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ABSTRACT Image edge detection is an important task in image processing and pattern recognition. Edges
in digital images signify image discontinuities and traditionally gradient information is utilized in finding
possible edge pixels. In this work, we consider a fusion approach using multiscale gradient maps along with
non-parametric Fisher information which is recently used in edge detection. By using multiscale gradient
maps we obtain better edge localization and robust edge maps and local thresholding with Fisher information
helps obtain better detection. Experimental results on a variety of digital images and performance evaluation
undertaken in comparison with edge detectors from the literature show the advantage of the proposed
approach.

INDEX TERMS Edge detection, image thresholding, fisher information, histogram, multiscale gradients,
information theory.

I. INTRODUCTION
Edge detection is an integral part in various image process-
ing, computer vision, and pattern recognition tasks. Edges
visually represent image discontinuities whereby object
boundaries can be discerned. Automatic edge detection is an
important research area which is still open. Majority of the
automatic image edge detection methods rely on derivatives
and gradients [5]–[7] and one of the important detector is
that of Canny [2]. These rely on gradient maps or smoothed
gradient maps in locating image discontinuities to discern
edge locations.

In recent years, there are several approaches were applied
to solve the edge detection problem. Shi et al. [9] developed
a novel hybrid edge detection method for polarimetric SAR
images by fusing two kinds of edges: improved polarimet-
ric constant false alarm rate edge detector and weighted
gradient-based edge detector. Yahya et al. [12] proposed
a novel edge detection method based on anisotropic diffu-
sion and total variation models. Li et al. proposed an edge
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detection method based on multiscale anisotropic Gaussian
kernels [13]. Dagar et al. [18] used a binary particle swarm
optimization to solve the edge detection problem. Another
well-known edge detection method based on the modified
Mumford-Shah model was proposed by Shi et al. [19]. The
interpolation technique is also used such as an edge detec-
tion method based on radial basis function (RBF) interpo-
lation [23]. Zotin et al. [26] proposed an edge detection
method based on a fuzzy C-means clustering. Soft computing
models such as type-2 fuzzy logic models have successfully
been applied for edge detection [29], [22], [24]. Some other
related edge detection methods have been considered in the
past [16], [17], [21], [25].

Entropy theory is an important approach that is widely
used for solving the edge detection problem: Zhen et al. [11]
combined grey entropy theory and textural features to detect
the edge, Sert and Avci [20] used a technique that is called
a neutrosophy based on maximum norm entropy. Recently,
Abdel-Azim et al. [1] proposed an edge detection algo-
rithm based on non-parametric Fisher information (FI) mea-
sure [3], [4] based local thresholding value selection and
masks. Promising results were obtained on edge detection of
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natural images when compared to edge detectors from the
past. This method however suffers from the lack gradient
information with low contrast edges are not captured and
performs poorly when there is noise in images.

In this work, we propose a new edge detection by fusing
multiscale gradient maps along with FI (MSFI) measure for
improved detection results. We compared our method with
the original FI [1], and other gradient based edge detectors
such as Canny [2], Sobel [7], Prewitt [5], and Roberts [6]
methods. Experimental results on a variety of natural images
indicate that our approach obtains better edge detection
results. Experimental results on a variety of images, synthetic,
and natural images indicate that our MSFI based edge detec-
tor obtains competitive accuracy among the related models
from the literature.

Rest of the paper is organized as follows. Section II
studies the non-parametric Fisher information measure for
edge detection with multiscale gradients fusion. Section III
provides detailed experimental results on digital images
and compares with other edge detectors from the literature.
Finally, Section IV concludes the paper.

II. GRADIENT FUSED NON-PARAMETRIC FISHER
INFORMATION MEASURE FOR EDGE DETECTION
A. FISHER INFORMATION
Fisher information (FI) is a non-parametric measure and
though it is related to the Shannon entropy it predates it. Let
Y be a discrete random variable, and characterized by the
probability density function (PDF) fj, j ∈ N where N is the
values taken by Y . The fj, the probability of yj ∈ (a, b) ⊂ R,
is normalized

∑N
j=1 fj = 1. Hence, Y = {y1, y2, . . . , yN } is

specified by a probability vector f = {f1, f2, . . . , fN }. The FI
measure is then given by,

I (Y ) =
∑
j

(f (yi+1)− f (yj))2

f (yj)
. (1)

Note that the Shannon entropy is defined as H (Y ) =
−
∑

j f (yj) log f (yj), however the FI has better sensitivity than
the Shannon entropy to the density differences of the adja-
cent points of the variable. We now briefly recall the basic
definitions and the FI measure based edge detector approach
from [1].

Given a grayscale image I with gray levels [0, 1, . . . ,L −
1], let the number of pixels with gray level j be nj. The
probability of gray level in the image is given by,

fj =
nj
N
, fj ≥ 0,

L−1∑
j=0

fj = 1. (2)

Abdel-Azim et al. [1] utilized the non-parametric FI measure
to select a local threshold value. This value is then used
to obtain a binary segmented image with foreground/object
(A), and the remaining background (B). The edges were then
detected using usual masks 3×3. The two probabilities of the

Algorithm 1 MSFI - Edge Detection by MultiScale Fisher
Information
Input: A grayscale image I of sizeM × N , and [σlow, σhigh].
Output: Returns a binary edge image E of sizeM × N .
1: procedureMSFI(I , σlow, σhigh)
2: Begin
3: Compute the multiscale gradient maps, See Eqn. (10).
4: Fuse the image and multiscale gradient maps, See

Eqn. (11).
5: Create a binary image using non-parametric Fisher infor-

mation measure thresholding, See Eqn. (7)(8).
6: For 1 ≤ i ≤ M and 1 ≤ j ≤ N :
7: Set E(i, j) = I (i, j).
8: For all 2 ≤ j ≤ N − 1 and 2 ≤ i ≤ M − 1.
9: Set sum = 0;

10: For all −1 ≤ k ≤ 1 and −1 ≤ l ≤ 1:
11: If (I (i, j) = I (i+ k, j+ l)) Then
12: Increase sum = sum+ 1.
13: If (sum ≤ 6) Then
14: Set E(i, j) = 1
15: Else
16: Set E(i, j) = 0.
17: End

two categories can be written as,

fA =
f1
w1
,
f2
w1
, . . . ,

ft
w1
, (3)

fB =
ft+1
w2

,
ft+2
w2

, . . . ,
fL−1
w2

, (4)

where w1(t) =
∑t

j=0 fj, and w2(t) = 1 − w1(t) with
luminance level t . The priori FI for each of these categories
is then given as,

IA(t) =
1
w1

t∑
i=0

(f (xi+1)− f (xi))2

f (xi)
, (5)

IB(t) =
1
w2

L∑
i=t+1

(f (xi+1)− f (xi))2

f (xi)
, (6)

respectively with xi ∈ (a, b) ⊂ R. The FI measure of two
classes is,

I (t) = w1IA(t)+ (1− w2)IB(t). (7)

The Fisher Measure Thresholding Algorithm (FIMTHA) is
based determining the optimal threshold by maximizing the
FI measure Eqn. (7),

topt = argmaxt {I (t)}. (8)

From this binary image, the usual masks of size 3 × 3 are
applied to obtain the final edge detection outputs.

B. MULTISCALE GRADIENT FUSION WITH FISHER
INFORMATION
Though the FI measure based threshold and edge detector
methods in general works well, when the images contain
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FIGURE 1. Multiscale gradient fusion helps improve the edge detection
results in Fisher information measure approach. We show the gray scale
Microscopy (B) image of size 380× 390. (a) Input, (b) edges detected with
FI [1], (c) multiscale gradients [σlow , σhigh] = [1,3] based map G(I) shown
as a color image with channels (|∇σ I|, |∇σ I|, |∇σ I|), (e) and edges
detected with our multiscale Fisher information (MSFI) approach. The
proposed MSFI obtains better edge detections and less spurious edge
pixels by using augmenting multiscale gradient maps.

non-homogeneous grayscale variation the edge pixels can
be missed and spurious pixels can be introduced due to the
sensitivity of FI measure. To show this observation visually,
we show in Figure 1(a) a gray scale Light microscopy (B)
test image, and Figure 1(b) FI measure based edge detec-
tion result. To avoid this, in this work we introduce the
pre-smoothed multiscale gradient maps, Figure 1(c), fused
with the FI measure approach that obtains improved accuracy
as shown in the result in Figure 1(d). Derivative information
from gradient of a given image ∇I = (Ii, Ij) (i, j) ∈ �

(� ⊂ R2 the image domain) contain valuable information
regarding image discontinuities. However, due to inherent
noise in digital images, computation of gradients are influ-
enced by noisy oscillations. To avoid this, gradient based edge
detectors employ typically a pre-smoothing step e.g. with a
Gaussian kernel [8], [31]. The smoothed gradient is given by,

∇σ I = Gσ ? ∇I (i, j), (9)

where Gσ (i, j) = (σ
√
2π )−1 exp (−(i2 + j2)/2σ 2) is the 2D

Gaussian kernel, ? denotes the convolution operator, and σ >
0 is the standard deviation of the Gaussian distribution. The
magnitude of the smoothed gradient map can give indication
of where edges are in the image. However, a single scale
value σ may not capture objects with different scales. One
can use multiple scales to better retain objects of different
scales within a single unified map,

G(I ) = ∪
σhigh
σ=σlow |∇σ I |. (10)

The discrete interval [σlow, σhigh] captures a range of scales,
that can be fixed based on the data set at hand, to retain edge
maps across multiscale objects that are present in the image I .
The presmoothing operation (9) mitigates the effect of noise
on each gradient map, and the aggregation (10) makes sure
the information from gradients are maximally utilized in the
edge detection procedure. Such a fusion multiscale gradient
maps is useful in capturing spatial gradient changes and can
aid in improving the information content overall [28]We thus
utilize the summed up gradient maps along with gray scale
values and apply the FI measure based thresholded value
selection for this combined image,

I = I ∪ G(I ). (11)

Then, the usual masks are utilized to detect the edges.
We term this approach as the multiscale Fisher informa-
tion (MSFI) based edge detector, see the steps in algorithm 1.
Figure 1 illustrates the advantage of using the multiscale
gradient maps Figure 1(c), as can be seen in Figure 1(d) our
improved method obtains overall a better edge map.

III. EXPERIMENTAL RESULTS
A. SETUP, PARAMETERS AND ERROR METRICS
We have implemented all the edge detectors considered here
in MATLABr R2012a on a Mac Laptop with 2.3 GHz Intel
Core i7 with 8 GB RAM. All the images are mapped to [0, 1]
and the edge maps are inverted (white - edge pixels, black -
non-edge pixels) for better visualization. The computation of
the overallMSFI took∼ 0.2s on a 512×512 gray scale image.
To test the performance of different edge detection algorithms
quantitatively we utilize the following two error metrics.
• Entropy:

E(I ) = −
L∑
i=0

pi log pi, (12)

where pi is the frequency of pixels with intensity value i.
Low values of E(I ) indicate lower information and the
higher values are indicative of noise and possible pres-
ence of double edge pixels.

• Pratt’s figure of merit (FoM) [27]:

FOM =
1

max (NI ,ND)

ND∑
i=1

1

1+ γ d2i
, (13)

whereNI ,ND represent the number of ideal and detected
edge pixels, and di is the Euclidean distance between
them. The parameter γ is used to penalize displacement
of edge pixels from true locations. FoM values in the
interval [0, 1] with values of FoM closer to 1 indicate
better edge detector performance.

We further compare the peak signal to noise ratio
(PSNR - dB) [30], [32].

PSNR(u) = 20 ∗ log10

(
umax
√
MSE

)
dB (14)
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FIGURE 2. Capturing multiscale edges via gradient maps augmentation on a synthetic Shapes gray scale image of size 512× 512. We show different
structures to illustrate the multiscale scales structures that are present in the image. (a) Input image, (b-f) smoothed gradient edge maps with
σ = 1,2,3,4,5 shown as pixelmaps. Higher scales tend to obtain bigger edge map widths, and (g) ∪3

σ=1|∇σ I|, wherein we combined edge maps of
σ = 1,2,3 to keeps all the salient structures intact without compromising the edge quality. Better viewed online and zoomed in.

TABLE 1. Comparison of PSNR (dB) values for Fisher information (FI) [1], Sobel [7], Canny [2], Prewitt [5], Roberts [6] detectors, and our multiscale Fisher
information (MSFI).

where MSE = (mn)−1
∑∑

(u−uO)2, with uO is the original
(noise free) image, m × n denotes the image size, umax
denotes the maximum value, for example in 8-bit images
umax = 255. A difference of 0.5 dB can be identified visually.
Note that the metric PSNR is meant for evaluating image
quality and not for evaluating the accuracy of edge detection
methods. However, in [1] PSNR (dB) was used to measure
the better-thresholded image quality. They considered the
edge detection based on threshold image values to make
quantitative comparisons with PSNR values among different
methods.

Following [1], we utilize 3 × 3 masks as in the FIMTHA
model. For the range of scales used in our multiscale gra-
dient maps augmentation (10), we conducted a parameter
sweep. Figure 2 shows the multiscale gradient edge maps
for various shapes from a synthetic gray scale image. These
contain low, medium, and high scales, and the augmentation
of multiscale gradient maps provides better edge localization
and can preserve details at all scales, see for example, Figure 2
last row which contain small triangles as well the bigger star

shape. We fixed [σlow, σhigh] = [1, 3] as the optimal range
for natural images considered here since higher scales tend
to increase the edge map widths and can lead false edge
pixels thereby degrading the accuracy. Further, by augment-
ing multiple scales based gradient maps augmented with the
gray scale values as in (11) we obtain stronger responses by
reinforcing real edge pixels on the boundaries of the shapes,
see Figure 2 last column.

B. COMPARISON RESULTS
Figure 3 shows a comparison of our proposed MSFI with
other edge detectors from the literature, Fisher information
(FI) [1], Sobel [7], Canny [2], Prewitt [5], and Roberts [6].
Table 1 shows the corresponding PSNR (dB) values for the
edge detection results. As can be seen, overall the proposed
MSFI edge detection results are better. There are no pre-
or post-processing steps applied to any of the experimental
results reported here. We notice a lack of edge continuity,
see for example in the images - Brain, Grape, and Lena top
of the cap region, this is due to the fact that the augmented
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FIGURE 3. Comparison of edge detection results on a synthetic Shapes image. (a) Input, (b) Sobel [7], (c) Canny [2],
(d) Prewitt [5], (e) Roberts [6], (f) FI [1], and (g) our MSFI.

multiscale gradient maps can obtain lower values due to
small scale oscillation compared to the uniform background
pixels. A remedy to this can be to augment other differential
operators such as the structure tensor [10], [14] or higher
order derivatives.

Table 2 shows the Entropy and Pratt’s figure ofmerit (FoM)
metric for the test images considered here. As we can see,
our model obtained better values of FoM than other edge
detection methods indicating better edge pixels detection
overall. Regarding the Entropy values, we notice that Sobel,
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TABLE 2. Comparison of Entropy, and Pratt’s figure-of-merit (FoM) values for Fisher information (FI) [1], Sobel [7], Canny [2], Prewitt [5], Roberts [6]
detectors, and our multiscale Fisher information (MSFI).

Prewitt, and Roberts obtained lower entropy values indicating
that noise and randomness are lower, however it results in
true edge information loss overall, see Figure 3(b,d,e). This
can also be seen on the loss of major edge details in test
images Light Microscopy (A), Lena, Horse, Electric Circuit,
and Grape image edge detection results of these methods. Our
proposed MSFI obtained entropy values higher than Sobel,
Prewitt, and Roberts however compared to Canny, the val-
ues are lower indicating meaningful edge detections without
much noisy pixels. In particular, compared to Canny, see
Figure 3(c) we detected less noisy edge pixels indicating the
robustness of our approach, see Figure 3(g). Similar observa-
tions can be made for the FoM metric values, and in general,
our MSFI obtained better performance overall compared to
FI, see Figure 3(f), as can be supported by higher FoM values
in across all the test images.

IV. CONCLUSION
In this article, we considered an image edge detection method
by combining multiscale gradient maps and Fisher informa-
tion. A non-parametric and unsupervised edge detection algo-
rithm is proposed with better performance than traditional
gradient based edge detectors and a basic Fisher information
based edge detector from the literature. Experimental results
on a variety of natural is undertaken with PSNR error metric.
Overall, the proposed edge detection method obtained better
results than other methods in the literature. Future works
include incorporating the multiscale gradient maps with other
entropies such as the Shannon, Renyi, or adaptive entropy [8]
for image thresholding and edge detection.
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