

to construct a bulletin board BB of n ballots from a given
board BB1 of m ballots. For i ∈ �1, n�, π(i) indicates how
to construct BB[i]:

• π(i) = j ∈ �1,m� means this element is the jth from
BB1;

• π(i) = (p, b) means that this element is (p, b).

A bit more formally:

Definition 5 (Applying a selection function to a board).
Consider a selection function π for m,n ≥ 1. The function
π associated to π maps an extended board BB0 of length m
to a board π(BB0) of length n such that for any j ∈ �1, n�,

π(BB0)[j]=

{
(p, b) if π(j) = i and BB0[i] = (id , (p, b))
(p, b) if π(j) = (p, b)

.

Note that we could consider a more general selection
function that applies an arbitrary transformation to honest
ballots (e.g. shifting a vote). We consider this version for
simplicity and also because it should cover most of the
reasonable needs (it is unlikely that shifting votes should be
considered as acceptable).

The “recovery” algorithm which recovers the selection
function used by the adversary takes as input two boards and
some additional data d (intuitively, this piece of data contains
the link between voter identities and public credentials).

Definition 6 (Recovery algorithm). We call recovery algo-
rithm any algorithm RECOVER that, given a board BB, an
extended board BB1, and some additional data d as input,
returns a selection function for |BB1|, n for some n.

We discuss the role of RECOVER and how it can be inter-
preted after we provide our formal definition for mb-BPRIV.

The following definition formalises ballot privacy of some
scheme V in a setting where the adversary A controls the
voting server hence the ballot box. Recall that we consider
some fixed set of voter identities I partitioned between two
sets H and D of honest and dishonest voters. We also assume
that some subset Hcheck of H of users perform whatever
checks the scheme expects to be executed before the tally
is performed. The execution described in Figure 1 starts
with the generation of a public key for the election and
its associated secret key (to be used for tallying). Next, a
number of voters from an arbitrary set I are registered. We
keep this aspect of the execution fairly abstract: we assume
a registration algorithm/protocol is executed for each user
id ∈ I and we only record the secret credential c and its
associated public credential Pub(c). We use respectively
arrays U and PU to record these. We also use array CU
to record the secret credentials for some (arbitrary) set of
dishonest users D.

The adversary gets as input pk,CU and PU. It also gets
access to a left-right voting oracle. On input an identity id
and two potential votes v0 and v1, the oracle computes two
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ballots for id , one for each adversarially selected vote. It
records the first ballot in list BB0 and the second in list
BB1. We remark that we model a voting algorithm which is
stateful. This is a necessary feature if one wants, as we do,
to consider voters who perform additional actions after they
have voted (e.g. checking that their ballot has been cast). For
each user, we store the resulting state (for both worlds) in
arrays V0 and V1, respectively. This phase corresponds to the
voting phase where the users submit their ballots. Then, the
adversary prepares a bulletin board BB which it would like
to be tallied. If the bulletin board does not pass the validity
test then tally does not occur and the adversary needs to
output his guess at this point.

Otherwise, the adversary gets control over the users who
check via the oracle Overify, to which it submits arbitrary
identities. The oracle records the set of users who have
checked in variable Checked and the set of users for which
the check was successful in variable Happy.

If all of the voters who should check do check success-
fully, then the adversary gets to see the tally of the election.
Otherwise the adversary must produce his guess without
seeing the tally.

Finally, one of the salient aspects of our definition is
how the experiment calculates the tally. In the real execution
(i.e. β = 0) the tally is simply executed on BB. In the fake
execution (i.e. β = 1) the tally first employs the RECOVER

algorithm which parametrises the game to determine how
the adversary has tampered with the votes it has seen (i.e.
BB1) to produce the board it asks to be tallied. Then the
game applies the transformation obtained this way to BB0.
The resulting board is tallied and the result, together with a
simulated proof, is returned to the adversary.

Definition 7 (mb-BPRIV w.r.t. a recovery algorithm). Let
V be a voting scheme, and RECOVER a recovery algorithm.
Consider game Expmb-BPRIV,RECOVER,β

A,V,SimProof defined in Figure 1.
V satisfies mb-BPRIV w.r.t. RECOVER if there exists a
simulator SimProof such that for any polynomial adversary
A,
|P(Expmb-BPRIV,RECOVER,0

A,V,SimProof (λ)=1)− P(Expmb-BPRIV,RECOVER,1
A,V,SimProof (λ)=1)|

is negligible in λ.

Our definition is parametrised by a recovery algorithm,
which is a rather non-standard feature. We explain the role
it plays through an example. One way to think about the
recovery algorithm is that it aims to detect the (legal) actions
which the adversary took when tampering with the board.
For a secure scheme, it should be possible to understand
how each ballot on the bulletin board to be tallied has been
created, i.e. was it submitted by an honest user, was it created
by the adversary, was it submitted by an honest user but
modified by the adversary, according to what is considered
to be acceptable.

The following example sheds some light on the role
played by the recovery algorithm in our security definition.
Similarly to the Helios scheme, assume a scheme where
copying a ballot and submitting it in the name of another
voter is possible. There are already two possibilities. Either

this is completely allowed by the scheme (scheme A, no
weeding is performed) or such duplicate ballots should be
weeded out and therefore a board with duplicate ballots
would be rejected (scheme B). Now, even when no weeding
is performed, such a weakness (letting the adversary copy
votes) may be well identified and accepted by the users (case
1) or not accepted (case 2). To win mb-BPRIV, the adversary
can proceed as follows. First, it submits (id , 1, 0) to the
voting oracle. The game calculates b0 and b1 and returns bβ
to the adversary. The adversary returns for tallying a board
containing bβ , b

′
β , where the adversary turned bβ into an

equivalent ballot b′β , which contains the same vote as bβ . In
the left world, the tally returns 2. What happens in the right
world depends on which recovery algorithm we consider. If
we pick a recovery algorithm that does not detect that b′β is
a duplicate of bβ , then it interprets b′β as a fresh adversarial
ballot. The board which will be tallied is then b0, b

′
1, so the

result would be 1. The scheme would thus be insecure for
this recovery algorithm. This corresponds to case 2: ballot
copying has not been identified as an acceptable behaviour
and therefore this is an attack. Conversely, if we pick a
recovery that detects that b′1 is a copy of b1, then the board
submitted to tally would be b0, b

′
0, where b′0 is obtained from

b0 using the same action the adversary used on b1, so the
result would also be 2, and it would not help the adversary
to distinguish. The scheme would then be mb-BPRIV for
this recovery algorithm which detects the copying action.
This corresponds to case 1: the users are aware that ballot
copying is possible and this is not considered an issue. Yet,
the users would like to perform a privacy analysis: are there
other behaviours that may leak some information on the
votes?

We see here that the RECOVER we choose determines
the security level provided by mb-BPRIV. Our example
where ballots can be copied would be declared insecure
for a RECOVER that does not detect copied ballots, as
this RECOVER is unable to detect what the adversary did,
but secure for a RECOVER that does detect copies. The
second RECOVER detects more possible actions from the
adversary, and hence allows the adversary to do more
without breaking mb-BPRIV: so this variant of recovery
algorithm yields weaker security guarantees. More generally,
the transformations which RECOVER detects limit what an
adversary is allowed to do without breaking mb-BPRIV. An
adversary that can perform some actions that RECOVER does
not detect will break mb-BPRIV, as in the example. Thus,
proving a given voting scheme mb-BPRIV for a RECOVER

that detects less behaviours from the attacker gives stronger
security guarantees: it means that no adversary can have
such behaviours, as otherwise mb-BPRIV would break.

Finally, it is instructive to consider the case where the
scheme itself detects and discards such copies (to offer better
privacy). This is scheme B. Then, even if we pick the first
recovery algorithm, the one that does not detect that b′β
is a duplicate of bβ , the scheme would satisfy mb-BPRIV.
Indeed, as the scheme itself detects and prevents the adversary
from copying ballots, there is no need for RECOVER to detect
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Expmb-BPRIV,RECOVER,β
A,V,SimProof (λ)

V0,V1,Checked,Happy← ∅
(pk, sk)← Setup(1λ)

for all id ∈ I do

c← Register(1λ, id)

U[id ]← c,PU[id ]← Pub(c)

for all id ∈ D do CU[id ]← U[id ]

BB← AOvoteLR(pk,CU,PU)

if Hcheck �⊆ V0,V1 then return ⊥;
if Valid(BB, pk) = ⊥ then

d← A(); output d

AOverifyBB()

if Hcheck �⊆ Checked then return ⊥
if Hcheck �⊆ Happy then d← A();
if Hcheck ⊆ Happy then

d← AOtallyBB,BB0,BB1 ()

output d.

OvoteLR(id , v0, v1)

if id /∈ H then return ⊥
(p0, b0, s0)← Vote(pk, id ,U[id ], v0)

(p1, b1, s1)← Vote(pk, id ,U[id ], v1)

V0[id ]← s0,V1[id ]← s1

BB0 ← BB0 ‖ (id , (p0, b0))
BB1 ← BB1 ‖ (id , (p1, b1))
return (pβ , bβ).

OverifyBB(id) for id ∈ Hcheck

Checked← Checked ∪ {id}
if Verify(id ,Vβ [id ],BB) = 
 then

Happy← Happy ∪ {id}

OtallyBB,BB0,BB1
() for β = 0

(r,Π)← Tally(BB, sk)

return (r,Π)

OtallyBB,BB0,BB1
() for β = 1

π ← RECOVERU(BB1,BB)

BB′ ← π(BB0)

(r,Π)← Tally(BB′, sk)

Π′ ← SimProof(BB, r)

return (r,Π′)

Figure 1. The mb-BPRIV game.

this behaviour. Just as intuition should say, such a scheme
would be mb-BPRIV with a recovery algorithm that detects
less, which ensures a stronger level of security.

3.2. Instantiations of mb-BPRIV

In this section we describe three instantiations of
mb-BPRIV with recovery algorithms relevant for the
schemes we study in this paper. Recall that the recovery
algorithm aims to determine how the adversary tampered
with the board. For clarity, in our examples we indicate in
the indices of the recovery algorithms the actions which we
expect each recovery algorithm to be able to detect. For
example, RECOVER

del,reorder would be expected to detect,
for each vote in turn, if the adversary has blocked it from
appearing in the final tally, or if it has changed the order
in which it was cast. In that case, such actions are deemed
acceptable. We detail this recovery algorithm and discuss
how it works. We then provide two variations: one which
adds an additional capability to the adversary (and thus
makes the associated mb-BPRIV variant weaker) and one
which restricts the power of the recovery algorithm (and thus
makes the associated variant stronger).

For each instantiation we informally describe the power
we expect the adversary to have and then give a matching re-
covery algorithm. Our instantiations assume an efficient algo-
rithm that can extract an identity and a vote from each ballot.
Formally, we assume two functions extractid and extractv
such that for any (p, b) generated by Vote(pk, id ,U[id ], v),
then extractid(U, p) = id and extractv(sk, b) = v with over-
whelming probability. We then write extract(sk,U, p, b) =
(extractid(U, p), extractv(sk, b)) the extraction function that
extracts (id , v) from (p, b). Typically, the extraction of the
vote is simply the decryption of the ballot. The extraction

of the identity may consist in reading the first component
of the ballot (e.g. in Helios) and is based on the credential
(e.g. in Belenios). This extract function will also be used in
other parts of the paper.

3.2.1. del + reorder. We start with adversaries who are
allowed to arbitrarily change the order of the votes in the
ballot box, and remove the votes of the voters who do not run
the verification algorithm, but who cannot replace these votes
with other votes of their own choosing. In other words, if an
adversary succeeds in replacing a vote, he will win the game.
Conversely, if she simply blocks a ballot, this will not form
an attack. Below, we informally describe the transformation
the recovery algorithm recovers (as it is applied to the board
in the left world).

Given BB1 and BB, when applied to BB0,
RECOVER

del,reorder will construct a board BB′ where

• Each ballot in BB that comes from BB1 is replaced with
the ballot at the same position in BB0.

• The other ballots in BB are considered to be cast,
provided they do not belong to a honest voter, i.e. if
they do not extract to a honest identity. They are added
to BB′ as is.

• In addition, all ballots in BB0 created by honest voters
who check their votes are added to BB′, regardless of
whether these voters’ ballots actually occur in BB.

The details of the RECOVER
del,reorder algorithm are in

Figure 2.

3.2.2. del + change + reorder. Here, we assume that the
adversary is allowed to change the order of the votes, and
remove or change the votes of voters who do not verify.

Intuitively, given BB1 and BB, when applied to BB0,
recovery algorithm RECOVER

del,reorder,change will construct a
board BB′ where
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• Each ballot in BB that comes from BB1 is replaced with
the corresponding ballot from BB0.

• The other ballots in BB are considered to be cast, even
if they belong to an honest voter. They are added to
BB′ as is.

• All the ballots registered for voters who check in BB0

are added to BB′, regardless of whether these voters’
ballots actually occur in BB.

Formally, RECOVER
del,reorder,change is defined in Figure 2.

3.2.3. Ideal. Assume now the adversary is not allowed to
remove, change, or reorder any honest vote, even for voters
who do not verify. Any adversary that can produce a valid
board with such an alteration of the ballots will win the
game.

Intuitively, given BB1 and BB, when applied to BB0,
RECOVER

∅ will construct a board BB′ where

• Each ballot in BB0 is added to BB′, in the same order,
regardless of whether the corresponding ballot from
BB1 actually occurs in BB.

• The other ballots in BB that belong to a dishonest voter
are considered to be cast, and are added to BB′ as is.

Formally, the RECOVER
∅ algorithm is displayed in Fig-

ure 2.

4. Simulation-based security

In this section we introduce simulation based definitions
for the security of voting systems. As usual, we describe a
real and an ideal execution scenario for the protocol. The
definitions are fairly standard in terms of the underlying
communication models, and to a large extent in terms of the
ideal functionalities we consider. A major departure from
functionalities used in the literature, e.g. [18], [10], is that
our ideal functionalities explicitly allow the adversary to
influence the list of votes to be tallied.

4.1. Real execution

We describe the real execution of the protocol in a
hybrid model where the protocol is implemented using ideal
functionalities for registration and for tallying. As for our
game based approach, some parameters are fixed. These
include the sets H and D of honest and corrupt voters and
the set Hcheck of voters who check. All these parameters are
assumed hardwired in the algorithms defining the execution.
We illustrate in Figure 3 the execution setting. It comprises:

• The environment E is in charge of deciding on the
execution phases of the protocol (setup, vote, tally); the
environment also decides on the votes of the honest
users.

• The adversary A: it receives the ballots of the honest
users, controls the corrupt users and produces the
bulletin board to be tallied. The adversary is controlled
by the environment via a direct communication channel.

• An entity H models the honest parties in the system.
In particular it models the honest voters (for simplicity

we do not consider separate entities for each individual
voter in the system) and the generation of keys for the
election.

• The functionality for registration R, in charge of gen-
erating and distributing credentials to voters.

• The functionality for tallying T .

The execution consists of three phases (a setup phase, a
voting phase, and a tallying phase). The environment E sends
commands to H to trigger these phases. H then informs the
other entities of the phase change.

Setup phase. During the setup phase, H runs the Setup
algorithm to generate the election keys (pk, sk), sends pk to
the other entities, and sk to T . H also asks R to generate
credentials. R runs the Register algorithm to generate
credentials for each voter. It returns the secret credentials of
voters in H to H and the secret credentials of voters in D
to A. It also sends the list of public credentials (computed
with Pub) to all other entities. Finally, H returns the control
to E .

Voting and checking phase. During the voting phase, E
may send any number of vote(id , v) to H, for honest voters
id ∈ H. When receiving such a command, H runs the Vote
algorithm to obtain a ballot for id containing v, it records
the state returned by the voting algorithm and sends id and
the ballot to A. At some point, E notifies H that the voting
phase is done. At that point, H asks A to provide a board
BB. H checks that Valid(BB, pk) = �, and continues the
execution. If the check fails, it informs E that no result will
be published. H then performs the verifications of honest
voters. It asks A in which order the voters should verify.
H then runs the Verify algorithm on BB for each voter in
Hcheck, in the order specified by A. If all of these checks
succeed, it continues the execution. Otherwise, it informs E
that no result will be published.

Tallying phase. During the tallying phase, H sends BB
to T and asks for the result. T runs the Tally algorithm,
to compute a result (r,Π), and sends it back to H. H
forwards this result to A, asking if the result should be
published. Depending on A’s decision, H sends E either r
or a message informing E that no result is published. Finally,
the environment E outputs a bit β which serves as the output
of realexec(E||A||V).

4.2. Ideal voting functionality and ideal execution

The ideal execution replaces the honest participants and
the functionalities for registration and tallying with a single
idealised functionality Fv. The resulting structure of the
system is illustrated in Figure 4. It comprises

• The environment E : as in the real execution the environ-
ment decides changes between the different phases of
the execution, decides on the votes of the honest parties,
and communicates with the ideal world adversary. As
in the real case, we will only consider environments
that choose to make each voter in Hcheck vote at least
once.

• The ideal world adversary S , a.k.a. the simulator;
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RECOVER
del,reorder
U (BB1,BB)

L← [];

for (p, b) ∈ BB do

if ∃j, id . BB1[j] = (id , (p, b)) then

L← L ‖ j
(if several such j exist,

pick the first one)

else if extractid(U, p) /∈ H then

L← L ‖ (p, b)
L′ ← [i|BB1[i] = (id , (p, b)) ∧

id ∈ Hcheck ∧ (p, b) /∈ BB]

L′′ ← L ‖ L′

return (λi. L′′[i])

RECOVER
∅
U(BB1,BB)

L← [1, . . . , |BB1|];
for (p, b) ∈ BB do

if extractid(U, p) /∈ H then

L← L ‖ (p, b)
return (λi. L[i])

RECOVER
del,reorder,change
U (BB1,BB)

L← [];

for (p, b) ∈ BB do

if ∃j, id . BB1[j] = (id , (p, b)) then

L← L ‖ j
(if several such j exist,

pick the first one)

else if extractid(U, p) /∈ Hcheck then

L← L ‖ (p, b)
L′ ← [i|BB1[i] = (id , (p, b)) ∧

id ∈ Hcheck ∧ (p, b) /∈ BB]

L′′ ← L ‖ L′

return (λi. L′′[i])

Figure 2. The RECOVERdel,reorder, RECOVERdel,reorder,change, and RECOVER∅ algorithms.

E

A

H

R T

setup
voting

voting done
tally

vote(id1, v1)

.

.

.
vote(idn, vn)

r

pk, id
for id ∈ I

cid pk, sk BB r,Π

pk
cid , for id ∈ D

id1, (p1, b1)
. . .

idn, (pn, bn)

BB
verif. order

r,Π

res-ok

Figure 3. The real execution, with id1, . . . , idn ∈ H

• The ideal voting functionality Fv: this component
captures the idealised voting scheme. Very roughly,
it receives the votes from the honest parties and, when
queried, it returns the result of the election. We give a
precise description in the next section.

• The entity H′ is a dummy interface between the
environment and the voting functionality (i.e. it only
forwards the messages between E and Fv).

As in the real execution the environment decides when
to switch between the three phases of the execution (setup,
vote and check, tally) and decides on the votes of the honest
parties via messages it sends toH′. In this worldH′ is simply
a forwarding channel between the environment and the
ideal functionality (we explain below how the functionality
operates). At some point the environment outputs a bit β
which is also the output of idealexec(E||S||Fv).

Next we describe the ideal functionality which is the
key component of the execution, and which encapsulates the

E

S

H′

Fv

setup
voting

voting done
tally

vote(id1, v1)

.

.

.
vote(idn, vn)

r

setup
voting

.

.

.

vote(id1, v1)

.

.

.
vote(idn, vn)

r

setup
voting

voting done
modif?

ack(id)

modif(f)

result(r)

res-ok

Figure 4. The ideal executionwith id1, . . . , idn ∈ H

level of security guaranteed.

Ideal voting functionality. We consider several ideal
functionalities which share the same basic design idea: they
collect the votes of the honest parties (in a way which
hides them from the adversary). Nonetheless, since we
treat the setting where the adversary controls the bulletin
board, and can therefore influence what is being tallied, our
functionalities reflect this ability. The difference between the
functionalities we consider is reflected in how permissive
they are with respect to this step.

The functionality Fdel,reorder
v (ρ) is in Figure 5. In brief,

i) it ensures that an adversary only learns who voted, and
learns the result of the election, computed using ρ, but not
what the votes were; ii) it ensures that the votes of honest
voters who verify are not removed (though they may be
reordered); iii) it allows an adversary to delete the votes of
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Fdel,reorder
v (ρ) accepts the following commands:

• on setup from H′: send setup to S .

• on voting from H′: send voting to S .

• on voting done from H′: send
voting done to S .

• on vote(id , v) (for id ∈ H) from H′:
L← L ‖ (id , v); send ack(id) to S .

• on tally from H′:
send modif? to S .

• on modif(f) from S: (only once, after tally)

– if f keeps the votes of all voters who check:

∀i. ∀id ∈ Hcheck. ∀v.
L[i] = (id , v) =⇒ ∃j. f(j) = i.

– and if no honest votes are modified by f :

∀i, id , v. f(i) = (id , v) =⇒ id ∈ D.

Then let r = ρ(f(L)) else let r = no tally.
Send result(r) to S .

• on res-ok from S: (only once, after modif)
send r to H′.

• on res-block from S: (only once, after
modif)
send no tally to H′.

Figure 5. The ideal functionality Fdel,reorder
v (ρ).

voters who do not verify, but not to change them.
Technically, the functionality maintains a list L of votes

submitted by honest voters. Once the voting phase is over,
it allows the ideal world adversary S to submit a vote
modification function, i.e. a function f with domain �1, n�
for some n, that describes how S wishes to manipulate the
votes in L. The function provided by S needs to satisfy a
couple of restrictions. Specifically, for any i, f(i) can either
be some index j or some pair (id , v). Applying f to the list
L of honest votes results in list f(L) of length n defined by

∀i∈�1, n�. f(L)[i]=

{
L[j] if f(i)=j is an index

(id , v) if ∃id , v. f(i)=(id , v)

NB: the function f is applied only if it satisfies the
requirements outlined above on how it affects the votes
corresponding to the honest voters who check.

Next, we define Fdel,reorder,change
v (ρ), a more permissive

functionality for voting schemes. This functionality is similar
to the previous Fdel,reorder

v (ρ) but it allows an adversary
to change (and not only delete) the votes of voters who
do not verify. Technically, Fdel,reorder,change

v (ρ) accepts the
same commands as Fdel,reorder

v (ρ), and answers them identi-
cally, except for the modif(f) command. In that case, in

Fdel,reorder,change
v (ρ), the checks performed before computing

the result are:

• f keeps the votes of all voters who check:

∀i. ∀id ∈ Hcheck. ∀v. L[i] = (id , v) ⇒ ∃j. f(j) = i.

• no votes from voters who verify are modified by f :

∀i, id , v. f(i) = (id , v) ⇒ id ∈ D ∪ Hcheck.

Finally we define a functionality F∅
v (ρ), that gives

the strongest security guarantees, as it does not allow the
adversary to delete, change, nor reorder the votes of honest
voters, even if they do not verify. The adversary may only
cast votes in the name of dishonest voters. This functionality
is similar to the previous two, except it checks a stronger
condition before computing the result. More precisely, F∅

v (ρ)
is identical to Fdel,reorder

v (ρ), except that the test performed
before computing ρ(f(L)) on command modif(f) is that:

• f keeps the votes of all honest voters in the same order:

[f(j), j = 1 . . . |dom(f)| | f(j) ∈ N] = [1, . . . , |L|]
• and no honest votes are modified by f :

∀i, id , v. f(i) = (id , v) ⇒ id ∈ D.

This functionality enforces that no honest votes can be deleted
or even reordered. Looking ahead, in the presence of a
malicious ballot box, this level of security can be guaranteed
only if all honest voters verify their votes.

4.3. Security

As usual, we define simulation-based security by de-
manding that environments cannot distinguish between the
interaction with the real protocol, or with the ideal func-
tionality (together with some simulator). However, as the
motivating examples from the introduction show, the level of
security guaranteed depends on the fact that (some) voters
(i.e. those in Hcheck) check that their vote had been cast.
Our security definition captures this by considering certain
restrictions. Specifically, we will only consider environments
who direct all voters in Hcheck to cast at least one vote, so
that it makes sense for this vote to be verified. We call such
an environment well-behaved.

Definition 8. We say that a voting scheme V securely
implements an ideal functionality Fv if for any adversary
A there exists a simulator S such that for any well-
behaved environment E the outputs of realexec(E||A||V) and
idealexec(E||S||Fv) are indistinguishable.

5. mb-BPRIV entails simulation-based security

Our main technical result, detailed in this section, is
that game-based ballot privacy implies simulation security
with respect to a suitable ideal functionality. This holds
for strongly consistent voting schemes, Strong consistency
demands that the tallying process behaves as expected, i.e.
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it returns the result of tallying the votes which underly the
ballots on any given board, even a dishonestly produced
one. In particular, strong consistency excludes insecure
tally functions that would e.g. remove the first ballot if
it corresponds to a vote for candidate A, hence breaking
privacy of the first voter. The notion is a direct extension
of the analogous notion introduced by Bernhard et al [10].
It considers an adversary who is given the public key for
some election as well as public information for a set I of
registered users. The adversary returns an arbitrary bulletin
board. Strong consistency requires that tallying the board
returns the same result as running the desired counting
function on the votes underlying the ballots on the board. A
formal definition can be found in Appendix A.

Both our game-based security notion and the ideal
functionalities we consider are parametrised. The former is
parametrised by a recovery algorithm which aims to “detect”
how the adversary has tampered with the bulletin board. The
latter allows the adversary to submit a tampering function,
but only allows certain tampering functions. We show that the
two parameters are closely related: mb-BPRIV with respect
to some specific recovery algorithm implies simulation-based
security, if the tampering function recovered by the recovery
algorithm is permitted by the ideal functionality.

To make this relatively complex statement more palatable,
we start with a warm-up theorem which establishes this type
of relation between the three instantiations of mb-BPRIV
from Section 3.2 and simulation based security which uses
the three ideal functionalities from Section 4.2, respectively.
Then, we provide a powerful generalisation which links
mb-BPRIV with simulation based security under an abstract
assumption on their parameters.

Before we provide our warm-up theorem, we motivate
and introduce a mild assumption required by the scheme.
All of the recover algorithms considered earlier in this
paper identify the ballots on the board by matching them
with the specific calls to the voting oracle which produced
them. For this reason, a precondition for the recovery
algorithms to work as intended is that distinct calls to
the Vote algorithm produce two different ballots (except
with negligible probability). We say that a scheme with
this property does not produce duplicate ballots (see formal
definition in Appendix C).

Theorem 1. Consider a strongly consistent voting scheme V
for counting function ρ which does not produce duplicate bal-
lots. Let power ∈ {∅, (del, reorder), (del, reorder, change)}.
If V satisfies mb-BPRIV with RECOVER

power, then V se-
curely implements Fpower

v (ρ).

This theorem is proved in a companion technical re-
port [19] as a particular case of our general theorem, that
we explain next.

Parametric ideal functionality. The three function-
alities from Theorem 1, F∅

v (ρ), Fdel,reorder
v (ρ) and

Fdel,reorder,change
v (ρ) differ only by the check they perform

on the modification function provided by the simulator. They
can be seen as instances of a more general functionality, that
is parametrised by a predicate P that expresses this check.

In other words, P characterises the ability of the simulator
to manipulate the votes. The predicate P takes as inputs
a list L of pairs (id , v), where id is a voter identity and
v is a vote, and a modification function f . It returns � or
⊥, indicating whether the modifications specified by f are
allowed on L or not.

The generalisation is then straightforward: we consider
the functionality FP

v (ρ) with the same interface and (mostly
the same) internal behaviour as Fpower

v (ρ). The only distinc-
tion is that the checks performed on f before applying to L
are replaced with a single check that P (L, f) = �.

Our generic theorem links mb-BPRIV w.r.t. some recov-
ery algorithm RECOVER with an ideal functionality which
allows tampering satisfying some predicate P whenever the
RECOVER algorithm returns (with overwhelming probability)
only tampering functions which satisfy P . This condition,
which we call compatibility, is formally defined in Ap-
pendix B.

Our main technical result establishes a relation between
game-based and simulation-based security for voting.

Theorem 2 (mb-BPRIV implies simulation). Let P be a
predicate, and RECOVER a recovery algorithm compatible
with P . Let V be a strongly consistent voting scheme for
counting function ρ.

If V satisfies mb-BPRIV w.r.t. RECOVER, then V se-
curely implements FP

v (ρ).

We give the full proof of this theorem in the technical
report [19]. We also provide a variant which establishes a
similar link for schemes where revote is not allowed.

Proof sketch. Basically, we construct a simulator S that,
given black-box access to a real adversary A, ensures
that for any well-behaved environment E , the outputs of
realexec(E||A||V) and idealexec(E||S||FP

v (ρ)) are indistin-
guishable.

S runs A internally, letting A communicate with E , and
simulates a real execution of the voting scheme to A. To
do this, S generates “fake” election material to show A.
S must then provide him with honest ballots, to obtain a
board BB from A. However S cannot know to the actual
votes: FP

v only shows who voted, but not the votes. Hence
S cannot construct the real ballots. Instead, S will construct
fake ballots, containing some arbitrary fixed fake vote v∗.
Finally, S must choose which modifications it should submit
to FP

v to get the tally of BB, that A expects. To do this, S
applies RECOVER to BB to determine how A manipulated
the ballots, and submits the corresponding modifications to
FP

v .

Intuitively, the view of A when placed in the real

execution, is as in Expmb-BPRIV,0
V,SimProof : the ballots are real, and BB

is tallied. Conversely, its view when run by S in the ideal

execution is as in Expmb-BPRIV,1
V,SimProof : the ballots contain “fake”

votes, and the tally is computed using RECOVER. mb-BPRIV
guarantees that A cannot tell the two situations apart, hence
E , communicating with A only, cannot distinguish between
the real and ideal executions.
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A bit more formally, we proceed to construct S by
a succession of game hops, progressively going from
realexec(E||A||V) to the ideal execution against S .

Game 0 is just the real execution realexec(E||A||V).
Game 1 is a variant of realexec(E||A||V), where A

does not see ballots for the actual votes chosen by E , but
rather fake ballots containing an arbitrary fixed vote v∗.
The execution of Game 1 follows that of Game 0, except
that on vote(id , v) from E , H generates two ballots: a
real one b0 for v, and a fake one b1 for v∗. H stores
these respectively in two boards BB0, BB1, and only sends
b1 to A (instead of b0 in Game 0). Then, on tally
from E , H does not send BB to T for tallying, but rather
BB′ = π(BB0), where π = RECOVERU(BB1,BB). When H
gets a result (r,Π) = Tally(BB′, sk) from T , it simulates a
proof Π′ = SimProof(BB, r), and sends (r,Π′) to A.

As explained above, Game 0 corresponds to the execution

of Expmb-BPRIV,RECOVER,β
A,V when β = 0, and Game 1 to the

execution when β = 1. Since V is mb-BPRIV, we are
able to show that the outputs of E in Games 0 and 1 are
indistinguishable.

Game 2 establishes an invariant on BB′. It is as Game
1, but has H store, in addition to BB0 and BB1, the list of
votes submitted in clear in BB2. Once H has determined π,
it additionally computes the associated modification function
f = modsk,U(π), and applies it to BB2: BB′

2 = f(BB2). It
then checks that BB′

2 correctly contains the votes in BB′ in
clear, i.e. BB′

2 = extract(sk,U,BB′). Only in that case H
lets the execution go through.

Game 1 and 2 can only be distinguished when this check
fails: we can show using strong consistency that this has
only negligible probability.

Game 3 then makes use of this invariant: it is as
Game 2 except H directly computes the result as ρ(BB′

2),
instead of calling T . By the previous invariant, and the
strong consistency property, this yields the correct result
except with negligible probability, and the two games are
indistinguishable.

Game 4 removes the invariant introduced in Game 2; it
is indistinguishable from Game 3, by the same reasoning as
for the hop between Games 1 and 2.

Game 5 removes entirely the ballots containing the real
votes, as these are now no longer used to compute the result.
H now only keeps track of BB1 and BB2, but not BB0. As
these ballots were unused, this game is indistinguishable
from Game 4. To sum up, in Game 5, H performs the
setup, receives and stores honest votes from E in BB2, and
computes fake ballots for v∗ (stored in BB1) which are sent to
A. When A submits BB, H lets π = RECOVERU(BB1,BB),
f = modsk,U(π), BB

′
2 = f(BB2), and sends r = ρ(BB′

2) and
a simulated proof to A.

Ideal adversary. We can now define the simulator S,
that runs A internally, taking care by itself of most of the
actions that were performed by H and R in Game 5, i.e. the
cryptographic setup of keys and credentials, generation of
fake ballots, computing of π and f . The only thing S cannot

do on its own is store BB′
2 and apply f to it, as it does

not know the real votes. Instead S sends the modification
function f to FP

v (ρ), who accepts it as RECOVER is allowed
by P . FP

v (ρ) will then apply f to the list of honest votes,
and compute the result, that S will show A together with a
simulated proof.

It is clear that in the ideal execution with this simulator
S , both E and A have the same view as in Game 5, making
them indistinguishable, which concludes the proof.

Relation with individual verifiability. Interestingly, the
simulation-based notion of privacy guarantees more than
just privacy: the ideal functionality FP

v (ρ) ensures that
votes are properly collected and counted, to an extent that
depends on the parameter P . As one could expect, the more
permissive P (allowing e.g. deletions and vote changes),
the weaker verifiability guarantees we obtain. Actually, we
can formally relate simulation-based security to a rather
standard [16] game-based notion of individual verifiability.
Basically, individual verifiability requires that some relation
holds between the election result and the votes. One typical
relation would be that the result must properly account for at
least all votes from voters who perform whatever verification
checks are prescribed – plus some additional votes, that
can come from honest voters who did not check or from
corrupted voters. However, the same concerns we exposed
earlier for privacy also apply to verifiability: depending on
the scheme, threat model and use case considered, different
levels of verifiability are achievable and desirable. So we
show that we can generically relate our family of privacy
notions to various levels of individual verifiability that echo
the variants of privacy we defined earlier. For space reasons,
the formal definitions and theorems are not presented here
but can be found in the technical report [19].

6. Application to voting schemes

We use the general framework developed in previous
sections to study the resilience of three protocols of the
literature, namely Helios [8], Belenios [16], and Civitas [2],
in the presence of malicious boards. For each of them, we
identify which ideal functionalities they achieve. Interestingly,
the guarantees differ depending on the revote policy in
place and the counting function ρ. We consider security
w.r.t. the three functionalities introduced in Section 4.2
plus a new functionality we introduce here. F∅

v is the very
ideal functionality where honest votes are registered and
processed exactly as they are received, Fdel

v (defined formally
in the technical report [19], together with the associated
verifiability relation) lets the adversary remove some honest
votes (from voters that do not check), but requires that the
votes of voters who check are kept and not reordered, while
Fdel,reorder

v further lets the adversary reorder the votes. Finally,
Fdel,reorder,change

v even lets the adversary modify honest votes,
from voters who do not verify.
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6.1. Overview of the protocols

Helios. Helios is a simple voting protocol that guar-
antees privacy and verifiability in a low-coercion en-
vironment. It has been used in several elections, e.g.
to elect the president of the university of Louvain-la-
Neuve [20], or for student elections at Princeton [21].
In Helios, voters cast a vote by computing a ballot
Vote(id , pk, c, v) = (s, id , (enc(v, pk), π)), where the state
s records the ciphertext (enc(v, pk), π) and id is the identity
of the voter (or possibly a pseudonym). If the voter id
votes again then the state is updated with the new ciphertext.
The ciphertext is simply formed of an ElGamal encryption
enc(v, pk) of v under the public key of the election pk,
together with π, a zero-knowledge proof that guarantees that
v is a valid vote. Helios does not use credentials, hence c
is not used. The check Verify(id , s,BB) done by a voter id
consists in verifying that the ciphertext recorded in s appears
on BB.

Belenios. Belenios enhances Helios with credentials,
so that a compromised voting server cannot add votes. It
has been launched in 2016 and used in more than 200
elections [22]. At registration, each voter id receives a
signing key kid , with an associated verification key pkid .
The voting procedure Vote(id , pk, (kid , pkid), v) produces
the state and ballot (s, pkid , (signElGamal(v, pk, kid), π)),
where we denote signElGamal(v, pk, kid) the ElGamal en-
cryption of v, signed with kid . The other algorithms are
modified as expected. To ease the verification step made
by voters, in Helios and Belenios, only the last ballot for
each voter is presented in the bulletin board. This can be
modelled by a Verify(id , s,BB) algorithm that checks that
the last ballot recorded in s is the last ballot appearing in
BB for voter id .

Civitas. Civitas has been designed to protect voters
against coercion. Each voter receives a credential but can
produce a fake credential when she is under coercion.
Ballots cast with invalid credentials are removed thanks
to plaintext equality tests (PET), after some mixing phase,
to avoid a coercer noticing that his ballots have been
excluded. The voting procedure Vote(id , pk, c, v) yields
(s, enc(c, pk), (enc(v, pk), π1, π2)), where s again records
the ballot. π1 is a zero-knowledge proof that v is a valid vote,
and π2 is a zero-knowledge proof that the agent generating
the ballot knows both c and v.

In Civitas, the voting server can no longer select the “last”
ballot for each voter since ballots cannot be properly linked
to an identity. So when a voter revotes (if this is allowed), she
should additionally link her new ballot to the previous one,
proving that she knows the credential and the choices used
in both ballots. Then the Valid(BB, pk) algorithm checks
consistency of all the proofs.

6.2. Our findings

The results of our study are gathered in Figure 6. For each
protocol, we distinguish the case where revote is allowed

from the case where it is not. When revote is not allowed
then we assume that (honest) voters do not revote. As we
will discuss in this section, this is not equivalent, security-
wise, to the case where voters may revote but only the first
vote is counted.

(in)security of Helios. As mentioned already in intro-
duction, Helios is subject to an attack [12] if the attacker
controls the bulletin board (or simply the communication
channel between the voter and the server). Indeed, an attacker
may block and copy the first ballot bA sent by Alice, say
for candidate 0. The attacker can then pretend that the com-
munication was lost, so that Alice starts over the procedure
and sends again a ballot, b′A, still for candidate 0 (there is
no reason that she changes her mind). Then since ballots are
not cryptographically authenticated in Helios, the attacker
may submit bA as his own ballot, introducing a bias in the
result. This attack cannot be prevented, even if the auditors
check for duplicates before the tally. Therefore Helios with
revote does not satisfy any of the four functionalities.

Assume now that there is no revote, in the strong sense
that voters do not ever construct two ballots for their vote.
Since in Helios the identity of a voter is not strongly
linked to the ciphertext containing her vote, as soon as
two voters A and B do not verify, an adversary is able
to swap their ciphertexts, e.g. replacing [(A, bA), (B, bB)]
with [(A, bB), (B, bA)]. This is fine as long as the counting
function processes the votes independently of the actual
identity of a voter, so that attributing Alice’s vote to Bob and
vice versa does not change the result. We call this property
id -blindness. Most voting functions enjoy this property but
not all of them. For example, for elections with weighted
votes, each vote is associated to a weight depending on the
status of the voter. Then, it could be the case that Alice’s
vote is counted 10 times while Bob’s vote is counted only
3 times. For id-blind counting functions, Helios satisfies
Fdel,reorder,change

v , the weakest functionality, since an attacker
may reorder votes and remove and even modify the ballots
of voters that do not check.

No revote vs ρ = first. Interestingly, the Helios example
illustrates why it is not possible to properly emulate the “no
revote” policy by letting voters revote and considering a
function ρ where only the first ballot is counted for each
voter. In fact, if voters may revote then the adversary has
more power. In particular, Helios with revote is still subject
to Roenne’s attack, even if only the first ballot is counted.

No reordering in Civitas. Our findings highlight that
Civitas is the only scheme that prevents an adversary from
reordering the votes, thanks to the link made by voters
between their ballots. Note that if the attacker controls the
board, then he can always permute Alice and Bob’s ballots
without anyone noticing. However, this does not influence
the result for all the result functions ρ we know, namely
stable functions, that if swapping any two votes of distinct
voters does not influence the result.

So now the question is: which schemes can prevent an
adversary from reordering the votes of a given voter? This
would be a priori a real attack since it does change the result.
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Voting scheme
F∅

v Fdel
v Fdel,reorder

v Fdel,reorder,change
vGeneral case Hcheck = H

Helios - no revote � � if ρ stable ∧ id-blind � � � if ρ id-blind

Helios - revote � � � � �
Belenios - no revote � � if ρ stable � � �
Belenios - revote, ρ = last � � if ρ stable � � �
Belenios - revote, arbitrary rev. policy � � � � �
Civitas - no revote � � if ρ stable � � �
Civitas - revote � � if ρ stable � � �

Figure 6. Case study.

Our results show that only Civitas protects again such a
re-ordering, thanks to the chain between ballots cast by the
same voter. Belenios provides weaker security guarantees
since the adversary may reorder the votes of Alice. However,
this does not affect the result as long as only the last ballot
is counted, since Alice checks that her last ballot appears
in the final board. To render Belenios suitable for arbitrary
(stable) counting functions, we would need to require that
each voter records her ballots in order, and checks that they
appear in the same order in the final board. This would of
course not be realistic. Alternatively, the most reasonable
approach is probably to chain ballots thanks to an additional
zero-knowledge proof, like in Civitas. Note however that this
chain is only briefly sketched in [2] and no proper definition
is provided.

“Perfect” functionality F∅
v . Perhaps surprisingly, none

of the three schemes satisfy the strongest ideal functionality,
where the attacker cannot tamper at all with honest votes.
This is due to the fact that an adversary can always drop the
ballots of voters that do not check. This limitation applies
to many other schemes as well. If we assume now that all
honest voters actually vote and conduct all required checks,
the three schemes (except Helios with revote) satisfy F∅

v .
This requirement is however not realistic in practice.

Proofs. To establish security with respect to ideal func-
tionalities in Figure 6 we leverage the framework developed
in this paper in two distinct ways. First, for each scheme
in turn we prove game based security with respect to
appropriately chosen recovery algorithms and then employ
Theorem 2 to conclude simulation-based security. Interest-
ingly, we also employ reasoning about ideal functionalities
directly. Specifically, we show that for stable ρ functions,
Fdel

v ∧ H = Hcheck ⇒ F∅
v and the desired results in the

column H = Hcheck (under the F∅
v heading) follow from

those in column with heading Fdel
v .

7. Discussion and conclusion

We have proposed a flexible definition for ballot privacy
against a dishonest board, that captures several adversarial
capabilities. This is not only important to analyse different
schemes with various security levels but also useful when
analysing a given scheme under different trust assumptions,
as exemplified by our case analysis. We formally relate
mb-BPRIV (with strong consistency) with a family of ideal
functionalities, for which it is easier to understand the

associated security guarantees. As a result, we are able
to formally spell out for example that Belenios and Civitas
offer more privacy than Helios thanks to the fact that ballots
are authenticated. This does not mean that Helios does not
offer any privacy at all. A nice feature of our approach is
precisely that it allows to compare the security of several
voting schemes and even compare the security offered by a
single scheme depending on the threat model.

Note that while our definition now reflects that the
adversary controls the ballots cast by honest voters (to the
extent permitted by the checks in place), we still implicitly
assume that the voters and the auditors running the Valid
algorithm all have access to the same board, right before
the tally. In practice, voters check their ballot whenever
they wish to, typically right after they voted. So not only
voters should always see the same board but it should grow
consistently during the election. Most voting schemes assume
such a setting while eluding on how to achieve this. Recent
work [13], [6], [11], [14] study this issue and propose to
distribute the board. We plan to investigate whether a given
voting scheme, implemented with some distributed board,
does achieve mb-BPRIV.

As future work, we also plan to extend our definition to
more complex models of voting protocols. For example, it
would be interesting to model possible interactions between
a voter and the board or the server while casting a vote.
Furthermore, the tally process is currently represented as one
single, honest block. A refined model should reflect the fact
that the tally is typically distributed among several parties.
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Appendix A.
Strong consistency

In this section we formally define the notion of strong
consistency, evoked in Section 5.

Definition 9 (Strong consistency). A voting scheme V is
strongly consistent if there exist two algorithms extractid,
extractv such that:

• For any id ∈ I, and any vote v, if (pk, sk) are
generated by Setup, U by Register, and (p, b) by
Vote(pk, id ,U[id ], v), then extractid(U, p) = id and
extractv(sk, b) = v with overwhelming probability.
We then write extract(sk,U, p, b) =
(extractid(U, p), extractv(sk, b)) the extraction function
that extracts (id , v) from (p, b).

• For any adversary A, the advantage P(ExpSCA,V(λ) = 1)

is negligible, where ExpSCA,V is defined as the following
game:
ExpSCA,V(λ)

(pk, sk)← Setup(1λ)

for all id ∈ I do

U[id ]← Register(id)

BB← A(pk,U)
(r,Π)← Tally(BB, sk)

if r �= ρ(extract(sk,U, p1, b1), . . . , extract(sk,U, pn, bn))

where BB = [(p1, b1), . . . , (pn, bn)]

then return 1

else return 0

Notation: for any board BB = [(p1, b1), . . . , (pn, bn)],
any sk, U and extract, we denote extract(sk,U,BB)
the list of extractions of the ballots in BB, i.e.
[extract(sk,U, p1, b1), . . . , extract(sk,U, pn, bn)]. We also
denote extract(sk,U,BB) the list obtained by removing
all ⊥ elements from extract(sk,U,BB). Note that, by def-
inition of a counting function, ρ(extract(sk,U,BB)) =
ρ(extract(sk,U,BB)).

Appendix B.
Compatibility of a predicate and a recovery
algorithm

In the informal description from Section 5, we overloaded
the semantics of the recovery algorithm. Strictly speaking
this algorithm returns a selection function, which in turn
defines a tampering function. Below, we develop the technical
machinery that captures these ideas.

First we relate selection functions (which are the type of
functions returned by recovery algorithms) with tampering
functions (the functions the simulators provide to the ideal
functionalities). This definition can be seen as the analogous
definition of applying a selection function to a bulletin board,
except that now we operate at vote level (rather than ballot
level). In particular, this requires that we recover the votes
underlying ballots in the selection function.
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Expcomp,P,RECOVER

A,V (λ)

(pk, sk)← Setup(1λ)

for all id ∈ I do

c← Register(1λ, id)

U[id ]← c,

PU[id ]← Pub(c)

for all id ∈ D do

CU[id ]← U[id ]

BB← AOvote(pk,CU,PU)

Ovote(id , v) for id ∈ H

(p, b, s)← Vote(pk, id ,U[id ], v)

BB0 ← BB0 ‖ (id , (p, b));
Lid ← Lid ‖ id ;
return (p, b).

if Valid(BB, pk) = ⊥ ∨ Hcheck �⊆ Lid then return 0

π ← RECOVERU(BB0,BB)

if π is not compatible with P w.r.t. sk,U, Lid

then return 1 else return 0.

Figure 7. The compatibility game.

Definition 10 (Vote modification associated to a selection
function). Assume a strongly consistent voting scheme V . Let
(pk, sk) be a pair of keys generated by the Setup algorithm,
and U be a list of credentials issued by Register. Let π be a
selection function for two integers m, n. Let then L be the
list of length n defined by

∀i∈�1, n�. L[i]=

{
π(i) if π(i) ∈ �1,m�
extract(sk,U, p, b) if ∃p, b. π(i)=(p, b)

The vote modification modsk,U(π) associated to π for sk and
U is the function λi. L′[i] (L′ is L where ⊥ elements have
been removed).

As explained informally in Section 5, we want to consider
ideal functionalities which put restrictions on how the
adversary (the simulator) can tamper with the list of votes
collected by the functionality. We capture this intuition by
requiring that the selection function is compatible with the
testing predicate associated to the functionality.

Definition 11 (Selection function compatible with a testing
predicate). Let (pk, sk) be a pair of keys generated by the
Setup algorithm, and U be a list of credentials issued by
Register. Let P be a predicate, and π be a selection function
for m, n. Let Lid be a list of ids of length m. We say that π

is compatible with P w.r.t. sk, U, and Lid if for any list L of
pairs of the form (id , v) such that [id | (id , v) ∈ L] = Lid ,
we have P (L,modsk,U(π)) = �.

The notion of compatibility can then be extended from
individual selection functions to recovery algorithms which
return selection functions. The general intuition is that
RECOVER is compatible with P if RECOVER (almost) always
returns selection functions compatible with P in normal
executions of the scheme (i.e. where parameters and ballots
are generated honestly).

Definition 12 (Recovery algorithm compatible with a
testing predicate). Let P be a predicate, and RECOVER

be a recovery algorithm. We say that RECOVER is com-
patible with P if for any adversary A, the advan-
tage P(Expcomp,P,RECOVER

A,V (λ) = 1) is negligible, where
Expcomp,P,RECOVER

A,V is defined in Figure 7.

For example, RECOVER
del,reorder is compatible with pred-

icate P del,reorder, where P del,reorder(L, f) holds if f keeps the
votes of all voters who check (that is, ∀id ∈ Hcheck. L[i] =
(id , v) =⇒ ∃j. f(j) = i) and no honest votes are modified
by f (i.e. f(i) = (id , v) =⇒ id ∈ D).

This precisely corresponds to the checks made by

Fdel,reorder
v or, in other words, Fdel,reorder

v = FP del,reorder

v .

Appendix C.
No duplicate ballots

We give here the formal definition of the “no duplicate
ballots” assumption mentioned in Section 5.

Definition 13 (No duplicate ballots). A voting scheme
(Setup,Register,Pub,Vote,Valid,Tally,Verify) does not
produce duplicate ballots if for all adversary A, the following
probability is negligible in λ.

P( (pk, sk)← Setup(1λ);
U← Register(1λ, I);
(id , v, id ′, v′)← A(pk,U);
(p, b, s)← Vote(pk, id ,U[id ], v);
(p′, b′, s′)← Vote(pk, id ′,U[id ′], v′);
(p, b) = (p′, b′))
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